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1 Introduction

The mosaic method originates in algebraic logic, see [19], where the existence
of a model is proved to be equivalent to the existence of a finite set of partial
models verifying some conditions. It has also been applied for proving complete-
ness and decidability of temporal logics over linear flows of time. See [5, section
6.4], or [7, 16, 17, 20]. For their use, specialized systems such as temporal logics
must be combined with each other. This has led to the development of tech-
niques for the combination of linear flows of time such as the classical operation
of Cartesian product [10, 11, 14, 21]. Within the context of modal logic, the
operation of lexicographic product of Kripke frames has been introduced as a
variant of the operation of Cartesian product. It has also been used for defining
the semantical basis of different languages designed for time representation and
temporal reasoning from the perspective of non-standard analysis. See [1–3].

In [3], the temporal logic of the lexicographic products of unbounded dense lin-
ear orders has been considered and its complete axiomatization has been given.
The purpose of this paper is to apply the mosaic method for providing a com-
plete decision procedure in nondeterministic polynomial time for the satisfiability
problem this temporal logic gives rise to. Its section-by-section breakdown is as
follows. Section 2 formally introduces the lexicographic products of unbounded
dense linear orders and presents the syntax and the semantics of the tempo-
ral logic we will be working with. Sections 3 defines mosaics and collections



of mosaics satisfying saturation properties. In Section 4 and 5, we prove the
completeness and soundness, respectively, of the mosaic method. Applying these
result we prove in Section 6 that the satisfiability problem for our temporal logic
is decidable in nondeterministic polynomial time.

2 Products of Unbounded Dense Linear Orders

Let F1 = (T1, <1) and F2 = (T2, <2) be linear orders. Their lexicographic prod-
uct is the structure F = (T,≺1,≺2) where

– T = T1 × T2,
– ≺1 and ≺2 are binary relations on T defined by (s1, s2) ≺1 (t1, t2) iff s1 <1 t1

and (s1, s2) ≺2 (t1, t2) iff s1 = t1 and s2 <2 t2.

We define the binary relation ≺ on T by (s1, s2) ≺ (t1, t2) iff (s1, s2) ≺1 (t1, t2)
or (s1, s2) ≺ (t1, t2). The effect of the operation of lexicographic product may be
described informally as follows: given two linear orders, their lexicographic prod-
uct is the structure obtained by replacing each point of the first one by a copy of
the second one. The global intuitions underlying such an operation is based upon
the fact that, depending on the accuracy required or the available knowledge,
one can describe a temporal situation at different levels of abstraction. See [4,
section I.2.2], or [8] for details. In Fig. 1 below, we have s1 <1 t1 and s2 <2 t2.
As a result, we have (s1, s2) ≺2 (s1, t2), (s1, s2) ≺1 (t1, s2), (s1, s2) ≺1 (t1, t2),
(s1, t2) ≺1 (t1, s2), (s1, t2) ≺1 (t1, t2) and (t1, s2) ≺2 (t1, t2). It is now time to
meet the temporal language we will be working with. Let At be a countable set
of atomic formulas (with typical members denoted p, q, etc). We define the set
Lt of formulas of our temporal language (with typical members denoted ϕ, ψ,
etc.) as follows:

– ϕ := p | ⊥ | ¬ϕ | (ϕ ∨ ψ) | G1ϕ | G2ϕ | H1ϕ | H2ϕ,
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Fig. 1. Illustration of ≺1 and ≺2



the formulas G1ϕ, G2ϕ, H1ϕ and H2ϕ being read “ϕ will be true at each point
within the future of but not infinitely close to the present point”, “ϕ will be true
at each instant within the future of and infinitely close to the present instant”,
“ϕ has been true at each point within the past of but not infinitely close to
the present point” and “ϕ has been true at each point within the past of and
infinitely close to the present point”. We adopt the standard definitions for the
remaining Boolean connectives. As usual, we define for all i ∈ {1, 2},

– Fiϕ := ¬Gi¬ϕ,
– Piϕ := ¬Hi¬ϕ,
– ✸iϕ := ϕ ∨ Fiϕ ∨ Piϕ.

The notion of a subformula is standard. It is usual to omit parentheses if this does
not lead to any ambiguity. The size of a formula ϕ, in symbols |ϕ|, is the number
of symbols of ϕ. A model is a structure M = (F1,F2, V ) where F1 = (T1, <1)
and F2 = (T2, <2) are linear orders and V : At → ℘(T1 × T2) is a valuation.
Satisfaction is a ternary relation |= between a model M = (F1,F2, V ), a pair
(s1, s2) ∈ T1 × T2 and a formula ϕ. It is defined by induction on ϕ as usual. In
particular, for all i ∈ {1, 2},

– M, (s1, s2) |= Giϕ iff M, (t1, t2) |= ϕ for every (t1, t2) ∈ T1 × T2 such that
(s1, s2) ≺i (t1, t2),

– M, (s1, s2) |= Hiϕ iff M, (t1, t2) |= ϕ for every (t1, t2) ∈ T1 × T2 such that
(t1, t2) ≺i (s1, s2).

As a result, for all i ∈ {1, 2},

– M, (s1, s2) |= Fiϕ iff M, (t1, t2) |= ϕ for some (t1, t2) ∈ T1 × T2 such that
(s1, s2) ≺i (t1, t2),

– M, (s1, s2) |= Piϕ iff M, (t1, t2) |= ϕ for some (t1, t2) ∈ T1 × T2 such that
(t1, t2) ≺i (s1, s2),

– M, (s1, s2) |= ✸2ϕ iff M, (s1, t) |= ϕ for some t ∈ T2.

M is said to be a model for ϕ iff there exists (s1, s2) ∈ T1 × T2 such that
M, (s1, s2) |= ϕ. In this case, we shall also say that ϕ is satisfied in M. Let
C1 and C2 be classes of linear orders. We shall say that a formula ϕ is satis-
fiable with respect to (C1, C2) iff there exists a linear order F1 = (T1, <1) in
C1, there exists a linear order F2 = (T2, <2) in C2 and there exists a valuation
V : At → ℘(T1×T2) such that (F1,F2, V ) is a model for ϕ. The temporal logic of
(C1, C2) is the set of all formulas ϕ such that ¬ϕ is not satisfiable with respect to
(C1, C2). The class of all unbounded dense linear orders will be denoted Cud. [3]
considers the temporal logic of (Cud, Cud) and gives its complete axiomatization.
The satisfiability problem of this temporal logic is to

– determine whether a given formula ϕ is satisfiable with respect to (Cud, Cud).

In order to provide a complete decision procedure in nondeterministic polynomial
time for it, we use mosaics.



3 Mosaics

Until the end of this paper, ξ will denote a fixed formula and Γ will denote
the least set of formulas such that ✸2ξ ∈ Γ (recall that ✸2ϕ is defined as
ϕ ∨ F2ϕ ∨ P2ϕ) and ⊤ ∈ Γ , Γ is closed under subformulas and single negations
(we identify ¬¬γ with γ) and

– if G1ϕ ∈ Γ or H1ϕ ∈ Γ , then G2ϕ,H2ϕ ∈ Γ ,
– if F1ϕ ∈ Γ or P1ϕ ∈ Γ , then ✸2ϕ ∈ Γ .

Recall that ξ has at most |ξ| subformulas. Closing this set under single nega-
tions gives us at most 2 × |ξ| formulas. Then ✸2ξ yields 2 × |ξ| + 10 formu-
las (subformulas and their negations). The first requirement above introduces
at most 2 new formulas plus their negations, and the last requirement intro-
duces at most 10 new formulas (with negations), for every ϕ. Thus we get that
|Γ | ≤ 14× (2× |ξ|+ 10) + 2 (the 2 is for ⊤ and ⊥).

Let λ be a function such that dom(λ) ⊆ Γ is closed under single negations
and ran(λ) ⊆ {0, 1}. We say that λ is adequate if

– ⊤ ∈ dom(λ) and λ(⊤) = 1,
– for every γ ∈ dom(λ), we have λ(¬γ) = 1− λ(γ),
– for every γ∨ρ ∈ dom(λ), we have λ(γ∨ρ) ≥ λ(γ) provided that γ ∈ dom(λ),
λ(γ ∨ ρ) ≥ λ(ρ) provided that ρ ∈ dom(λ), and λ(γ ∨ ρ) = max{λ(γ), λ(ρ)}
if both γ, ρ ∈ dom(λ).

The reason for the complicated form of the last condition is that generally we do
not require that dom(λ) is closed under subformulas. However, when we state a
requirement that λ(γ) ∈ {0, 1}, then we implicitly require that γ ∈ dom(λ).

Definition 1. Let i ∈ {1, 2} and (σ, τ) be a pair of adequate functions. We

define the following coherence properties.

Gi-coherence σ(Giϕ) = 1 implies τ(Giϕ) = τ(ϕ) = 1.
Hi-coherence τ(Hiϕ) = 1 implies σ(Hiϕ) = σ(ϕ) = 1.

1. A 1-mosaic is a pair (σ, τ) such that σ and τ are adequate functions, (σ, τ)
satisfies G1- and H1-coherence and the following transfer conditions.

G-transfer σ(G1ϕ) = 1 implies τ(G2ϕ) = τ(H2ϕ) = 1.
H-transfer τ(H1ϕ) = 1 implies σ(G2ϕ) = σ(H2ϕ) = 1.

2. A 2-mosaic is a pair (σ, τ) such that σ and τ are adequate functions with full

domain dom(σ) = dom(τ) = Γ , (σ, τ) satisfies G2- and H2-coherence and

the following uniformity conditions.

G1-uniformity σ(G1ϕ) = τ(G1ϕ).
H1-uniformity σ(H1ϕ) = τ(H1ϕ).

As an example of mosaics take a model M = (F1,F2, V ) with unbounded,
dense linear orders F1 = (T1, <1) and F2 = (T2, <2) and a valuation V : At →



℘(T1 × T2). Denote T := T1 × T2. Define for every (s, t) ∈ T , λ(s,t) : Γ → {0, 1}
by

λ(s,t)(γ) :=

{

1 if M, (s, t) |= γ

0 otherwise
(1)

for every γ ∈ Γ . It is straightforward to check that

– for every (s, t), (u, v) ∈ T with s <1 u, the pair (λ(s,t), λ(u,v)) is a 1-mosaic
(with full domain)

– for every (s, t), (s, u) ∈ T with t <2 u, the pair (λ(s,t), λ(s,u)) is a 2-mosaic.

For every s ∈ T1, define κs as follows:

κs(γ) :=











1 if λ(s,u)(γ) = 1 for every u ∈ T2

0 if λ(s,u)(γ) = 0 for every u ∈ T2

undefined otherwise

(2)

for every γ ∈ Γ . Then κs is an adequate function and (κs, κt) is a 1-mosaic
whenever s <1 t. An i-SSM will correspond to a flow of time in dimension i.

Definition 2. Let i ∈ {1, 2}. An i-saturated set of mosaics, an i-SSM, is a

collection M of i-mosaics such that M satisfies the Density, No-endpoints and

the corresponding i-saturation conditions below.

Density If (σ, τ) ∈M , then there is µ such that (σ, µ), (µ, τ) ∈M .

No-endpoints If (σ, τ) ∈ M , then there are µ, ν such that (µ, σ) ∈ M and

(τ, ν) ∈M .

F1-saturation—insertion If (σ, τ) ∈M , σ(F1ϕ) = 1 and τ(F1ϕ) = τ(✸2ϕ) =
0, then there is µ such that µ(✸2ϕ) = 1 and (σ, µ), (µ, τ) ∈M .

F2-saturation—insertion If (σ, τ) ∈M , σ(F2ϕ) = 1 and τ(F2ϕ) = τ(ϕ) = 0,
then there is µ such that µ(ϕ) = 1 and (σ, µ), (µ, τ) ∈M .

P1-saturation—insertion If (σ, τ) ∈M , τ(P1ϕ) = 1 and σ(P1ϕ) = σ(✸2ϕ) =
0, then there is µ such that µ(✸2ϕ) = 1 and (σ, µ), (µ, τ) ∈M .

P2-saturation—insertion If (σ, τ) ∈M , τ(P2ϕ) = 1 and σ(P2ϕ) = σ(ϕ) = 0,
then there is µ such that µ(ϕ) = 1 and (σ, µ), (µ, τ) ∈M .

F1-saturation—expansion If (σ, τ) ∈ M and τ(F1ϕ) = 1, then there is µ
such that µ(✸2ϕ) = 1 and (τ, µ) ∈M .

F2-saturation—expansion If (σ, τ) ∈ M and τ(F2ϕ) = 1, then there is µ
such that µ(ϕ) = 1 and (τ, µ) ∈M .

P1-saturation—expansion If (σ, τ) ∈ M and σ(P1ϕ) = 1, then there is µ
such that µ(✸2ϕ) = 1 and (µ, σ) ∈M .

P2-saturation—expansion If (σ, τ) ∈ M and σ(P2ϕ) = 1, then there is µ
such that µ(ϕ) = 1 and (µ, σ) ∈M .

That is, besides the Density and No-endpoint conditions, a 1-SSM should satisfy
the F1-saturation and P1-saturation conditions and a 2-SSM should satisfy the
F2-saturation and P2-saturation conditions. We say that M is an i-SSM for ϕ if



there is (µ, ν) ∈ M such that µ(ϕ) = 1 or ν(ϕ) = 1. Let us continue with our
example. The collections

{(λ(s,t), λ(u,v)) : (s, t) ≺1 (u, v)} and {(κs, κu) : s <1 u}

of 1-mosaics are 1-SSMs. Fix s ∈ T1 and consider the setMs of 2-mosaics defined
by

Ms := {(λ(s,t), λ(s,u)) : t, u ∈ T2, t <2 u}.

It is easy to check that Ms is a 2-SSM for every s ∈ T1. A 1-supermosaic will be
a 1-mosaic of two 2-SSMs.

Definition 3. Let M be a 2-SSM. We define λM by

λM (γ) :=











1 if µ(γ) = ν(γ) = 1 for every (µ, ν) ∈M

0 if µ(γ) = ν(γ) = 0 for every (µ, ν) ∈M

undefined otherwise

(3)

for every γ ∈ Γ . Observe that λM is an adequate function.

A 1-supermosaic is a pair (M,N) of 2-SSMs such that (λM , λN ) is a 1-mosaic.

In our example, for every s, t ∈ T1 such that s <1 t, the pair (Ms,Mt) is a
1-supermosaic. A saturated set of 1-supermosaics will correspond to a flow (in
dimension 1) of flows (in dimension 2).

Definition 4. A saturated set of 1-supermosaics, a 1-SSS, is a collection Σ of

1-supermosaics such that {(λM , λN ) : (M,N) ∈ Σ} is a 1-SSM.

We say that Σ is a 1-SSS for ϕ if there is (M,N) ∈ Σ such that λM (✸2ϕ) = 1
or λN (✸2ϕ) = 1. Observe that then there is a 2-mosaic (σ, τ) in one of the 2-
SSMs in one of the 1-supermosaics of Σ such that σ(ϕ) = 1 or τ(ϕ) = 1. In our
example the set

ΣM := {(Ms,Mt) : s, t ∈ T1, s <1 t}

is a 1-SSS and in fact a 1-SSS for ξ if there is (s, t) ∈ T1×T2 such thatM, (s, t) |=
ξ. Our running example should convince the reader that satisfiability of ξ implies
the existence of a 1-SSS for ξ. But we want to be more economical in creating the
1-SSS; we will describe the procedure for creating a smaller 1-SSS in Section 5.
First we show how to create a model from a 1-SSS, though.

4 Completeness

In this section we show the completeness of the mosaic approach. We will need
the following.

Definition 5. Let i ∈ {1, 2} and W = (W,<, λ) be a structure such that (W,<)
is a linear order and λq is an adequate function for every q ∈ W . We say that

W is i-consistent if it satisfies for every q ∈ W , the corresponding i-completness
and i-soundness conditions below.



Gi-soundness If λq(Giγ) = 1, then λp(Giγ) = λp(γ) = 1 for every p ∈W such

that q < p.
Hi-soundness If λq(Hiρ) = 1, then λp(Hiρ) = λp(ρ) = 1 for every p ∈ W such

that p < q.
F1-completeness If λq(F1γ) = 1, then there is p ∈ W such that q < p and

λp(✸2γ) = 1.
F2-completeness If λq(F2γ) = 1, then there is p ∈ W such that q < p and

λp(γ) = 1.
P1-completeness If λq(P1ρ) = 1, then there is p ∈ W such that p < q and

λp(✸2γ) = 1.
P2-completeness If λq(P2ρ) = 1, then there is p ∈ W such that p < q and

λp(γ) = 1.

That is, a 1-consistent structure must satisfy the G1-soundness, H1-soundness,
F1-completeness and P1-completeness conditions, and a 2-consistent structure
satisfies the G2-soundness, H2-soundness, F2-completeness and P2-completeness
conditions.

Let W = (W,<, λ) be a structure such that (W,<) is a linear order and λq is
an adequate function for every q ∈W . A future defect of W is a pair (q, γ) such
that λq(Fiγ) = 1 but there is no p > q such that λp satisfies the requirements in
the Fi-completeness condition above. Past defects are defined similarly. Below
we will construct a i-complete (i.e., without defects) and i-sound structure from
an i-SSM, see Case 1 and 2 in the proof of Lemma 1 below, where we construct
the required future and past witnesses for the defects. In addition, we need that
the constructed structure is dense and without endpoints. That is why we will
need Case 3 and 4, where we construct new successors and predecessors for each
point in the linear order, which in the limit of the construction yields a dense
linear order without endpoints.

Lemma 1. Let i ∈ {1, 2}. Assume that M is an i-SSM for ϕ. Then there is an

i-consistent structure QM = (QM , <, λ) such that (QM , <) is isomorphic to the

rationals Q and λq(ϕ) = 1 for some q ∈ QM .

Proof. We will define the order (QM , <) and the adequate functions λq by in-
duction. To this end let us have a countable enumeration D of potential defects
{(q, γ, k) : q ∈ Q, γ ∈ Γ, k ∈ {1, 2, 3, 4}} such that every item appears infinitely
often. The value of k will indicate the type of the potential defect: future, past,
successor, predecessor.

By assumption there is an i-mosaic (µ, ν) ∈M such that µ(ϕ) = 1 or ν(ϕ) = 1.
In the base step of the construction we define the finite order Q1 = {0, 1} with
0 < 1 and functions λ0 = µ and λ1 = ν. Obviously the soundness conditions
restricted to Q1 hold.

For the inductive step assume that we constructed a sound structure
Qn consisting of a finite order (Qn, <) = (q0 < q1 < . . . < qn) and ade-
quate functions λq for q ∈ Qn such that (λqj , λqj+1

) ∈ M for every j < n.
Let D(n) = (q, γ, k). If q /∈ Qn, then we define Qn+1 := Qn. Otherwise we con-
sider the following four cases. If none of the four cases below holds, then we let
Qn+1 := Qn.



Case 1 k = 1, λq(Fiγ) = 1 and for every r ∈ Qn with q < r, we have λr(✸2γ) =
0 in case i = 1, or λr(γ) = 0 in case i = 2.
We will construct the required witness in the future of q. First assume that
for every r with q < r, we have λr(Fiγ) = 1 (note that this includes the case
q = qn). The i-mosaic (λqn−1

, λqn) ∈M . By Fi-saturation—expansion there
is an i-mosaic (λqn , µ) ∈M such that
– µ(✸2γ) = 1 if i = 1
– µ(γ) = 1 if i = 2.

In this case we define (Qn+1, <) := (q0 < q1 < . . . < qn < p) for some p ∈ Q

such that qn < p and let λp := µ. Next assume that there is r with q < r such
that λr(Fiγ) = 0. Let m be such that qm is minimal in Qn with respect to
this property. Consider the i-mosaic (λqm−1

, λqm) ∈ M . By Fi-saturation—
insertion there is an adequate function µ such that (λqn−1

, µ), (µ, λqn) ∈ M
and
– µ(✸2γ) = 1 if i = 1
– µ(γ) = 1 if i = 2.

Then we let (Qn+1, <) := (q0 < . . . < qm−1 < p < qm < . . . < qn) for some
p ∈ Q such that qm−1 < p < qm and define λp := µ.

Case 2 k = 2, λq(Piγ) = 1 and for every r ∈ Qn with r < q we have λr(✸2γ) =
0 if i = 1, or λr(γ) = 0 if i = 2.
A completely analogous construction to Case 1 provides the required witness
in the past of q.

Case 3 k = 3.
We will construct a new successor for q. In the case q = qn, consider
(λqn−1

, λqn) ∈ M . By the No-endpoints condition, we have an i-mosaic
(λqn , µ) ∈ M . We define (Qn+1, <) := (q0 < q1 < . . . < qn < p) for some
p ∈ Q such that qn < p and let λp := µ. Now assume that q = qm < qn.
Consider the i-mosaic (λqm , λqm+1

) ∈M . Then there is an adequate function
µ such that (λqm , µ), (µ, λqm+1

) ∈M , by the Density condition. Then we let
(Qn+1, <) := (q0 < . . . < qm < p < qm+1 < . . . < qn) for some p ∈ Q such
that qm−1 < p < qm and define λp := µ.

Case 4 k = 4.
A completely analogous construction to Case 3 provides a new predecessor
of q.

It is easy to check that Qn+1 is sound in every case, since it consists of elements
of M . Let QM = (QM , <) :=

⋃

n∈ω Qn (recall that we defined λq in the step we
created q for every q ∈ QM ). It is easy to see that (QM , <) is a countable linear
order which is dense and does not have endpoints (by Case 3 and 4), hence
isomorphic to Q. Since we considered every potential defects infinitely often,
it follows that QM does not contain any future or past defect in dimension i.
That is, if i = 1 and λq(F1γ) = 1, then there is p ∈ QM such that q < p and
λp(✸2γ) = 1, and if i = 2 and λq(F2γ) = 1, then there is p ∈ QM such that q < p
and λp(γ) = 1 (and similarly for past formulas). Hence QM is i-consistent. ⊓⊔

Next we apply Lemma 1 in both dimensions to construct a model from a 1-SSS.



Lemma 2. If there is a 1-SSS for ξ, then there is a model M for ξ. Further-
more, M can be chosen to be the lexicographic product of the rationals with some

valuation V : M = (Q,Q, V ).

Proof. Let Σ be a 1-SSS for ξ. Thus Σ is a collection of 1-supermosaics (M,N)
such that {(λM , λN ) : (M,N) ∈ Σ} is a 1-SSM. Furthermore, there is (M,N) ∈
Σ such that λM (✸2ξ) = 1 or λN (✸2ξ) = 1.

We apply Lemma 1 to get the 1-consistent structure QΣ = (QΣ , <1, λ) such
that (QΣ , <1) is isomorphic to Q and λq(✸2ξ) = 1 for some q ∈ QΣ . By the
construction of QΣ, for every q ∈ QΣ, there is a 2-SSM M such that λq = λM .
Thus we can assume that there is a function f : q 7→ M with domain QΣ . For
every q ∈ QΣ, we apply Lemma 1 to f(q) = M . Hence, we get a 2-consistent
structure Qf(q) = (Qf(q), <2, λ) such that (Qf(q), <2) is isomorphic to Q, and for
every rq ∈ Qf(q), the adequate function λrq has full domain Γ (since f(q) =M
is a 2-SSM).

Let us replace every q ∈ QΣ with the copy (Qf(q), <2) of Q (say, mapping q to
0). Thus we get a grid Q×Q such that the elements (q, r) have the property that
r = rq ∈ Qf(q). Hence to every (q, r) ∈ Q × Q we can associate a full adequate
function λ(q,r) := λrq .

Let M = (Q,Q, V ) be the model defined by the valuation V :

V (p) := {(q, r) ∈ Q×Q : λ(q,r)(p) = 1}

for every atomic proposition p. An easy formula-induction, using 1-consistency
of (QΣ , <1, λ) and 2-consistency of (Qf(q), <2), establishes that

M, (q, r) |= ϕ iff λ(q,r)(ϕ) = 1

for every ϕ ∈ Γ . Since we have λq(✸2ξ) = 1 for some q ∈ QΣ, we also get that
λ(q, r)(ξ) = 1 for some r ∈ Qf(q) by F2/P2-completeness. Hence M, (q, r) |= ξ,
that is, M is a model satisfying ξ. ⊓⊔

5 Soundness

For the reverse direction we also compute an upper bound on the size of the
required 1-SSS.

Definition 6. Let Wi = (Wi, <i, λ) be an i-consistent structure. For i = 1 we

define the following transfer conditions: for every p, q ∈W1 such that p <1 q,

G-transfer λp(G1ϕ) = 1 implies λq(G2ϕ) = λq(H2ϕ) = 1,
H-transfer λq(H1ϕ) = 1 implies λp(G2ϕ) = λp(H2ϕ) = 1.

For i = 2 we define the following uniformity conditions: for every p, q ∈ W2,

G1-uniformity λp(G1ϕ) = λq(G1ϕ),
H1-uniformity λp(H1ϕ) = λq(H1ϕ).

We will need the following technical lemma.



Lemma 3. Fix i ∈ {1, 2}. Let Wi = (Wi, <i, λ) be an i-consistent structure such
that (Wi, <i) is a dense, linear order without endpoints. Assume that Wi satis-

fies the G- and H-transfer conditions if i = 1, and the G1- and H1-uniformity

conditions if i = 2.
Let u ∈Wi and γ ∈ Γ such that λu(γ) = 1. Then there is an i-SSM Mi for γ

of size at most (4× |Γ |)2. In fact, Mi can be chosen such that for some Ui ⊆Wi

with |Ui| ≤ 4× |Γ |

Mi = {(λu, λv) : u, v ∈ Ui, (∃u
′ ∈ Wi)(∃v

′ ∈ Wi)u ≡ u′ & v ≡ v′ & u′ <i v
′}

where w ≡ w′ iff λw = λw′ .

Proof. For every w,w′ ∈ Wi, we let w ≡ w′ iff λw = λw′ . Note that there are
finitely many equivalence classes, since Γ is finite. For every formula ϕ ∈ Γ ,
let Wi(ϕ) := {w ∈ Wi : λw(ϕ) = 1}. Let wϕ be a maximal element of Wi(ϕ)
(provided that Wi(ϕ) is not empty) in the following sense:

(∀w′ ∈ Wi(ϕ))(∃w
′′ ∈ Wi(ϕ))w

′ ≤i w
′′ & w′′ ≡ wϕ.

The existence of a maximal element can be easily shown. For every ϕ ∈ Γ choose
a maximal element wϕ from Wϕ. Similarly, for every ϕ ∈ Γ , choose a minimal
element wϕ from Wi(ϕ). Let

W−
i = {wϕ, wϕ : ϕ ∈ Γ}.

Note that |W−
i | ≤ 2× |Γ |.

The problem with W−
i is that it may not contain “enough” points to cure

density defects. Indeed, consider the unique points in W−
i , i.e., those w ∈ W−

i

such that for every w′ 6= w, λw 6= λw′ . Note that the set X of unique points
can be linearly ordered: x1 <i x2 <i . . . <i xm. Now consider two unique points
xj , xj+1 ∈ W−

i such that there is no z ∈ Wi with xj <i z <i xj+1 in Wi and
z ≡ z′ ∈ W−

i for some z′. Then we would not be able to insert a point into the
mosaic (λxj

, λxj+1
).

So let us expandW−
i with the required witnesses for density defects. Take the

enumeration x0 <i x1 <i . . . <i xm of unique points. Since <i is a dense order,
there are infinitely many points in each open interval ]xj , xj+1[= {x : xj <i x <i

xj+1}. Thus, we can choose a point s ∈ ]xj , xj+1[ such that there are infinitely
many points t in ]xj , xj+1[ with λs = λt. Let us denote such a chosen s by sj for
every 0 ≤ j < m. Define Ui :=W−

i ∪ {sj : 0 ≤ j < m}. Note that |Ui| ≤ 4× |Γ |.
We claim that

Mi := {(λu, λv) : u, v ∈ Ui, (∃u
′ ∈Wi)(∃v

′ ∈Wi)u ≡ u′ & v ≡ v′ & u′ <i v
′}

is the required i-SSM. Clearly, |Mi| ≤ (4 × |Γ |)2. The elements of Mi are Gi-
and Hi-coherent because Wi is sound. The transfer (for i = 1) and uniformity
(for i = 2) conditions also hold, since Wi has the corresponding properties. Thus
every element ofMi is an i-mosaic. It remains to show the saturation conditions.

For the Fi-saturation—expansion requirement assume that (λu, λv) ∈M and
λv(Fiϕ) = 1. Let v′ ∈ W such that v ≡ v′. Since λv′ (Fiϕ) = 1 and Wi is
Fi-complete, there is z ∈ Wi such that v′ <i z and



– λz(✸2ϕ) = 1 in case i = 1,

– λz(ϕ) = 1 in case i = 2.

Let w be the maximal element in W1(✸2ϕ) orW2(ϕ) (depending on the value of
i) that we put in Ui. By the maximality of w, there is z′ ∈Wi such that z ≤i z

′

and z′ ≡ w. By this observation, we get that (λv, λw) ∈Mi as required.
For the Fi-saturation—insertion requirement we work out only the case i = 2,

since the case i = 1 is completely analogous. So assume that (λu, λv) ∈ M2,
λu(F2ϕ) = 1 and λv(F2ϕ) = λv(ϕ) = 0. Let u′, v′ ∈ W2 such that u ≡ u′,
v ≡ v′ and u′ <2 v

′. Since W2 is F2-complete, there is z ∈ W2 such that u′ <2 z
and λz(ϕ) = 1. Let w be the maximal element of W2(ϕ) that we put in U2.
Then there is z′ ∈ W2 such that z ≤2 z

′ and z′ ≡ w. Hence (λu, λw) ∈ M2.
Furthermore, z′ <2 v

′, since λv′(F2ϕ) = λv′(ϕ) = 0 and W2 is G2-sound. That
is, (λw, λv) ∈ M2 as well. Thus we can insert the appropriate mosaics into
(λu, λv).

Checking the saturation conditions for past formulas is completely analogous.
The No-endpoints requirement follows from the fact that (Wi, <i) is an un-
bounded linear order. Indeed, let (λu, λv) ∈ Mi and v

′ ∈ Wi such that v ≡ v′.
Then there is w ∈ Wi such that v′ <i w and λw(⊤) = 1. Let w be the be the
maximal element of Wi(⊤). Then (λv, λw) ∈Mi as required.

It remains to show the Density condition. Let (λu, λv) ∈ Mi be an arbitrary
mosaic and u′, v′ ∈ Wi such that u′ <i v

′, u ≡ u′ and v ≡ v′. If either u′ or
v′ is not unique, then we can insert either (λu, λu) or (λv , λv) into (λu, λv). So
assume that both u′ and v′ are unique, say u′ = xj and v′ = xj+k. But we
defined sj ∈ ]xj , xj+1[ in this case, and we have (λu, λsj ) and (λsj , λv) in Mi.
Hence we can insert the required mosaics into (λu, λv) in this case as well.

Finally note that we chose a representative from the equivalence class Wi(γ),
hence Mi is indeed an i-SSM for γ. ⊓⊔

We are ready to state the reverse of Lemma 2. In the proof, we will apply
Lemma 3 in both the “vertical” and “horizontal” dimensions.

Lemma 4. If ξ is satisfiable, then there is a 1-SSS Σ1 for ξ of size polynomial

in terms of the size of ξ. In fact, the number of elements in Σ1 is bounded by

(4× |Γ |)4.

Proof. Assume that ξ is satisfied in a model, say,M = ((T1, <1), (T2, <2), V ) and
M,(s, t) |= ξ. We recall the definition of λ(p,q) from (1): for every (p, q) ∈ T1×T2,

λ(p,q)(γ) =

{

1 if M, (p, q) |= γ

0 otherwise

for every γ ∈ Γ . In particular, λ(s,t)(ξ) = 1.
For every p ∈ T1, consider Wp

2 = ({p} × T2,≺2, λ) (where (p, q) ≺2 (p, r)
iff q <2 r). Observe that (p, q) |= G1ϕ iff (p, r) |= G1ϕ (and (p, q) |= H1ϕ iff
(p, r) |= H1ϕ) for every q, r ∈ T2. Hence Wp

2 is a 2-consistent structure that



satisfies G1- and H1-uniformity. By applying Lemma 3 we get a 2-SSM Mp
2 for

ξ (and in fact for ✸2ξ) such that

Mp
2 = {(λ(p,q), λ(p,r)) : q, r ∈ Up

2 , (∃q
′ ∈ T2)(∃r

′ ∈ T2)q ≡ q′ & r ≡ r′ & q′ <2 r
′}

where u ≡ v iff λ(p,u) = λ(p,v), and U
p
2 ⊆ T2 such that |Up

2 | ≤ 4× |Γ |.
Next we recall the definition λM for 2-mosaics M from (3):

λM (γ) :=











1 if µ(γ) = ν(γ) = 1 for every (µ, ν) ∈M

0 if µ(γ) = ν(γ) = 0 for every (µ, ν) ∈M

undefined otherwise

for every γ ∈ Γ . Note that λN (✸2ξ) = 1 for N = M s
2 . We define λp := λN

with N = Mp
2 for every p ∈ T1. It is straightforward to verify that (T1, <1, λ)

is a 1-consistent structure that satisfies G- and H-transfer. Hence we can apply
Lemma 3. Thus there is a 1-SSM Σ1 for ✸2ξ such that

Σ1 = {(λp, λq) : p, q ∈ U1, (∃p
′ ∈ T1)(∃q

′ ∈ T1)p ≡ p′ & q ≡ q′ & p′ <1 q
′}

where u ≡ v iff λu = λv and U1 ⊆ T1 such that |U1| ≤ 4×|Γ |. Since everyMp
2 is a

2-SSM, we get that (Mp
2 ,M

q
2 ) is indeed a 1-supermosaic for every (λp, λq) ∈ Σ1,

whence Σ1 is a 1-SSS for ξ.
Finally, let us compute an upper bound on the size of Σ1. Recall that |U1| ≤

4 × |Γ |, whence there are at most (4 × |Γ |)2 many 1-supermosaics in Σ1. The
size of the 1-supermosaics is also bounded by (4 × |Γ |)2, since |Up

2 | ≤ 4 × |Γ |.
Thus the size of Σ1 is bounded by (4 × |Γ |)4. ⊓⊔

6 Complexity

We are ready to provide a complete decision procedure in nondeterministic poly-
nomial time for the satisfiability problem of the temporal logic of the lexico-
graphic products of unbounded dense linear orders.

Theorem 1. The satisfiability problem with respect to (Cud, Cud) is decidable in

nondeterministic polynomial time.

Proof. Given a formula ξ, let us proceed as follows.

1. Compute the least full domain Γ of formulas containing ξ; recall that |Γ | ≤
14× (2 × |ξ|+ 10) + 2.

2. nondeterministically choose a collection Σ1 of 1-mosaics consisting of 2-
mosaics of cardinality bounded by (4× |Γ |)4 ≤ (4× 14× (2× |ξ|+10)+ 2)4.

3. Check whether Σ is indeed a 1-SSS for ξ.

By Lemma 2 and 4 the above decision procedure is complete. ⊓⊔

Recall that in Lemma 2 we constructed a model (Q,Q, V ) for ξ based on the
rationals from a 1-SSS for ξ, the existence of which is equivalent to satisfiability
of ξ by Lemma 4. Thus we have the following.

Theorem 2. The logic of (Cud, Cud) coincides with the logic of the lexicographic

product (Q,Q) of the rationals with the standard ordering.



7 Conclusion

Temporal logics in which one can assign a proper meaning to the association
of statements about different grained temporal domains have been considered.
See [8, 12, 18] for details. Nevertheless, it seems that the results concerning
the issues of axiomatization/completeness and decidability/complexity presented
in [3] and in this paper constitute the first steps towards a temporal logic based
on different levels of abstraction. Much remains to be done.

For example, one may consider the lexicographic products of special linear
flows of time like Z, Q and R. Concerning the issues of axiomatization and com-
pleteness, could transfer results for completeness similar to the ones obtained
by Kracht and Wolter [13] within the context of independently axiomatizable
bimodal logics be obtained in our lexicographic setting? Concerning the issues
of decidability and complexity, all normal extensions of S4.3, as proved in [6, 9],
possess the finite model property and all finitely axiomatizable normal exten-
sions of K4.3, as proved in [23], are decidable. Moreover, it follows from [15]
that actually all finitely axiomatizable temporal logics of linear time flows are
CoNP -complete. Is it possible to obtain similar results in our lexicographic set-
ting? Or could undecidability results similar to the ones obtained by Reynolds
and Zakharyaschev [21] within the context of the products of the modal logics
determined by arbitrarily long linear orders be obtained in our lexicographic
setting?

There is also the question of associating with <1 and <2 the until-like connec-
tives U1 and U2 and the since-like connectives S1 and S2, the formulas ϕU1ψ,
ϕU2ψ, ϕS1ψ and ϕS2ψ being read as one reads the formulas ϕUψ and ϕSψ
in classical temporal logic, this time with <1 and <2. As yet, nothing has
been done concerning the issues of axiomatization/completeness and decidabil-
ity/complexity these new temporal connectives give rise to.

References

1. Balbiani, P.: Time representation and temporal reasoning from the perspective of
non-standard analysis. In: Brewka, G., Lang, J. (eds.) Eleventh International Con-
ference on Principles of Knowledge Representation and Reasoning, pp. 695–704.
AAAI (2008)

2. Balbiani, P.: Axiomatization and completeness of lexicographic products of modal
logics. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749,
pp. 165–180. Springer, Heidelberg (2009)

3. Balbiani, P.: Axiomatizing the temporal logic defined over the class of all lexico-
graphic products of dense linear orders without endpoints. In: Markey, N., Wijsen,
J. (eds.) Temporal Representation and Reasoning, pp. 19–26. IEEE (2010)

4. Van Benthem, J.: The Logic of Time. Kluwer (1991)
5. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press

(2001)
6. Bull, R.: That all normal extensions of S4.3 have the finite model property.

Zeitschrift für mathematische Logik und Grundlagen der Mathematik 12, 314–344
(1966)
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