Skip to main content

Robust Adaptive Control of a Class of Nonlinear Systems with Unknown Hysteresis Nonlinearity

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8103))

Included in the following conference series:

  • 8207 Accesses

Abstract

In this paper, the tracking problem for a class of uncertain nonlinear systems preceded by unknown Coleman-Hodgdon hysteresis is investigated. By analysing the hysteresis conditions, an important property is given, and hence Coleman-Hodgdon hysteresis can be decomposed as a nonlinear smooth term and a nonlinear bounded distrubance-like term. In order to remove the difficulty arising from the nonlinear smooth term, mean value theorem and a Nussbaum function lemma are introduced. Then following backstepping design procedure, a novel adaptive controller is developed without constructing a hysteresis inverse. The proposed controller not only doesn’t need any assumptions on the uncertain system parameters within a known compact and a priori knowledge on the bound of the external disturbance, but also can guarantee global uniformly ultimately boundedness of all signals in the closed-loop system. Simulations performed on a nonlinear system illustrate and clarify the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nordin, M., Gutman, P.-O.: Controlling mechanical systems with backlash a survey. Automatica 38(10), 1633–1649 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Mayergoyz, I.D.: Mathematical Models of Hysteresis and their Applications. Elsevier Science, New York (2003)

    Google Scholar 

  3. Smith, R.: Smart Material Systems: Model Development. SIAM, Philadelphia (2005)

    Book  Google Scholar 

  4. Tao, G., Kokotovic, P.V.: Adaptive control of plants with unknown hystereses. IEEE Trans. Autom. Control 40(2), 200–212 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Tao, G., Kokotovic, P.V.: Adaptive Control of Systems with Actuator and Sensor Nonlinearities. John Wiley & Sons, New York (1996)

    MATH  Google Scholar 

  6. Preisach, F.: Über die magnetische Nachwirkung. Zeitschrift für Physik 94, 277–302 (1935)

    Article  Google Scholar 

  7. Visintin, A.: Differential Models of Hysteresis. Springer, New York (1994)

    Book  MATH  Google Scholar 

  8. Krasnosel’skii, M.A., Pokrovskii, A.V.: Systems wirh Hysreresis. Springer, Berlin (1983)

    Google Scholar 

  9. Dahl, P.R.: Solid friction damping of mechanical vibrations. AIAA J. 14(12), 1675–1682 (1976)

    Article  Google Scholar 

  10. Canudas, C., Olsson, H., Ǎstrom, K.J., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40(3), 419–425 (1995)

    Google Scholar 

  11. Jiles, D.C., Atherton, D.L.: Theory of ferromagnetic hysteresis. Journal of Magnetism and Magnetic Materials 61, 48–60 (1986)

    Article  Google Scholar 

  12. Bouc, R.: Forced vibrations of mechanical systems with hysteresis. In: Fourth Conference on Nonlinear Oscilation. Prague, Czechoslovakia (1967)

    Google Scholar 

  13. Wen, Y.K.: Method for random vibration of hysteretic systems. Journal of Engineering Mechanics. ASCE 102(2), 249–263 (1976)

    Google Scholar 

  14. Su, C.-Y., Stepanenko, Y., Svoboda, J., Leung, T.P.: Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Autom. Control 45(12), 2427–2432 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duhem, P.: Die dauernden Aenderungen und die Thermodynamik. I, Z. Phys. Chem. 33, 543–589 (1897)

    Google Scholar 

  16. Krejči, P., Kuhnen, K.: Inverse control of systems with hysteresis and creep. IEE Proceedings Control Theory and Applications 148(3), 185–192 (2001)

    Google Scholar 

  17. Zhou, J., Zhang, Y., Wen, C.: Robust Adaptive Output Control of Uncertain Nonlinear Plants With Unknown Backlash Nonlinearity. IEEE Trans. Autom. Control 52(3), 503–509 (2007)

    Article  MathSciNet  Google Scholar 

  18. Chen, X., Su, C.-Y., Fukuda, T.: Adaptive Control for the Systems Preceded by Hysteresis. IEEE Trans. Autom. Control 53(4), 1019–1025 (2008)

    Article  MathSciNet  Google Scholar 

  19. Chen, X., Hisayama, T., Su, C.-Y.: Adaptive Control for Uncertain Continuous-Time Systems Using Implicit Inverse of Prandtl-Ishlinskii Hysteresis Representation. IEEE Trans. Autom. Control 55(10), 2357–2363 (2010)

    Article  MathSciNet  Google Scholar 

  20. Zhou, J., Wen, C., Zhang, Y.: Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Autom. Control 49(10), 1751–1759 (2004)

    Article  MathSciNet  Google Scholar 

  21. Ikhouane, F., Mañosa, V., Rodellar, J.: Adaptive control of a hysteretic structural system. Automatica 41(2), 225–231 (2005)

    Google Scholar 

  22. Su, C.-Y., Wang, Q., Chen, X., Rakheja, S.: Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis. IEEE Trans. Autom. Control 50(12), 2069–2074 (2005)

    Article  MathSciNet  Google Scholar 

  23. Coleman, B.D., Hodgdon, M.L.: A constitutive relation for rateindependent hysteresis in ferromagnetically soft materials. Int. J. Eng. Sci. 24, 897–919 (1986)

    Article  MATH  Google Scholar 

  24. Hodgdon, M.L.: Applications of a theory of ferromagnetic hysteresis. IEEE Trans. Magn. 24(1), 218–221 (1988)

    Article  Google Scholar 

  25. Hodgdon, M.L.: Mathematical theory and calculations of magnetic hysteresis curves. IEEE Trans. Magn. 24(6), 3120–3122 (1988)

    Article  Google Scholar 

  26. Macki, J.W., Nistri, P., Zecca, P.: Mathematical models for hysteresis. SIAM Rev. 35, 94–123 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ge, S.S., Wang, J.: Robust adaptive tracking for time-varying uncertain nonlinear systems with unknown control coefficients. IEEE Trans. Autom. Control 48(8), 1462–1469 (2003)

    Google Scholar 

  28. Krstic, M., Kanellakopoulos, I., Kokotovic, V.: Nonlinear and adaptive control design. John Wiley & Sons, New York (1995)

    Google Scholar 

  29. Plycarpou, M.M., Ioannou, P.A.: A robust adaptive nonlinear control design. Automatica 31, 423–427 (1995)

    Google Scholar 

  30. Ryan, E.P.: A universal adaptive stabilizer for a class of nonlinear systems. Syst. Control Lett. 16, 209–218 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, YH., Feng, Y., Su, CY. (2013). Robust Adaptive Control of a Class of Nonlinear Systems with Unknown Hysteresis Nonlinearity. In: Lee, J., Lee, M.C., Liu, H., Ryu, JH. (eds) Intelligent Robotics and Applications. ICIRA 2013. Lecture Notes in Computer Science(), vol 8103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40849-6_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40849-6_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40848-9

  • Online ISBN: 978-3-642-40849-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics