Skip to main content

Design Simulations of the SJTU Continuum Arm Exoskeleton (SCAX)

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8102))

Abstract

In a clinical environment for rehabilitation therapy, one exoskeleton is usually shared by multiple patients. If the exoskeleton has a rigid structure which is actuated to mobilize a patient, it will be challenging to guarantee these on-site adjustments can make the rigid exoskeleton fit each patient kinematically perfectly. This paper proposes to design an exoskeleton using compliant continuum mechanisms. Its intrinsic flexibility allows the adaption to different human anatomies passively. The design concept, kinematics and design simulations are elaborated for this SJTU Continuum Arm Exoskeleton (SCAX). Combining previous experimental results for a proof-of-concept shoulder exoskeleton, the SCAX could effectively achieve consistent Anatomy Adaptive Assistances (AAA) for different patients with their limb motions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brewer, B.R., McDowell, S.K., Worthen-Chaudhari, L.C.: Poststroke Upper Extremity Rehabilitation: A Review of Robotic Systems and Clinical Results. Topics in Stroke Rehabilitation 14(6), 22–44 (2007)

    Article  Google Scholar 

  2. Dollar, A.M., Herr, H.: Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art. IEEE Transactions on Robotics 24(1), 144–158 (2008)

    Article  Google Scholar 

  3. Zoss, A.B., Kazerooni, H., Chu, A.: Biomechanical Design of the Berkeley Extremity Exoskeleton (BLEEX). IEEE/ASME Transaction on Mechatronics 11(2), 128–138 (2006)

    Article  Google Scholar 

  4. Walsh, C.J., Paluska, D., Pasch, K., Grand, W., Valiente, A., Herr, H.: Development of a Lightweight, Underactuated Exoskeleton for Load-Carrying Augmentation. In: IEEE International Conference on Robotics and Automation (ICRA), Orlando, Florida, USA (2006)

    Google Scholar 

  5. Durfee, W.K., Rivard, A.: Priliminary Design and Simulation of a Pneumatic, Stored-Energy, Hybrid Orthosis for Gait Restoration. In: ASME International Mechanical Engineering Congress, Anaheim, California, USA, pp. 1–7 (2004)

    Google Scholar 

  6. Banala, S.K., Agrawal, S.K., Fattah, A., Krishnamoorthy, V., Hsu, W.-L., Scholz, J., Rudolph, K.: Gravity-Balancing Leg Orthosis and Its Performance Evaluation. IEEE Transactions on Robotics 22(6), 1228–1239 (2006)

    Article  Google Scholar 

  7. Veneman, J.F., Ekkelenkamp, R., Kruidhof, R., van der Helm, F.C.T., van der Kooij, H.: A Series Elastic- and Bowden-Cable-Based Actuation System for Use as Torque Actuator in Exoskeleton-Type Robots. International Journal of Robotics Research 25(3), 261–281 (2006)

    Article  Google Scholar 

  8. Saglia, J.A., Tsagarakis, N.G., Dai, J.S., Caldwell, D.G.: A High Performance 2-dof Over-Actuated Parallel Mechanism for Ankle Rehabilitation. In: IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, pp. 2180–2186 (2009)

    Google Scholar 

  9. Farris, R.J., Quintero, H.A., Goldfarb, M.: Preliminary Evaluation of a Powered Lower Limb Orthosis to Aid Walking in Paraplegic Individuals. IEEE Transactions on Neural Systems and Rehabilitation Engineering 19(6), 652–659 (2011)

    Article  Google Scholar 

  10. Tsagarakis, N.G., Caldwell, D.G.: Development and Control of a ‘Soft-Actuated’ Exoskeleton for Use in Physiotherapy and Training. Autonomous Robots 15(1), 21–33 (2003)

    Article  Google Scholar 

  11. Perry, J.C., Rosen, J., Burns, S.: Upper-Limb Powered Exoskeleton Design. IEEE/ASME Transaction on Mechatronics 12(4), 408–417 (2007)

    Article  Google Scholar 

  12. Gupta, A., O’Malley, M.K., Patoglu, V., Burgar, C.: Design, Control and Performance of RiceWrist: A Force Feedback Wrist Exoskeleton for Rehabilitation and Training. International Journal of Robotics Research 27(2), 233–251 (2008)

    Article  Google Scholar 

  13. Stienen, A.H.A., Hekman, E.E.G., Prange, G.B., Jannink, M.J.A., Aalsma, A.M.M., van der Helm, F.C.T., van der Kooij, H.: Dampace: Design of an Exoskeleton for Force-Coordination Training in Upper-Extremity Rehabilitation. Journal of Medical Devices 3(031003), 1–10 (2009)

    Google Scholar 

  14. Klein, J., Spencer, S., Allington, J., Bobrow, J.E., Reinkensmeyer, D.J.: Optimization of a Parallel Shoulder Mechanism to Achieve a High-Force, Low-Mass, Robotic-Arm Exoskeleton. IEEE Transactions on Robotics 26(4), 710–715 (2010)

    Article  Google Scholar 

  15. Wolbrecht, E.T., Reinkensmeyer, D.J., Bobrow, J.E.: Pneumatic Control of Robots for Rehabilitation. International Journal of Robotics Research 29(1), 23–38 (2010)

    Article  Google Scholar 

  16. Agrawal, S.K., Dubey, V.N., Gangloff, J.J., Brackbill, E., Mao, Y., Sangwan, V.: Design and Optimization of a Cable Driven Upper Arm Exoskeleton. Journal of Medical Devices 3(031004), 1–8 (2009)

    Google Scholar 

  17. Mao, Y., Agrawal, S.K.: Design of a Cable-Driven Arm Exoskeleton (CAREX) for Neural Rehabilitation. IEEE Transactions on Robotics 28(4), 922–931 (2012)

    Article  Google Scholar 

  18. Vukobratovic, M., Hristic, D., Stojiljkovic, Z.: Development of Active Anthropomorphic Exoskeletons. Medical and Biological Engineering and Computing 12(1), 66–80 (1974)

    Article  Google Scholar 

  19. Loureiro, R.C.V., Harwin, W.S.: Reach & Grasp Therapy: Design and Control of a 9-DOF Robotic Neuro-rehabilitation System. In: IEEE International Conference on Rehabilitation Robotics (ICORR), Noordwijk, The Netherlands, pp. 757–763 (2007)

    Google Scholar 

  20. Aguirre-Ollinger, G., Colgate, J.E., Peshkin, M.A., Goswami, A.: Design of an Active One-Degree-of-Freedom Lower-Limb Exoskeleton with Inertia Compensation. International Journal of Robotics Research (2010) (onlinefirst)

    Google Scholar 

  21. Kawamoto, H., Lee, S., Kanbe, S., Sankai, Y.: Power Assist Method for HAL-3 using EMG-based Feedback Controller. In: IEEE International Conference on Systems, Man and Cybernetics (IEEE SMC), Washington, D.C, USA, pp. 1648–1653 (2003)

    Google Scholar 

  22. Yamamoto, K., Ishii, M., Noborisaka, H., Hyodo, K.: Stand Alone Wearable Power Assisting Suit: Sensing and Control Systems. In: IEEE International Workshop on Robot and Human Interactive Communication, Kurashiki, Okayama, Japan (2004)

    Google Scholar 

  23. Fleischer, C., Hommel, G.: A Human–Exoskeleton Interface Utilizing Electromyography. IEEE Transactions on Robotics 24(4), 872–882 (2008)

    Article  Google Scholar 

  24. Sharma, V., McCreery, D.B., Han, M., Pikov, V.: Bidirectional Telemetry Controller for Neuroprosthetic Devices. IEEE Transactions on Neural Systems and Rehabilitation Engineering 18(1), 67–74 (2010)

    Article  Google Scholar 

  25. Schiele, A., van der Helm, F.C.T.: Kinematic Design to Improve Ergonomics in Human Machine Interaction. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14(4), 456–469 (2006)

    Article  Google Scholar 

  26. Kim, H., Miller, L.M., Byl, N., Abrams, G.M., Rosen, J.: Redundancy Resolution of the Human Arm and an Upper Limb Exoskeleton. IEEE Transactions on Biomedical Engineering 59(6), 1770–1779 (2012)

    Article  Google Scholar 

  27. Jarrassé, N., Morel, G.: Connecting a Human Limb to an Exoskeleton. IEEE Transactions on Robotics 28(3), 697–709 (2012)

    Article  Google Scholar 

  28. van den Bogert, A.J.: Exotendons for assistance of human locomotion. Biomedical Engineering Online 2(17) (2003)

    Google Scholar 

  29. Kobayashi, H., Hiramatsu, K.: Development of Muscle Suit for Upper Limb. In: IEEE International Conference on Robotics and Automation (ICRA), New Orleans, LA, USA, pp. 2480–2485 (2004)

    Google Scholar 

  30. Xu, K., Qiu, D., Simaan, N.: A Pilot Investigation of Continuum Robots as a Design Alternative for Upper Extremity Exoskeletons. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), Phuket, Thailand, pp. 656–662 (2011)

    Google Scholar 

  31. Xu, K., Qiu, D.: Experimental Design Verification of a Compliant Shoulder Exoskeleton. In: IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany (accepted for presentation, 2013)

    Google Scholar 

  32. Xu, K., Zhao, J., Qiu, D., Wang, Y.: A Pilot Investigation of a Continuum Shoulder Exoskeleton for Anatomy Adaptive Assistances. IEEE Transactions on Robotics (2013)

    Google Scholar 

  33. Xu, K., Simaan, N.: An Investigation of the Intrinsic Force Sensing Capabilities of Continuum Robots. IEEE Transactions on Robotics 24(3), 576–587 (2008)

    Article  Google Scholar 

  34. Simaan, N., Xu, K., Kapoor, A., Wei, W., Kazanzides, P., Flint, P., Taylor, R.H.: Design and Integration of a Telerobotic System for Minimally Invasive Surgery of the Throat. International Journal of Robotics Research 28(9), 1134–1153 (2009)

    Article  Google Scholar 

  35. Ding, J., Goldman, R.E., Xu, K., Allen, P.K., Fowler, D.L., Simaan, N.: Design and Coordination Kinematics of an Insertable Robotic Effectors Platform for Single-Port Access Surgery. IEEE/ASME Transactions on Mechatronics, Early Access Articles (2012)

    Google Scholar 

  36. Xu, K., Goldman, R.E., Ding, J., Allen, P.K., Fowler, D.L., Simaan, N.: System Design of an Insertable Robotic Effector Platform for Single Port Access (SPA) Surgery. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis, MO, USA, pp. 5546–5552 (2009)

    Google Scholar 

  37. Xu, K., Simaan, N.: Analytic Formulation for the Kinematics, Statics and Shape Restoration of Multibackbone Continuum Robots via Elliptic Integrals. Journal of Mechanisms and Robotics 2 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, K., Wang, Y., Qiu, D. (2013). Design Simulations of the SJTU Continuum Arm Exoskeleton (SCAX). In: Lee, J., Lee, M.C., Liu, H., Ryu, JH. (eds) Intelligent Robotics and Applications. ICIRA 2013. Lecture Notes in Computer Science(), vol 8102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40852-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40852-6_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40851-9

  • Online ISBN: 978-3-642-40852-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics