
Non-cyclic sorts for first-order satisfiability

Konstantin Korovin?

School of Computer Science
The University of Manchester

United Kingdom
korovin@cs.man.ac.uk

Abstract. In this paper we investigate the finite satisfiability problem for first-
order logic. We show that the finite satisfiability problem can be represented as a
sequence of satisfiability problems in a fragment of many-sorted logic, which we
call the non-cyclic fragment. The non-cyclic fragment can be seen as a generali-
sation of the effectively propositional fragment (EPR) in the many-sorted setting.
We show that the non-cyclic fragment is decidable by instantiation-based meth-
ods and present a linear time algorithm for checking whether a given clause set
is in this fragment. One of the distinctive features of our finite satisfiability trans-
lation is that it avoids unnecessary flattening of terms, which can be crucial for
efficiency. We implemented our finite model finding translation in iProver and
evaluated it over the TPTP library. Using our translation it was possible solve a
large class of problems which could not be solved by other systems.

1 Introduction

Currently, the most successful methods for finite model finding in first-order logic are
based on exhaustive flattening of function terms [3, 10]. We argue that flattening can
have a detrimental effect on efficiency and present a new translation of the finite model
finding problem into a fragment of many-sorted logic, which we call the non-cyclic
fragment.

One of the main properties of the non-cyclic fragment is that it has a finite Her-
brand universe and therefore can be seen as a natural generalisation of the EPR frag-
ment (or Bernays-Shönfinkel-Ramsey fragment) in the many-sorted setting. The non-
cyclic fragment is defined by imposing a condition on the signature, which prohibits
cyclic dependencies between functions. When this condition is satisfied we call the
signature non-cyclic. Variants of this fragment have been investigated in a different
context in [1, 12, 14]. In this paper we take an algorithmic point of view. First, we argue
that instantiation-based reasoning methods such as Inst-Gen [15, 20] and Model Evo-
lution [6] are decision procedures for the non-cyclic fragment. Second, we present a
linear time algorithm for checking whether a many-sorted signature is non-cyclic and
more generally for classifying sorts into cyclic and non-cyclic sorts. Let us note that
in a number of applications such as hardware verification and knowledge representa-
tion, signatures can contain many thousands of symbols and hence we need efficient
algorithms for checking whether a signature is non-cyclic.
? Supported by a Royal Society University Fellowship.



2 Konstantin Korovin

We observe that in many cases problems do not fall completely into the EPR or more
generally non-cyclic fragment, but rather contain combinations of EPR/non-cyclic sorts
with cyclic sorts. We propose to take advantage of this sort separation in the setting of
finite model finding. For this we extended a framework of the EPR-based finite model
finding developed in [3]. The translation in [3] is based on exhaustive flattening of terms
which allows one to replace functions with predicates. Exhaustive flattening of terms is
necessary when searching for minimal models with respect to the number of elements.
However, flattening can also be detrimental for performance of reasoning methods due
to weakening the role of unification. In this paper we propose to reduce the amount of
flattening without compromising completeness with respect to finite satisfiability. Our
main idea is to use cyclic/non-cyclic sort separation to restrict flattening to a subset
of sorts, which we call the sort-restricted flattening. In this way we avoid flattening
of certain terms and translate the problem of finite model finding into a sequence of
satisfiability problems in the non-cyclic fragment. Our sort-restricted transformation is
complete for finite satisfiability but the minimality requirement on the obtained models
is relaxed: only flattened sorts will be minimal. Since the non-cyclic fragment can be
decided by instantiation-based methods it is natural to to use instantiation based reason-
ing systems such as iProver [19], Darwin [4] or Equinox [8].

We implemented our sort classification algorithm in iProver and evaluated it over
the TPTP library [28] which is the largest available collection of first-order problems.
Since most of the problems in TPTP are unsorted we use a sort inference algorithm to
automatically annotate first-order problems with sorts, which is similar to one used by
Paradox [10]. Our experiments show interesting results. We observe that many problems
in domains ranging from verification to knowledge representation contain combinations
of EPR, non-cyclic and cyclic sorts. Therefore it seems promising to advance reasoning
methods which can benefit from a such combination. Second, we show that using our
sort-restricted transformation it was possible to solve a large class of problems with the
rating 1 from TPTP v5.3 (54 in total), which could not be solved by any other known
system. The sort-restricted transformation helped iProver to win the FNT (First-order
Non-Theorems) division at CASC@Turing 2012.

Related work. In [3], an EPR-based translation of finite satisfiability was developed
based on exhaustive flattening of terms. In this paper we provide a translation into
the non-cyclic fragment of many-sorted logic which allows one to avoid unnecessary
flattening. Many-sorted logic has been intensively used in the SMT community and its
advantage for first-order modelling has been advocated in e.g., [1, 12, 14]. The non-
cyclic fragment can be shown to be equivalent to the St0 fragment in [1]. In this paper
we present a linear-time algorithm for checking whether the formula is in the non-cyclic
fragment, propose a separation of sorts into cyclic and non-cyclic with applications to
finite satisfiability, and argue that instantiation-based methods are decision procedures
for this fragment. An interesting method for satisfiability of quantified formulas in the
SMT setting was presented in [17], which is based on representing relevant domains
using set constraints. This approach can be also applied to first-order logic, but unlike
our method, is not necessarily complete with respect to finite satisfiability. It would be
interesting to investigate how our method can be combined with [17], and a very recent
approach to finite model finding in the SMT setting presented in [24, 25].



Non-cyclic sorts for first-order satisfiability 3

2 Preliminaries

In this paper we consider many-sorted first-order logic with equality. A signature is a
tuple Σ = 〈S,F ,P, arityF , arityP〉 consisting of a non-empty set of sorts S, a set of
function symbolsF , a set of predicate symbolsP , arity functions arityF : F → S∗×S
and arityP : P → S∗, where S∗ denotes the set of finite sequences of sorts. For a
function symbol f with arity arityF (f) = 〈〈s0, . . . , sn−1〉, sn〉, we call s0, . . . , sn−1
argument sorts and sn the value sort of f . A constant is a function with the empty
sequence of arguments. We assume that there is at least one constant of each sort. In
this paper we consider only finite signatures. For each sort swe consider a countable set
of variables of this sort denoted as Vs. Equality over a sort s will be denoted by 's and
is assumed to be a logical symbol (not included in Σ), defining equality over elements
of the same sort. We will omit index s in 's when the sort is clear from the context.
Well-sorted terms and atoms are built from variables and sort-respecting applications
of function and predicate symbols in the usual way. We say that a term t is of sort s,
denoted as sort(t) = s, if either t is a variable of sort s or the top function symbol of
t has the value sort s. A literal is an atom or its negation and a clause is a multi-set of
literals. We will not distinguish clauses equivalent up to renaming of variables.

A many-sorted interpretation (structure)A (overΣ) consists of 1) a domain dom(A)
which is a disjoint union of non-empty sets ∪s∈SAs indexed by sorts, 2) a collection of
functions fA : As0 × · · · × Asn−1

7→ Asn where arityF (f) = 〈〈s0, . . . , sn−1〉, sn〉,
for each f ∈ F , and 3) a collection of relations PA : As0 × · · · × Asn−1

where
arityP(P ) = 〈s0, . . . , sn−1〉 for each P ∈ P .

Unsorted first-order logic can be seen as an instance of sorted logic with a single
sort.

An expression is ground if it does not contain variables. A Herbrand universe over
a signature Σ is the set of all ground terms. It is folklore knowledge that automated
reasoning methods such as resolution, superposition and instantiation can be straight-
forwardly adapted from unsorted logic to many-sorted by changing the unification al-
gorithm to sort-aware unification.

3 Non-cyclic sorts and finite Herbrand universe

First we consider the EPR fragment of first-order logic in clausal form, which can be
defined as follows. An EPR signature is a finite signature which does not contain func-
tion symbols other than constants. The EPR fragment in clausal form consists of sets
of clauses over an EPR signature. One of the main properties of EPR signatures is that
the set of all ground terms (the Herbrand universe) over such a signature is finite. This
implies that the set of all (not necessarily ground) instances of any finite set of EPR
clauses is also finite. A direct consequence of this is that reasoning methods such as
Inst-Gen [15, 20], Model Evolution [6], Equinox [8], BUMG [5] and DPLL(SX) [23]
are decision procedures for the EPR fragment.

In unsorted first-order logic EPR signatures are exactly the signatures with a finite
Herbrand universe. As noted in [1, 14], in the presence of sorts, signatures different
from EPR can also have a finite Herbrand universe. We characterise them below.



4 Konstantin Korovin

Definition 1. Consider a signatureΣ = 〈S,F ,P, arityF , arityP〉. A sort dependency
graph of Σ is a directed graph SD(Σ) = 〈S,SR〉 with the set of vertices S and the
edge relation SR such that SR(s1, s2) if and only if there is a function symbol f ∈ F
with an argument sort s1 and the value sort s2.

A path (of length n) in a graphG is a sequence of vertices v0, . . . , vn such that each
pair (vi, vi+1) is in the edge relation of G, where 0 ≤ n and 0 ≤ i < n. Note that we
allow a path to be of the zero length, i.e., consist of a single vertex. A path is non-trivial
if its length is strictly greater than 0.

Definition 2. A sort s is called cyclic in Σ if there exists a non-trivial path in the sort
dependency graph from s to s, otherwise it is called non-cyclic. A signature Σ is called
cyclic if there is a cyclic sort in Σ and otherwise it is called non-cyclic.

Non-cyclic signatures can be seen as a natural generalisation of the EPR signatures
preserving the property of having a finite Herbrand universe.

Proposition 1. The Herbrand universe over any non-cyclic signature is finite. Con-
versely, if a Herbrand universe over a signature is finite then the signature is non-cyclic.

Proof. It is easy to see that the depth of any term is bounded from above by the longest
path in the sort dependency graph which in the case of non-cyclic signatures is bounded
by the number of function symbols. In the case when a signature is cyclic we can con-
struct terms of unbounded depth. From this proposition follows.

We define the non-cyclic clausal fragment of first-order logic to consist of sets of
clauses over a non-cyclic signature. In a similar way as for the EPR fragment it is
easy to see that instance based methods are also decision procedures for the non-cyclic
fragment. We formulate this as a theorem for Inst-Gen [15, 20] and Inst-Gen-Eq [16, 22]
but it also holds for other instantiation based methods such as Model Evolution. Inst-
Gen is an instantiation-based method, complete for first-order logic and Inst-Gen-Eq is
its extension with superposition-based equational reasoning. In a nutshell, Inst-Gen and
Inst-Gen-Eq combine efficient ground reasoning with gradual instantiations of clauses,
based on first-order reasoning.

Theorem 1. Inst-Gen and Inst-Gen-Eq are decisions procedures for the non-cyclic
fragment with equality.

Proof. (Sketch) Consider a set of clauses over a non-cyclic signature Σ. From Propo-
sition 1 it follows that the Herbrand universe over Σ is finite. Therefore the maximal
depth of terms (including non-ground terms) is also bounded. The Inst-Gen calculus
only generates instances of the original clauses and since the depth of terms is bounded
there are only finitely many such instances. The Inst-Gen calculus treats equality ax-
iomatically. Let us note that adding axioms of equality does not change the non-cyclicity
of a clause set.

Inst-Gen-Eq replaces axiomatic equality with superposition-based equational rea-
soning. Inst-Gen-Eq uses substitutions extracted from unit superposition proofs for in-
stantiating the original clauses. Since the term depth is bounded, there are only finitely
many such superposition proofs and only finitely many instances of clauses can be gen-
erated.



Non-cyclic sorts for first-order satisfiability 5

After analysing problems from the TPTP library we observed that in many cases
problems do not fall completely into the EPR or more generally non-cyclic fragment
but rather contain combinations of EPR/non-cyclic sorts with cyclic sorts. We refer to
Section 7 for details. Our next goal is to partition the signature into cyclic and non-cyclic
parts and extend finite model finding methods to gain from this partition.

A strongly connected component (SCC) of a directed graph G is a maximal induced
subgraph G′ of G such that for each pair of vertices in G′ there is a path connecting
them in G′. A vertex v in a graph G is called looping if there is an edge from v to v.
An SCC of a graph is called trivial if it consists of a non-looping vertex, otherwise it is
called non-trivial.

Proposition 2. Consider a signature Σ. A sort s is cyclic in Σ if and only if s belongs
to a non-trivial SCC of the sort dependency graph of Σ.

Proof. If a sort s belongs to a non-trivial SCC then either: 1) s is looping and hence s
is cyclic, or 2) there is another sort s′ in the same SCC. In the latter case there is a path
from s to s′ and a path from s′ to s and therefore s is also cyclic. For the other direction
it is easy to see that if there is a non-trivial path from s to s then this path belongs to the
same SCC and therefore this SCC is non-trivial.

The set of all SCCs of the sort dependency graph of a signatureΣ will be denoted by
SCC (Σ). Define the set of cyclic sorts over Σ as CS(Σ) and the set of non-cyclic sorts
asNCS(Σ). For any signature Σ, the set of sorts of this signature S can be partitioned
into cyclic and non-cyclic sorts, i.e., S = CS(Σ) ∪NCS(Σ).

Next we use Tarjan’s linear-time algorithm for finding strongly connected compo-
nents of directed graphs [29] for partitioning a signature into cyclic and non-cyclic
sorts.

Theorem 2. There is a linear-time algorithm that given a signature Σ partitions sorts
of Σ into cyclic and non-cyclic sorts.

Proof. The required algorithm can proceed as follows.

1. Construct the sort dependency graph SD(Σ) from Σ.
2. Apply Tarjan’s linear time algorithm [29] to obtain the set of all strongly connected

components SCC (Σ) of SD(Σ).
3. The set of all sorts that occur in trivial components of SCC (Σ) will be the set

of all non-cyclic sorts NCS(Σ) and the set of all sorts that occur in non-trivial
components is the set of all cyclic sorts CS(Σ).

It is easy to see that all three steps can be done in time linear in the size of the signature.

Theorem 2 also provides us with a linear time algorithm for checking whether
a given signature is cyclic: partition the sort dependency graph into SCC and check
whether there is a non-trivial component.

Example 1. Consider a signatureΣ = 〈S,F ,P, arityF , arityP〉where S = {s0, s1, s2},
F = {f, g, h, c0, c1, c2} and arity(f) = 〈〈s0, s1〉, s2〉, arity(g) = 〈〈s0〉, s0〉, arity(h) =
〈〈s0〉, s1〉 and arity(ci) = 〈〈〉, si〉 for 0 ≤ i ≤ 2. An example of a well-formed term in



6 Konstantin Korovin

this signature can be t = f(g(x), h(g(g(x)))), where x is a variable of sort s0. The sort
dependency graph SD(Σ) and its strongly connected components SCC (Σ) are shown
on Figure 1. From this we can see that the set of cyclic sorts is CS(Σ) = {s0} and
the set of non-cyclic sorts is NCS(Σ) = {s1, s2}. We can see that the term t is of a
non-cyclic sort but contains subterms of cyclic and non-cyclic sorts.

s0

s1s2

s0

s1s2

Fig. 1. The sort dependency graph SD(Σ) and its strongly connected components SCC (Σ).

4 EPR-based finite model finding

In this section we overview a translation of the finite satisfiability problem into the
EPR fragment on which we will base our translation into the non-cyclic fragment. Our
presentation follows [3] with a slight adaptation to the sorted setting. Let us recapture
several notions from [3]. An atom is called (completely) flat if it has one of the following
forms: 1) p(x0, . . . , xn−1) where p is a predicate, 2) x 6' f(x0, . . . , xn−1), where f is
a function symbol, or 3) x ' y. Let us note that function symbols can occur only in flat
atoms of the from x 6' f(x0, . . . , xn−1). A literal is flat if its atom is flat. A clause is
flat if all its literals are flat. Consider a clause C[t]. A flattening transformation applied
toC[t] wrt. t produces a clause x 6' t∨C[x] where x is a fresh variable. By applying the
flattening transformation we can transform any set of clauses into an equivalent set of
flat clauses [2, 3, 7]. LetFT (S) denote a set of flat clauses obtained from S by applying
the flattening transformation.

Consider a set of flat clauses S over a signature Σ. For each function symbol in Σ
with arity arity(f) = 〈〈s0, . . . , sn−1〉, sn〉 we introduce a new predicate symbol Pf

with arity arity(Pf ) = 〈s0, . . . , sn−1, sn〉. Informally, the predicate Pf will be used to
represent the function f with the last argument representing the value of f . We call these
introduced predicates as function predicates. Now we can eliminate functions from our
clause set by applying the following function elimination transformation:

y 6' f(x0, . . . , xn−1) ∨ C ⇒ ¬Pf (x0, . . . , xn−1, y) ∨ C.

Let FE(S) denote the set of clauses obtained by exhaustive applications of func-
tion elimination to S. In order to ensure that a function predicate Pf represents a graph
of a function we need to require Pf to be left-total and right-unique, as defined be-
low. Consider an interpretation I with a relation P of arity(P ) = 〈s0, . . . , sn−1, sn〉,
where 0 ≤ n. The relation P is called left-total in I if for every sequence of elements



Non-cyclic sorts for first-order satisfiability 7

a0, . . . , an−1 in I , of the respective sorts s0, . . . , sn−1, there exists an element an ∈ I
of sort sn such that P (a0, . . . , an) holds in I . The relation P is called right-unique in I
if whenever I � P (a0, . . . , an−1, an) and I � P (a0, . . . , an−1, a

′
n) then I � an ' a′n.

It is shown in [3] that we can drop the right-uniqueness requirement when we consider
flat clauses, preserving finite satisfiability. When we consider finite domains we can
express left-totality in the EPR fragment as shown below.

Let us consider finite satisfiability of flat clauses. For each sort s we fix a finite set
of constants ds1, . . . , d

s
k, called domain constants, representing all elements of this sort.

Collection of all domain constants will be called a constant domain and denoted by D.
Then left-totality of a function predicate Pf over a constant domain can be ex-

pressed using the following totality axiom:

Pf (x0, . . . , xn−1, d
s
1) ∨ · · · ∨ Pf (x0, . . . , xn−1, d

s
k),

where ds1, . . . , d
s
k are all domain constants of the sort s.

For a constant domain D, let TAx (D) denote the set of all totality axioms of func-
tion predicates in the signature. For a set of clauses S and a constant domain D we call
the set of clauses BFM (S,D) = FE(FT (S))∪TAx (D) the basic finite model finding
translation of S with respect to D.

Theorem 3. [3] A set of clauses S is satisfiable over a finite constant domain D if and
only if BFM (S,D) is satisfiable.

As shown in [3], due to flattening it is also possible to eliminate the equality predicate
altogether by introducing axioms stating disequality of the domain constants: E(D) =
{dsi 6's d

s
j | i 6= j, dsi , d

s
j ∈ D}. After adding the disequality axioms one can replace

the equality predicate 's by a fresh binary predicate Es for each sort s, preserving
satisfiability. We denote this translation as BFME (S,D).

Let us note that the result of applying any of the translations BFM , or BFME is
always an EPR set of clauses, and therefore instantiation-based methods can be used
for checking satisfiability of BFM (S,D) and BFME (S,D).

Without loss of generality we can restrict ourselves to the Herbrand interpretations
which in this case are built over the domain constants. The search for finite satisfiability
then starts with a constant domain consisting of a single constant in each sort and then
proceeds by iteratively adding new constants until BFME (S,D) becomes satisfiable.
One of the properties of this approach is that if a set of clauses is finitely satisfiable then
we obtain a minimal model with respect to the number of domain elements.

5 Flattening and finite model finding

As we have seen, flattening is essential for the basic finite model finding translation.
Unfortunately, it also can have a detrimental effect on reasoning methods.

Example 2. Consider an unsorted signature consisting of n unary predicates P1, . . . Pn

and n constants c1, . . . , cn. Consider the following set of ground unit clauses:

S =
⋃

1≤i≤n

{Pi(ci)}
⋃ ⋃

1≤i<j≤n

{¬Pi(cj)}.



8 Konstantin Korovin

Satisfiability of S can be trivially shown by propositional reasoning, (considering
Pi(cj) as propositional atoms). Let us consider the basic finite model translation applied
to S. After flattening and introduction of function predicates Pci for each constant ci,
1 ≤ i ≤ n we obtain the following set of clauses:

FE(FT (S)) =
⋃

1≤i≤n

{¬Pci(x) ∨ Pi(x)}
⋃ ⋃

1≤i<j≤n

{¬Pcj (x) ∨ ¬Pi(x)}.

It is easy to see that any satisfying interpretation for this set of clauses will have the
domain size at least n. Therefore the finite model finding procedure will iteratively
increase the domain size, by adding domain axioms until n is reached. Moreover rea-
soning with intermediate domain sizes can be nontrivial due to introduced symmetries.

Example 2 is deliberately simple. Let us slightly modify this example by adding a
“dummy” argument to each predicate Pi and replace Pi(cj) with Pi(cj , f(x)). Then,
although this change obviously does not affect satisfiability, the resulting set is chal-
lenging for instantiation-based systems.

We can see that even for simple problems flattening can introduce variables into the
problem and increase the search space. Our approach aims at reducing the amount of
unnecessary flattening. First we can observe that if our problem is EPR as in Example 2,
then we can apply instantiation-based methods directly to such a problem without ap-
plying the flattening transformation. In the next section we restrict flattening further to
terms of cyclic sorts.

6 Sort-restricted flattening

Our approach is to restrict flattening to specified sorts and at the same time keep the
resulting translation in the non-cyclic fragment.

Consider a signature Σ with the set of sorts S. Consider a subset of S ′ ⊆ S. We
say that an interpretation I is S ′-finite if each sort in S ′ has a finite domain in I . A
formula is S ′-finitely satisfiable if it is satisfied in an S ′-finite interpretation. S ′-finite
satisfiability generalises finite satisfiability, that is if a formula is finitely satisfiable then
it is also S ′-finitely satisfiable for any S ′ ⊆ S, but the converse in general does not hold.

The sort-restricted flattening transformation with respect to S ′ is defined as follows:

L[t] ∨ C ⇒ x 6' t ∨ L[x] ∨ C,

where:

1. t is not a variable,
2. sort(t) ∈ S ′,
3. L[t] has one of the forms: t ' s, s ' t, t 6' s, or (¬)P [t] for a predicate P , and
4. x does not occur in L[t] ∨ C.

The result of exhaustive application of the sort-restricted flattening transformation to a
set of clauses S, is denoted as FT R(S ′, S).

We sort-restrict other ingredients of the finite satisfiability transformation:



Non-cyclic sorts for first-order satisfiability 9

1. function elimination is restricted to functions with value sorts in S ′, denoted by
FER(S ′, S);

2. a sort-restricted finite constant domain (or just sort-restricted constant domain) is a
collection of constants d̄s1 , . . . , d̄sm , denoted byDR(S ′), where S ′ = {s1, . . . , sm}
and each d̄si is a non-empty sequence of constants of sort si. We assume that do-
main constants are fresh for the signature Σ;

3. totality axioms for function predicates over a sort-restricted constant domainDR(S ′)
are defined as in Section 4 and will be denoted as TAx (DR).

Consider a set of clauses S over signature Σ. We say that S is satisfiable in a sort-
restricted constant domain DR(S ′) (or DR(S ′) satisfiable) if there is a model I of S
which can be expanded with constants from DR(S ′) so that each element in I of a sort
s ∈ S ′ is named by a constant inDR(S ′). It is easy to see that S is S ′-finitely satisfiable
if and only if there is a sort-restricted constant domain DR(S ′) such that S is DR(S ′)
satisfiable.

For a set of clauses S, a subset of sorts S ′ ⊆ S and a sort-restricted constant domain
DR(S ′) we call the set of clauses BFMR(S ′, S,DR) = FER(S ′,FT R(S ′, S)) ∪
TAx (DR) the sort-restricted finite model finding translation (or just the sort-restricted
translation) of S with respect to S ′ and DR(S ′).

Theorem 4. Consider a signature Σ with a set of sorts S, a subset of sorts S ′ ⊆ S
and a sort-restricted constant domain DR(S ′). A set of clauses S over Σ is DR(S ′)
satisfiable if and only if the sort-restricted translation BFMR(S ′, S,DR) is satisfiable.

Proof. Adaptation of results from [3].

Similar to the basic case we can eliminate equality predicate over sorts in S ′ by first
adding axioms stating disequality of the domain constants:

E(DR) = {dsi 6's d
s
j | i 6= j, dsi , d

s
j ∈ DR}

and then replacing's by a fresh binary predicate Es for each sort s ∈ S ′. We denote this
translation as BFMER(S ′, S,DR). Let us note that after applying BFMER(S ′, S,DR),
equality can still remain between terms of sorts which are not in S ′.

In order to keep BFMER(S ′, S,DR) in a decidable fragment we propose to restrict
flattening to a superset of cyclic sorts. For this, we define a set of sorts to which we
do not apply flattening to be any subset of non-cyclic sorts NCS(Σ), which we call
non-flattening sorts and denote by NFS(Σ). Then, the set of sorts to which we apply
flattening will be S \ NFS(Σ), which we call flattening sorts and denote by FS(Σ).
Examples of non-flattening sorts include the empty set of sorts, the set of EPR sorts and
the set of all non-cyclic sorts.

Proposition 3. Consider a signature Σ, a set of flattening sorts FS(Σ) and a sort-
restricted constant domain DR(FS). Then, for any set of clauses S the sort-restricted
translation BFMER(FS, S,DR) is in the non-cyclic fragment.

The search for finite satisfiability then starts with a sort-restricted constant domain
consisting of a single constant in each flattening sort and then proceeds by iteratively



10 Konstantin Korovin

adding new constants into the sort-restricted domain until BFMER(FS, S,D) be-
comes satisfiable. From Theorem 4 and our remarks above it follows that this method
is complete with respect to finite model finding and more generally with respect to
FS(Σ)-finite model finding. In particular, if a set of clauses has a finite model then the
procedure will find a sort-restricted constant domain which satisfies this set of clauses.

Let us note an essential difference between basic and sort-restricted translations: in
the basic case the finite model finding is restricted to minimal models (with respect to
the number of elements), whereas in the sort-restricted case this requirement is relaxed
so that only domains of flattening sorts will be minimal but domains of non-flattening
sorts can be arbitrary interpretations.

Example 3. Consider the problem from Example 2. Since all sorts in this example are
EPR we can take them as the set of non-flattening sorts NFS(Σ). In this case the
sort-restricted finite model finding transformation will not change the set of clauses.

Example 4. Let us consider the signature Σ from Example 1 and a clause C:

f(x, h(g(x))) ' f(x, c1) ∨ h(x) ' c1.

Let us apply sort-restricted finite model finding transformation to C with the set of non-
flattening sorts to be the set of all non-cyclic sorts: NFS = {s1, s2}. The result of
exhaustive application of sort-restricted flattening to C is:

y 6' g(x) ∨ f(x, h(y)) ' f(x, c1) ∨ h(x) ' c1.

The result of sort-restricted function elimination is:

¬Pg(x, y) ∨ f(x, h(y)) ' f(x, c1) ∨ h(x) ' c1.

And the domain axioms are of the form:

Pg(x, ds01 ) ∨ . . . ∨ Pg(x, ds0k ),

where ds01 , . . . , d
s0
k are domain constants of sort s0.

Let us compare this to the case when NFS is the empty set, which reduces the
sort-restricted transformation to the basic transformation.

After applying flattening to C we obtain a much longer clause:

y1 6' g(x) ∨ y2 6' h(y1) ∨ y3 6' c1 ∨ y4 6' f(x, y2) ∨ y5 6' f(x, y3) ∨ y6 6' h(x)
∨

y4 ' y5 ∨ y6 ' y3.

We can also note that in this example basic flattening introduces positive equations
between variables like y4 ' y5 and y6 ' y3 which can be problematic for reasoning
methods.

After function elimination we obtain:

¬Pg(x, y1) ∨ ¬Ph(y1, y2) ∨ ¬Pc1(y3) ∨ ¬Pf (x, y2, y4) ∨ ¬Pf (x, y3, y5) ∨ ¬Ph(x, y6)
∨

y4 ' y5 ∨ y6 ' y3.



Non-cyclic sorts for first-order satisfiability 11

And domain axioms are of the form:

Pg(x0, d
s0
1 ) ∨ . . . ∨ Pg(x0, d

s0
k0

)
Ph(x0, d

s1
1 ) ∨ . . . ∨ Ph(x0, d

s1
k1

)
Pc1(ds11 ) ∨ . . . ∨ Pc1(ds1k1

)
Pf (x0, x1, d

s2
1 ) ∨ . . . ∨ Pf (x0, x1, d

s2
k2

).

As we can see from this example, basic transformation can result in a considerably
larger set of clauses. Moreover positive equations between variables can be introduced
which can be avoided when the sort-restriction transformation is applied.

Iterative flattening. Let us briefly discuss an extension of our method which further
refines flattening applications. This is based on the following observation. Consider a
signature Σ with the set of sorts S. If we apply the sort-restricted flattening to a single
sort s ∈ S, then all function symbols with the value sort s will be replaced by predicate
symbols, resulting in a new signatureΣ′. It is easy to see that the sort dependency graph
for Σ′ can be obtained from the sort dependency graph of Σ by removing edges adja-
cent to s. In particular, if we pick s from a non-trivial strongly connected component,
after eliminating all edges adjacent to s we may be able to decompose this strongly
connected component further into smaller components. The process of flattening sorts
one by one and decomposing the corresponding strongly connected components can be
repeated until only trivial components remain. The advantage of this approach is that
we can reduce the number of sorts that require flattening even further. As an example let
as consider a signatureΣ with the set of sorts S = {s0, . . . , sn}, forming a single cycle
s0, . . . , sn, s0 in the sort dependency graph. There is only one strongly connected com-
ponent in this sort dependency graph, which is this cycle itself. After flattening only
one sort, say s0, the sort dependency graph can be completely decomposed into triv-
ial strongly connected components. This allows us to avoid flattening of the remaining
sorts {s1, . . . , sn}.

7 Implementation and evaluation

Our implementation is based on the iProver system [19]. iProver is based on the Inst-
Gen calculus which is complete for first-order logic. As we argued in Section 3, Inst-
Gen is also a decision procedure for the non-cyclic fragment. iProver accepts first-
order problems in CNF form. For problems in full first-order syntax (FOF) we used
Vampire [18, 26] as an external clausifier, optionally E prover [27] can also be used as
a clausifier.

For our evaluation we used the TPTP library v5.3 [28], which contains 15,550 FOF
and CNF problems. Our experiments were run on a cluster of Linux machines with
memory limit 2GB and 2.33GHz CPU. We separate our experimental results into two
classes. The first class is related to sort inference and the second class is related to
experiments with sort-restricted finite model finding.

Sort inference. iProver implements a sort inference algorithm similar to one imple-
mented in Paradox [10] which transforms unsorted first-order clauses into a set of sorted



12 Konstantin Korovin

clauses. This algorithm first assigns different sorts to all predicate arguments, function
arguments and values, then it applies a union-find algorithm to merge sorts forced to be
equal due to variable dependencies, or occurrences of the equality predicate. Extracted
sorts are monotone in the sense of [9], which means that for any model satisfying a set
of clauses we can extend domain of any sort with new elements without affecting satis-
fiability. The overall sort inference resulted in 4,090 problems with non-trivial sorts. We
implemented an algorithm for classifying sorts into cyclic, EPR and non-cyclic sorts as
described in Section 3. Our implementation uses an OCaml library ocamlgraph [11] for
computing strongly connected components of directed graphs.

There are 1,383 problems which were recognised by iProver as being pure EPR
problems (after clausification). For clarity we exclude pure EPR problems from exper-
iments below. Of course, all discussed methods are trivially applicable to them. We
found that after removing pure EPR problems, 1,195 remaining problems have at least
one non-cyclic sort, which is around 1/3 of all problems with non-trivial sorts; 1,077
problems have at least one EPR sort. Collectively over all problems there are 56,679
sorts, 18,502 non-cyclic sorts and among them 9,569 EPR sorts . From this we can see
that the number of EPR sorts is approximately the same as non-EPR non-cyclic sorts.
Also, we can see that most problems with non-cyclic sorts combine EPR and non-EPR
non-cyclic sorts.

Problems with non-cyclic sorts are spreading over many domains of TPTP (even
after excluding pure EPR problems), most notably software and hardware verification:
SWV, SWW, HWV; knowledge representation SWB, KRS, CSR; algebra: TOP, GEO,
SET, SEU, RNG; natural language processing: NLP; planning: PLA; and other do-
mains: PUZ, MGT, MSC, SYN. This indicates that non-cyclic sorts occur naturally in
many applications and we believe reasoning methods can be tuned to benefit from this.
We also believe that if problems were sorted by domain experts rather than by using
automatic sort inference, considerably more problems would be identified to have sorts
and non-cyclic sorts in particular.

Sort-restricted finite model finding. We implemented our sort-restricted finite model
finding translation BFMER, as described in Section 6. Our implementation also fea-
tures symmetry breaking based on sorts similar as it is done in Paradox. Using sort-
restricted finite model finding we were able to solve 54 problems in TPTP v5.3 with
the rating 1, all from the KRS domain. We also found a bug in TPTP v5.3 where a
problem with the rating 1 (KRS264+1), was stated to be a “Theorem” but our exper-
iments showed it to be satisfiable. We thank Geoff Sutcliffe for helping to debug this
problem which resulted in fixing an axiomatisation in the most recent version of TPTP
v5.4. iProver with the sort-restricted finite model finding participated in the latest CASC
competition, and these enhancements helped iProver to win the FNT (First-order Non-
Theorems) division at CASC@Turing 2012. iProver also participated in the evaluation
of TPTP v5.4. As the result, some satisfiable problems with the rating 1 in TPTP v5.3
are of a lower rating in TPTP v5.4. In total, iProver solved 72% of problems which
are classified as Satisfiable or CounterSatisfiable in TPTP v5.3. We experimented with
two cases of non-flattening sorts: 1) all EPR sorts, and 2) all non-cyclic sorts. We ob-
served that most problems are solved in the first case (72%). In the second case, there
are a number of problems which could not be solved by the first case, but overall per-



Non-cyclic sorts for first-order satisfiability 13

formance is a bit worse: only 69% of problems were solved. One possible explanation
can be that flattening can still be beneficial in some cases due to axiomatic treatment of
equality in iProver. We expect that this can be amended by using iProver-Eq [21] which
integrates equality using superposition-based reasoning. Another explanation can be
that in some cases searching for minimal models can still be quicker. Our method gives
flexibility on which sorts to flatten, we can choose any superset of cyclic sorts or apply
even more fine-grained flattening based on iterative flattening as discussed in Section 6.
We leave it for the future work to find best strategies for selecting sorts for flattening.

8 Conclusion and future work

In this paper we investigated the non-cyclic fragment of many-sorted first-order logic
with equality. We showed that the non-cyclic fragment is decidable by instantiation-
based methods. We presented a linear time algorithm for checking whether a given sig-
nature is non-cyclic and more generally for classifying sorts into non-cyclic, EPR and
cyclic. We presented a translation of finite model finding into a sequence of satisfia-
bility problems in the non-cyclic fragment, which avoids flattening terms of non-cyclic
sorts. We implemented our sort classification and finite model finding translation in
iProver. Experimental results are encouraging and we were able to solve a large class
of problems which could not be solved by other systems.

For the future work we are planning to integrate sort-restricted finite model finding
into iProver-Eq. We will also investigate how reasoning methods can benefit from our
sort classification in the refutation setting. It is interesting to investigate combinations
of the non-cyclic fragment with other theories in the spirit of [13]. We are planning to
investigated combinations of our approach to finite satisfiability with resent SMT-based
approaches [17, 24, 25].

iProver with implemented features for sort classification and sort-restricted finite
model finding is available at: http://www.cs.man.ac.uk/˜korovink/iprover/

Acknowledgments

The author is grateful to anonymous reviewers for providing detailed comments which
helped to improve this paper.

References

1. A. Abadi, A. Rabinovich, and M. Sagiv. Decidable fragments of many-sorted logic. J. Symb.
Comput., 45(2):153–172, 2010.

2. L. Bachmair, H. Ganzinger, and A. Voronkov. Elimination of equality via transformation
with ordering constraints. In C. Kirchner and H. Kirchner, editors, CADE, volume 1421 of
LNCS, pages 175–190. Springer, 1998.

3. P. Baumgartner, A. Fuchs, H. de Nivelle, and C. Tinelli. Computing finite models by reduc-
tion to function-free clause logic. J. Applied Logic, 7(1):58–74, 2009.

4. P. Baumgartner, A. Fuchs, and C. Tinelli. Implementing the model evolution calculus. Inter-
national Journal on Artificial Intelligence Tools, 15(1):21–52, 2006.



14 Konstantin Korovin

5. P. Baumgartner and R. Schmidt. Blocking and other enhancements for bottom-up model
generation methods. In Third International Joint Conference on Automated Reasoning (IJ-
CAR’06), volume 4130 of LNCS, pages 125–139. Springer, 2006.

6. P. Baumgartner and C. Tinelli. The Model Evolution calculus. In Proc. CADE-19, number
2741 in LNCS, pages 350–364. Springer, 2003.

7. D. Brand. Proving theorems with the modification method. SIAM J. Comput., 4(4):412–430,
1975.

8. K. Claessen. The anatomy of Equinox - an extensible automated reasoning tool for first-
order logic and beyond - (talk abstract). In N. Bjørner and V. Sofronie-Stokkermans, editors,
23rd International Conference on Automated Deduction, CADE-23, volume 6803 of LNCS,
pages 1–3. Springer, 2011.

9. K. Claessen, A. Lillieström, and N. Smallbone. Sort it out with monotonicity - translat-
ing between many-sorted and unsorted first-order logic. In N. Bjørner and V. Sofronie-
Stokkermans, editors, 23rd International Conference on Automated Deduction, CADE-23,
volume 6803 of LNCS, pages 207–221. Springer, 2011.

10. K. Claessen and N. Sörensson. New techniques that improve MACE-style model finding. In
P Baumgartner and C. Fermüller, editors, CADE- 19 Workshop: Model Computation Prin-
ciples, Algorithms, Applications, pages 11–27, 2003.

11. S. Conchon, J.-C. Filliâtre, and J. Signoles. ocamlgraph. available at http://ocamlgraph.lri.fr.
12. P. Fontaine. Techniques for verification of concurrent systems with invariants. PhD thesis,

Institut Montefiore, Université de Liège, Belgium, 2004.
13. P. Fontaine. Combinations of theories and the Bernays-Schönfinkel-Ramsey class. In VER-

IFY’07, CEUR Workshop Proceedings. CEUR-WS.org, 2007.
14. P. Fontaine and E. P. Gribomont. Decidability of invariant validation for paramaterized sys-

tems. In the 9th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems(TACAS’03), volume 2619 of LNCS, pages 97–112. Springer, 2003.

15. H. Ganzinger and K. Korovin. New directions in instantiation-based theorem proving. In
Proc. 18th IEEE Symposium on LICS, pages 55–64. IEEE, 2003.

16. H. Ganzinger and K. Korovin. Integrating equational reasoning into instantiation-based the-
orem proving. In CSL’04, volume 3210 of LNCS, pages 71–84, 2004.

17. Y. Ge and L. M. de Moura. Complete instantiation for quantified formulas in satisfiabil-
ity modulo theories. In the 21st International Conference on Computer Aided Verification
(CAV’09), volume 5643 of LNCS, pages 306–320. Springer, 2009.

18. K. Hoder, Z. Khasidashvili, K. Korovin, and A. Voronkov. Preprocessing techniques for first-
order clausification. In G. Cabodi and S. Singh, editors, Formal Methods in Computer-Aided
Design (FMCAD’12), pages 44–51. IEEE, 2012.

19. K. Korovin. iProver - an instantiation-based theorem prover for first-order logic (system
description). In the 4th International Joint Conference on Automated Reasoning, volume
5195 of LNCS, pages 292–298. Springer, 2008.

20. K. Korovin. Inst-Gen - a modular approach to instantiation-based automated reasoning. In
A. Voronkov and C. Weidenbach, editors, Programming Logics, Essays in Memory of Harald
Ganzinger, volume 7797 of LNCS, pages 239–270. Springer, 2013.

21. K. Korovin and C. Sticksel. iProver-Eq: an instantiation-based theorem prover with equal-
ity. In J. Giesl and R. Hähnle, editors, 5th International Joint Conference on Automated
Reasoning, IJCAR’10, volume 6173 of LNCS, pages 196–202. Springer, 2010.

22. K. Korovin and C. Sticksel. Labelled unit superposition calculi for instantiation-based rea-
soning. In C. G. Fermüller and A. Voronkov, editors, LPAR-17, volume 6397 of LNCS, pages
459–473, 2010.

23. R. Piskac, L. de Moura, and N. Bjørner. Deciding effectively propositional logic using DPLL
and substitution sets. J. Autom. Reasoning, 44(4):401–424, 2010.



Non-cyclic sorts for first-order satisfiability 15

24. A. Reynolds, C. C. Tinelli, A. Goel, and S. Krstic̀. Finite model finding in smt. In CAV 2013,
2013. to appear.

25. A. Reynolds, C. C. Tinelli, A. Goel, S. Krstic̀, M. Deters, and Barrett C. Quantifier instanti-
ation techniques for finite model finding in SMT. In CADE-24, 2013. to appear.

26. A. Riazanov and A. Voronkov. The design and implementation of VAMPIRE. AI Communi-
cations, 15(2-3):91–110, 2002.

27. S. Schulz. System description: E 0.81. In IJCAR, volume 3097 of LNCS, pages 223–228.
Springer, 2004.

28. G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF and CNF
Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362, 2009.

29. R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput., 1(2):146–160,
1972.


