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Abstract. Hoeffding racing algorithms are used to achieve computa-
tional speedups in settings where the goal is to select a “best” option
among a set of alternatives, but the amount of data is so massive that
scoring all candidates using every data point is too costly. The key is to
construct confidence intervals for scores of candidates that are used to
eliminate options sequentially as more samples are processed. We pro-
pose a tighter version of Hoeffding racing based on empirical Bernstein
inequalities, where a jackknife estimate is used in place of the unknown
variance. We provide rigorous proofs of the accuracy of our confidence
intervals in the case of U -statistics and entropy estimators, and demon-
strate the efficacy of our racing algorithms with synthetic experiments.
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1 Introduction

Many present-day machine learning algorithms suffer from significant compu-
tational challenges due to massive amounts of data. Whereas traditional sta-
tistical problems were limited by the cost of acquiring more samples, modern
applications involve processing millions of cheaply-acquired samples, generating
a large computational burden. Standard statistical methods must therefore be
adjusted to focus on making inferences as efficiently as possible based on very
large amounts of data.

Although having access to an essentially infinite pool of data should make sta-
tistical inference easier, the challenge is to determine how much data to process
in what order before making a correct conclusion with sufficiently high probabil-
ity. For instance, suppose the goal is to determine the best model amongst a set
of M candidates based on N observations. The classical approach is to evaluate
M likelihood functions upon all available samples, leading to an O(MN) compu-
tation. When N is extremely large, one may instead choose to evaluate certain
samples only on certain models, leading to significant computational speedups.

In order to address these statistical problems in a mathematically rigorous
manner, we adopt the terminology of the classical multi-armed bandit [22], [5].
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In this setting, a gambler needs to select an optimal arm among a finite set in
order to maximize the reward after sequential arm pulls. However, the gambler’s
decisions are made based on random data from an unknown distribution, result-
ing in a tradeoff between exploration (drawing more data to estimate arm values
more accurately) and exploitation (choosing to pull an arm based on currently
available samples, incurring a penalty from choosing the wrong arm).

Traditionally, the gambler aims to minimize expected regret, the difference
between the reward accrued from picking the optimal arm on each pull and the
reward accrued by the algorithm. In this paper, we consider a slightly different
setting where the gambler wants to identify an almost optimal arm with high
confidence using as few resources as possible, and then pulls the arm. More
precisely, the gambler needs to determine how many samples to acquire before
concluding that with probability at least 1−δ, the selected arm is optimal. In the
probably approximately correct (PAC) model, the gambler may choose any arm
with value within ε of the optimum, and all such arms are equally acceptable.

A promising approach for constructing PAC algorithms in bandit problems
utilizes a technique known as the racing algorithm. Racing algorithms were first
introduced by Maron and Moore [16] in the context of minimizing expected risk
among a collection of models based on cross-validation scores. The key is to con-
struct confidence intervals for the population-level quantities that shrink as the
number of samples increases. Since the only objective is to find an optimal arm,
the user may eliminate arms with low values after drawing only a few samples,
then “race” the best candidates against each other. The Hoeffding race [16] de-
rives its name from Hoeffding’s inequality, which is used to construct confidence
intervals; Bernstein races improve upon Hoeffding races by constructing tighter
confidence intervals via Bernstein’s inequality [18], [20]. Racing algorithms lead
to computational speedups in settings where optimal arms have fairly close val-
ues, since most of the computation focuses on distinguishing amongst top arms,
rather than being wasted on accurate estimation of low-performing arms.

Domingos and Hulten [8] introduced the idea of using Hoeffding racing to
speed up decision tree learning, where successive splits are selected from steam-
ing data. Their paper has sparked great interest in the online learning commu-
nity [14], [21], [13], [24]. However, the form of the information gain estimator used
to choose decision tree splits lies beyond the domain of Hoeffding’s inequality.
Hence, although Hoeffding racing has been applied with much empirical success,
the theoretical justification in these settings has not been rigorous.

In this paper, we show how to extend the theory of racing algorithms to
broader classes of statistics including discrete entropy—extending easily to es-
timation of the information gain statistic used in decision tree induction. In
fact, we propose tighter variants of Hoeffding races based on empirical Bern-
stein inequalities, known to provide significant speedups in many applicaitons
of interest. Whereas previous work on empirical Bernstein inequalities [3], [20]
has relied heavily on finding an appropriate variance surrogate based on the
specific type of estimator, our main contribution is to present a novel method
for constructing confidence intervals based on a jackknife estimate, applicable to
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an extremely broad class of statistics. We prove rigorously that our jackknifed
Bernstein bounds are accurate in the case of U -statistics and discrete entropy es-
timators, and our proof techniques have natural generalizations to other types of
statistics. We validate our theoretical results on synthetic data sets, and demon-
strate that our methods yield vast computational savings.

2 Preliminaries

Recall the setting of a multi-armed bandit. Let X1, . . . , XN be i.i.d. data from an
unknown distribution with density q, and consider a family of functions {fm}Mm=1

defined on q, forming the arms of the bandit. The goal is to determine the optimal
arm m∗ ∈ arg maxm fm(q) based on the Xi’s. For instance, we may estimate m∗

using m̂ ∈ arg maxm fm(q̂), where q̂ is the empirical distribution of the Xi’s. In
settings of where N is very large, it is computationally expensive to evaluate
all N samples on all M functions before estimating m∗. Our goal is to decrease
the number of function evaluations, while guaranteeing that the probability of
picking an optimal arm is at least 1− δ for some fixed δ ∈ (0, 1).

The original Hoeffding racing paper [16] considers fm(q) = EX∼q[gm(X)];
i.e., the fm’s are means of known functions {gm}Mm=1. In its most general form,
a racing algorithm operates by maintaining a confidence interval [am, bm] for
each fm, which is updated according to the samples evaluated on arm m, as
well as an active set S, which is initialized with S1 = {1, . . . ,M}. At step i
of the algorithm, a data sample Xi is drawn and evaluated on all arms in the
current active set Si. Then the confidence intervals for each arm are updated
to [aim, b

i
m]. Letting ai0 := maxm a

i
m, we set Si+1 = Si\{m : bim < ai0}. The

algorithm terminates if either all N samples have been used, or only one arm
remains.

To maximize efficiency, we wish to construct intervals [aim, b
i
m] of minimal

width, while maintaining the correctness of our overall algorithm with probabil-
ity at least 1 − δ. When the Xi’s are independent and fm(q) = EX∼q[gm(X)],
with |gm| ≤ B for all m, Hoeffding’s inequality [12] gives the 1 − δ confidence
intervals [am, bm] defined by

1

nm

nm∑
i=1

gm(Xi)±

√
2B2

nm
log

(
2

δ

)
, (1)

where nm is the number of samples evaluated on arm m. Using the confidence
intervals (1) with δ replaced by δ

NM then yields an algorithm that succeeds with
probability at least 1− δ. This is the traditional Hoeffding race.

When we know in addition that Var[gm(Xi)] ≤ σ2
m, however, we may use

Bernstein’s inequality [4] to obtain the tighter 1− δ confidence interval

1

nm

nm∑
i=1

gm(Xi)±

(√
2σ2

m

nm
log

(
2

δ

)
+

4B

3nm
log

(
2

δ

))
. (2)
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However, in general, σ2
m is not known a priori and must be estimated based on

observed samples. Audibert et al. [3] developed an empirical Bernstein bound
that replaces the unknown variance σ2 in equation (2) by an estimate σ̂(X).

When the fm’s are not simple empirical averages of independent observations,
however, Hoeffding’s and Bernstein’s inequalities do not apply, undermining the
validity of the confidence intervals (1) and (2). Examples of such functions in-
clude the following, where we suppress the dependence on m to simplify notation.

Example 1 (U -statistics). Recall that f(X1, . . . , Xn) is a U -statistic of order k
with kernel g if

f(X1, . . . , Xn) =
1

n · · · (n− k + 1)

∑
i1,...,ik

g(Xi1 , . . . , Xik), (3)

where the sum is taken over all ordered k-tuples of distinct integers in {1, . . . , n}.
For instance, the sample variance is a U -statistic of order 2 with kernel g(xi, xj) =
(xi−xj)

2

2 . Note that individual terms of U -statistics are not independent.

Example 2 (Discrete entropy). Suppose the Xi’s take values in {1, . . . ,K}, and
let {p̂k}Kk=1 denote empirical proportions. The plugin entropy estimator is

f(X1, . . . , Xn) = −
K∑
k=1

p̂k log p̂k, (4)

which cannot be written as a simple empirical average.

Example 3 (Cross-validation). In the context of model selection, suppose the
score of a model is given by

f(X1, . . . , Xn) =
1

n

n∑
i=1

γ(Xi; g(X\i)),

where g is the estimator based on leave-one-out data and γ is the cross-validation
error function. Although f(X1, . . . , Xn) is an empirical average of cross-validation
errors over n data samples, the quantities in the summand are not independent.
Maron and Moore [16] show that Hoeffding racing appears to behave well em-
pirically and select the optimal model with high probability.

One major obstacle in developing Bernstein-type inequalities for the esti-
mators described in the examples above is that unlike in the case of empirical
averages, there is no natural analog of the sample variance as an estimator for
Var[f(X1, . . . , Xn)]. As argued by previous authors [18], [20] and demonstrated
by our simulations (see Table 1), Bernstein inequalities often yield much greater
gains in efficiency than Hoeffding inequalities. Our goal is to establish empirical
Bernstein inequalities for statistics such as the ones mentioned above.
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3 Results

Our main result concerns an empirical Bernstein bound involving a jackknife
estimate for the variance of the statistic. Following the statement of the main
theorem, we demonstrate the applicability of our result via corollaries for U -
statistics and the discrete entropy estimator. Proofs are provided in Section 4.

Analogous to the idea behind Hoeffding and Bernstein races, we may use our
bounds to construct 1− δ

MN confidence intervals at each step of the race, yielding
a racing algorithm that successfully selects the optimal arm with probability at
least 1− δ. As before, we suppress dependence on the arm index m and consider
i.i.d. samples {X1, . . . , Xn}. We have the following definition, which will be useful
in prescribing sufficient conditions for our confidence intervals to hold:

Definition 1. A statistic f(X1, . . . , Xn) satisfies the bounded difference con-
dition with parameter b if for each j and all Xi’s,

|f(X1, . . . , Xj , . . . , Xn)− f(X1, . . . , X
′
j , . . . , Xn)| ≤ b,

where the statistics are evaluated on data sets differing in only one position.

Let Z := f(X1, . . . , Xn) denote the statistic evaluated from the data. Recall
that the jackknife estimate of variance [10], [7] is given by

V Jn :=
n− 1

n

n∑
i=1

(Z(i) − Z(·))
2 =

n− 1

n2

∑
i<j

(Z(i) − Z(j))
2, (5)

where Z(i) := f(X1, . . . , Xi−1, Xi+1, . . . , Xn) and Z(·) := 1
n

∑n
i=1 Z(i). Further-

more, we have the Efron-Stein inequality [10], [25]:

Var[Z] ≤
(

n

n− 1

)2

· E[V Jn ]. (6)

We make the following assumptions on the rate of concentration of Z and V Jn :

Assumption 1 (Bernstein bound on Z) For all δ > 0, the following in-

equality holds for any constant V ≥
(

n
n−1

)2
· E[V Jn ] + f0(n):

P

(
|Z − E[Z]| ≥ c1

√(
V +

f1(n)

V
log
(c2
δ

))
log
(c2
δ

)
+ f2(n) log

(c2
δ

))
≤ δ,

(7)
for some constants ci > 0 and functions fi(n).

Assumption 2 (Concentration of V Jn ) For all δ > 0, we have the inequality

P
(
|V Jn − E[V Jn ]| ≥ f3(n)

√
log
(c3
δ

))
≤ δ, (8)

for some constant c3 > 0 and function f3(n).
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By a simple union bound, we have the following result:

Theorem 1. Suppose Assumptions 1 and 2 hold. Then

Z ±

{
c1

√(
Ṽ +

f1(n)

Ṽ
log
(c2
δ

))
log
(c2
δ

)
+ f2(n) log

(c2
δ

)}

is a 1− 2δ confidence interval for E[Z], where

Ṽ :=

(
n

n− 1

)2(
V Jn + f3(n)

√
log
(c3
δ

))
+ f0(n).

In particular, if E[V Jn ] = Ω
(
1
n

)
and f1(n), f2(n) = o

(
1
n2

)
and f0(n), f3(n) =

o
(
1
n

)
, then

Z ± c1
√
V Jn log

(c2
δ

)
(9)

is an asymptotic 1− 2δ confidence interval for E[Z].

The main work comes in verifying that Assumptions 1 and 2 hold in settings
of interest. In the proofs of the corollaries below, we illustrate two different
techniques for establishing the required assumptions.

We begin with a corollary about U -statistics:

Corollary 1. Suppose Z is a U -statistic of order k and bounded kernel |g| ≤ B.
Then

Z±


√√√√√2

(
n

n− 1

)2
V Jn +

√
B2ck
n3

(
n

n− 1

)2k−1

log

(
2

δ

) log

(
4

δ

)
+
bk
n

log

(
4

δ

)
is a 1− 2δ confidence interval for E[Z]. Here,

bk := 2k+3kk +
2

3k
, and ck :=

k(k + 1)(k!)2

(2k − 2)!
.

Remark 1. The value of ck based on a very rough bound and could be sharpened.
However, in this paper we are more concerned with establishing asymptotically
accurate Bernstein bounds, so we we will not worry about optimizing constants.
In particular, it is clear from the above expression that

Z ±

√
2V Jn log

(
4

δ

)
is an asymptotic 1− 2δ confidence interval for E[Z]. When Z = 1

n

∑n
i=1Xi is a

simple empirical average, we have V Jn = σ̂2

n , where σ̂ is the sample variance, so
the bound in Corollary 1 agrees with the familiar empirical Bernstein bound [3]
up to constant factors. For higher-order U -statistics, the confidence intervals are
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of the same order as the empirical Bernstein bounds proposed by Peel et al. [20],
and V Jn is not unrelated to the variance surrogate used there. However, the main
point of Corollary 1 is to demonstrate the broad applicability of our jackknife
method for constructing empirical Bernstein confidence intervals that may be
rigorously proven to provide accurate coverage.

For the discrete entropy, given by equation (4), we have the following result:

Corollary 2. Suppose Z is the discrete entropy estimator over K classes. Then

Z ± 5

2

√(
Ṽ +

f1(n)

Ṽ
log

(
2

δ

))
log

(
2

δ

)
is a 1− 2δ confidence interval for E[Z], where

Ṽ :=

(
n

n− 1

)2
(
V Jn + f3(n)

√
log

(
2

δ

))
+

4K log2 n

n3/2

and

f1(n) :=
2(16 log2 n+ 32 log n+ 64 + 8

n log2 n)2 + 64K2 log4 n

n3
,

f3(n) :=
16 log2(n− 1) + 32 log(n− 1) + 64 + 8

n−1 log(n− 1)

2(n− 1)
√

2n
.

Remark 2. Since f1(n) = o
(

1
n2

)
and f3(n) = o

(
1
n

)
, the second part of Theo-

rem 1 regarding asymptotic intervals (9) holds. Figure 1 provides simulations
confirming the accuracy of asymptotic intervals even for moderate n.
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Fig. 1. Coverage of asymptotic jackknife intervals for the discrete entropy
with K = 4 and probability vector generated from a Dirichlet distribution
parametrized by α. Smaller α corresponds to more peaky distributions and less
accurate intervals. In all cases, the coverage probability quickly rises above 0.95.
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4 Proofs

In this section, we provide the proofs of the corollaries to Theorem 1 in Section 3.
We comment that although our proofs are specific to the form of estimators used
in the corollaries, the proof ideas provide two separate methods that may be used
to verify Assumptions 1 and 2. In particular, both proofs establish Assumption 2
by showing that V Jn satisfies the bounded difference condition. While the proof of
Corollary 1 uses a known Bernstein bound to establish Assumption 1, the proof
of Corollary 2 uses an entropy technique due to Boucheron et al. [6] involving
bounding the mgf of variance surrogates.

4.1 Proof of Corollary 1

We begin by establishing the Bernstein bound of Assumption 1 from known
results. From Theorem 2 of Arcones [2], we have the Bernstein bound

P

(
|Z − E[Z]| ≥

√
2k2ζ1
n

log

(
4

δ

)
+
kbk
n

log

(
4

δ

))
≤ δ, (10)

where ζ1 := Var[E[g(X1, . . . , Xk) | X1]] and bk := 2k+3kk−1 + 2
3k2 . By Lemma A

(p.183) of Serfling [23], we have the bound k2

n ζ1 ≤ Var[Z]. Hence, inequality (10),
together with the Efron-Stein inequality (6), implies

P

|Z − E[Z]| ≥

√
2

(
n

n− 1

)2

E[V Jn ] log

(
4

δ

)
+
kbk
n

log

(
4

δ

) ≤ δ. (11)

We now establish Assumption 2 by showing that V Jn satisfies a bounded
difference condition. We have the following formula for V Jn from Lee [15]:

V Jn =
n− 1

n2

(
n− 1

k

)−2 k∑
`=0

(`n− k2)Z`, (12)

where Z` :=
∑
|S∩T |=` g(XS)g(XT ) is the sum over all pairs of subsets with

exactly ` indices in common. We may use the formula (12) to establish the
bounded difference condition. Indeed, a crude upper bound shows that altering
one variable Xj changes the value of each Z` by at most 2B2

(
n

2k−2
)
(k!)2. Hence,

the overall change in V Jn is upper-bounded by

n− 1

n2

(
n− 1

k

)−2
· kn · (k + 1) · 2B2

(
n

2k − 2

)
(k!)2.

Using the bounds (n
k

)k
≤
(
n

k

)
≤ nk

k!
,



Faster Hoeffding racing 9

we have the rough upper bound

n− 1

n

(
k

n− 1

)2k

2k(k+ 1)B2 n2k−2

(2k − 2)!
(k!)2 =

2B2k(k + 1)(k!)2

n2(2k − 2)!

(
n

n− 1

)2k−1

,

so Lemma 1.2 of McDiarmid [17] gives Assumption 2. We now apply Theorem 1
to obtain the desired result.

4.2 Proof of Corollary 2

In the case of the discrete entropy, we employ more advanced machinery to
establish the assumptions. Following Boucheron et al. [6], define

V+ := E

[
n∑
i=1

(Z − Z(i))2I {Z > Z(i)} | X1, . . . , Xn

]
, (13a)

V− := E

[
n∑
i=1

(Z − Z(i))2I {Z < Z(i)} | X1, . . . , Xn

]
, (13b)

where Z(i) denotes the random variable obtained by replacing Xi with an inde-
pendent copy X ′i. We may verify via a Hoeffding decomposition [10] that

E[V+] = E[V−] =

(
n

n− 1

)2

E[V Jn ].

We then use the following lemma:

Lemma 1. Suppose V+ and V− satisfy the mgf bounds

logE[exp(λ′(V+−E[V+]−f0(n)))], logE[exp(λ′(V−−E[V−]−f0(n)))] ≤ λ′2 · b
2
1

2n3
.

Then Assumption 1 holds with c1 = 5
2 , c2 = 2, f1(n) =

b21
2n3 , and f2(n) = 0.

Proof. Consider θ > 0 and λ ∈
(
0, 1θ

)
. Setting λ′ = λ

θ and using Theorem 2 of
Boucheron et al. [6], we then have

logE[exp(λ(Z − E[Z]))] ≤ λθ

1− λθ

{
λ

θ
· E[V+] +

λ2

θ2
· b

2
1

2n3

}
.

Then by a Chernoff bound and the fact that E[V+] + f0(n) ≤ V by assumption,

P(Z − E[Z] ≥ t) ≤ exp

{
−λt+

λθ

1− λθ

(
λ

θ
· V +

λ2

θ2
· b

2
1

2n3

)}
.

Setting V ′ = V +
b21 log(2/δ)

2n3V
, θ =

√
V ′/ log(2/δ), and λ = 1

θ

(
1−

(
1 + tθ

V ′

)−1/2)
,

we have
λ

θ
≤ 1

θ2
=

log(2/δ)

V ′
≤ log(2/δ)

V
,
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so

P(Z − E(Z) ≥ t) ≤ exp

{
−λt+

λθ

1− λθ
· λ
θ

(
V +

b21 log(2/δ)

2n3V

)}
= exp

{
−λt+

λ2

1− λθ
V ′
}
.

Finally, by a bit of algebra (cf. Lemma 11 of [6]), the last quantity is bounded by

exp
(

−t2
2(2V ′+tθ/3)

)
, and the choice t = 5

2

√
V ′ log

(
2
δ

)
yields the probability bound

δ
2 , since 1− λθ =

(
1 + 5

2

)−1/2
and

t2

/(
4V ′ +

2tθ

3

)
=

25

4
log

(
2

δ

)/(
4 +

5

3

)
≥ log

(
2

δ

)
.

Repeating the argument for V− and combining tail bounds yields the inequality.

We now establish an mgf bound for V+; the argument for V− is nearly iden-
tical. For 1 ≤ k ≤ K, let Yk := np̂k. Let hn(x) = −

(
x
n

)
log
(
x
n

)
, and define

∆k,k′(Z) :=
(
hn(Yk)− hn(Yk − 1)

)
+
(
hn(Yk′)− hn(Yk′ + 1)

)
,

the difference incurred on the statistic Z by moving a single observation from
bin k to bin k′. Using this notation, we have

V+ =
∑
k

Yk
∑
k′

pk′∆
2
k,k′(Z)I {∆k,k′(Z) > 0}. (14)

We consequently define the plugin estimator

V PIn =
1

n

K∑
k=1

Yk

K∑
k′=1

Yk′∆
2
k,k′(Z)I {∆k,k′(Z) > 0}, (15)

which does not depend on the unknown proportions {pk}Kk=1.
We first show that V PIn satisfies a bounded difference condition with param-

eter
16 log2 n+32 logn+64+ 8

n log2 n

n2 . For k1 6= k2, note that

|∆k1,k2(V PIn )| ≤ 1

n

∑
k,k′

|∆k1,k2(YkYk′∆
2
k,k′(Z)I {∆k,k′(Z) > 0})|.

We now use the fact that

|xy − (x− δ1)(y − δ2)| ≤ |δ1(y − δ2)|+ |δ2x|,

with

x = YkYk′ , y = ∆2
k,k′(Z)I {∆k,k′(Z) > 0},
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and

δ1 = ∆k1,k2(YkYk′), δ2 = ∆k1,k2

(
∆2
k,k′(Z)I {∆k,k′(Z) > 0}

)
.

It is easy to check that |∆k,k′(Z)| ≤ 2 logn
n using the mean value theorem on hn,

so |y − δ2| ≤ 4 log2 n
n2 . Furthermore, a small calculation shows that

|δ1| ≤ YkI {k′ ∈ {k1, k2}}+Yk′I {k ∈ {k1, k2}}+I {k ∈ {k1, k2}}I {k′ ∈ {k1, k2}}.

To bound |δ2|, note that if the indicator is unaltered by the transition k1 → k2,

|∆k1,k2

(
∆2
k,k′(Z)I {∆k,k′(Z) > 0}

)
| ≤ |∆k1,k2

(
∆2
k,k′(Z)

)
|, (16)

and if the value of the indicator does change, we have

|∆k,k′(Z)| ≤ |∆k1,k2(∆k,k′(Z))|,

so combined with the straightforward bound

|∆k1,k2

(
∆2
k,k′(Z)I {∆k,k′(Z) > 0}

)
| ≤ |∆2

k,k′(Z)|+ |∆k1,k2(∆2
k,k′(Z))|,

we obtain

|∆k1,k2

(
∆2
k,k′(Z)I {∆k,k′(Z) > 0}

)
| ≤ |∆2

k1,k2(∆k,k′(Z))|+ |∆k1,k2(∆2
k,k′(Z))|,

which subsumes inequality (16).
From the simple bound |(x+ ε)2 − x2| ≤ 2|xε|+ ε2, we have

|∆k1,k2(∆2
k,k′(Z))| ≤ 2|∆k,k′(Z)| · |∆k1,k2(∆k,k′(Z))|+ |∆2

k1,k2(∆k,k′(Z))|

≤ 4 log n

n
· |∆k1,k2(∆k,k′(Z))|+ |∆2

k1,k2(∆k,k′(Z))|.

Furthermore,

|∆k1,k2(∆k,k′(Z))| ≤
∣∣∣∆k1,k2

(
hn(Yk)− hn(Yk − 1)

)∣∣∣+∣∣∣∆k1,k2

(
hn(Yk′)− hn(Yk′ + 1)

)∣∣∣ .
Note that if k /∈ {k1, k2}, the first term is 0; and if k′ /∈ {k1, k2}, the second term
is 0. Suppose k = k1. Then the first term becomes∣∣∣(hn(Yk1)− hn(Yk1 − 1)

)
+
(
hn(Yk1 − 2)− hn(Yk1 − 1)

)∣∣∣ ,
which may be bounded as∣∣∣∣∣ 1n log

(
n

Y ′k1

)
− 1

n
log

(
n

Y ′′k1

)∣∣∣∣∣ =
1

n

∣∣∣∣∣log

(
Y ′′k1
Y ′k1

)∣∣∣∣∣ ≤ 1

n

(
Y ′′k1
Y ′k1
− 1

)
≤ 2

nYk1
,

for Y ′k1 ∈ [Yk1−2, Yk1−1] and Y ′′k1 ∈ [Yk1−1, Yk1 ], using the mean value theorem.
The other cases may be considered similarly, implying that

|∆k1,k2(∆k,k′(Z))| ≤ 2

nYk
· I {k ∈ {k1, k2}}+

2

nYk′
· I {k′ ∈ {k1, k2}} ≤

4

n
.
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Altogether, we conclude that

|δ2| ≤
(

8

n
+

4 log n

n

)
·
(

2

nYk
· I {k ∈ {k1, k2}}+

2

nYk′
· I {k′ ∈ {k1, k2}}

)
,

and summing up, we obtain

|∆k1,k2(V PIn )| ≤ 4 log2 n

n2

(
4 +

2

n

)
+

(
16

n3
+

8 log n

n3

)∑
k,k′

(
Yk′I {k ∈ {k1, k2}}+ YkI {k′ ∈ {k1, k2}}

)
≤ 16 log2 n

n2
+

8 log2 n

n3
+

64

n2
+

32 log n

n2

≤
16 log2 n+ 32 log n+ 8

n log2 n

n2
.

Hence, we have the mgf bound

E[exp(2λV PIn )] ≤ exp

(
2λE(V PIn ) + λ2 · c

2
n

n3

)
,

where we define cn := 16 log2 n+ 32 log n+ 64 + 8
n log2 n.

However, we actually want control on the mgf of V+. Note that

V+ − V PIn =

K∑
k′=1

(
pk′ −

Yk′

n

) K∑
k=1

Yk∆
2
k,k′(Z)I {∆k,k′(Z) > 0}︸ ︷︷ ︸

Wk,k′

, (17)

with 0 ≤Wk,k′ ≤ 4 log2 n
n . By convexity of the exponential, we then have

exp(λ(V+ − V PIn )) ≤ 1

K

K∑
k′=1

exp

(
Kλ

(
pk′ −

Yk′

n

)
Wk,k′

)

≤ 1

K

K∑
k′=1

exp

(
λ · 4K log2 n

n
·
∣∣∣∣pk′ − Yk′

n

∣∣∣∣) .
By the easily verified mgf bound

E[exp(λ|X|)] ≤ exp(λE|X|+ 2nλ2),

for X ∼ Bin(n, p), we have

E
[
exp

(
4Kλ log2 n

n
·
∣∣∣∣pk′ − Yk′

n

∣∣∣∣)] ≤ exp

(
4Kλ log2 n

n
· E
∣∣∣∣pk′ − Yk′

n

∣∣∣∣+ 2λ2 · 16K2 log4 n

n3

)
for all k′. Hence,

E[exp(λ(V+ − V PIn ))] ≤ exp

(
λ · 4K log2 n

n
· µk′ + λ2 · 32K2 log4 n

n3

)
,
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where µk′ := E
∣∣∣pk′ − Yk′

n

∣∣∣. By Cauchy-Schwarz, we then have

E[exp(λV+)] ≤ E[exp(2λV PIn )]1/2E[exp(2λ(V+ − V PIn ))]1/2

≤ exp

(
λE(V PIn ) + λ2 · c

2
n

2n3

)
exp

(
λ · 4K log2 n

n
· µk′ + λ2 · 64K2 log4 n

n3

)
= exp

(
λ

(
E(V PIn ) +

4K log2 n

n
· µk′

)
+ λ2

(
c2n

2n3
+

64K2 log4 n

n3

))
.

Finally, note that by equation (17), we have

|E(V+)− E(V PIn )| ≤ 4 log2 n

n

∑
k′

E
∣∣∣∣pk′ − Y ′k

n

∣∣∣∣ ≤ 4K log2 n

n
· µk′ ,

and

µk′ ≤
1

n
Var(Bin(n, pk′))

1/2 ≤ 1

n
·
√
n

4
=

1

2
√
n
.

It follows that

E[exp(λV+)] ≤ exp

(
λ

(
E(V+) +

4K log2 n

n3/2

)
+ λ2

(
2c2n
n3

+
64K2 log4 n

n3

))
.

An identical argument establishes the analogous mgf bound for V−. We then

apply Lemma 1 with f0(n) = 4K log2 n
n3/2 to obtain Assumption 1.

Finally, note that the same argument used to establish a bounded difference
condition for V PIn also shows that V Jn satisfies a bounded difference inequality
with parameter n−1

2n ·
cn−1

(n−1)2 , since we may write

V Jn =
n− 1

n2

∑
i6=j

(
Z(i) − Z(j)

)2
=
n− 1

2n2

∑
k,k′

YkYk′
(

[hn−1(Yk′)− hn−1(Yk′ − 1)] + [hn−1(Yk − 1)− hn−1(Yk)]
)2
,

analogous to equation (15). Assumption 2 follows from bounded differences [17].

5 Experiments

Here, we describe the results of experiments we performed to check the valid-
ity of our theoretical results. We report the results of simulation races for the
discrete entropy estimator on M categorical probability vectors from a Dirichlet
distribution over K ∈ {4, 40} categories and concentration parameters chosen as
a uniform random vector of K elements, multiplied by a constant α. A straight-
forward application of the bounded difference inequality provides a Hoeffding

inequality of width
√

2 log2 n
n log

(
2
δ

)
[1]. We ran racing algorithms with both Ho-

effding and asymptotic jackknife intervals (9) for comparison, using δ = 0.05.
The speedup achieved by each algorithm is the ratio between the number of sam-
ples processed over all arms during the race and the maximum number MN .
Table 1 summarizes results numerically and Figure 2 provides a visualization.
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α M K N Hoeffding Jackknife

0.1 10 4 10000 1.00±0.00 20.06±22.67
0.5 10 4 10000 1.01±0.02 6.38±4.50
1.0 10 4 10000 1.00±0.00 4.38±2.72
5.0 10 4 10000 1.00±0.00 2.23±1.42

0.1 10 40 10000 1.03±0.04 3.59±3.94
0.5 10 40 10000 1.00±0.00 2.24±1.03
1.0 10 40 10000 1.00±0.00 1.42±0.25
5.0 10 40 10000 1.00±0.00 1.04±0.03

Table 1. Simulation results for racing with discrete entropy. We report the
mean and standard deviation over 10 runs. The speedup is defined as the ratio
between the number of sample evaluations used and the maximumMN required
without racing.

0
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1.2
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1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
t 0

0.2

0.4
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1
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Z

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
t

(a) (b)

Fig. 2. Entropy race with Hoeffding and asymptotic jackknife confidence in-
tervals (α = 0.5, K = 4, M = 10). As shown in panel (a), the Hoeffding
intervals are too conservative to eliminate any of the 10 arms, even after 10,000
evaluations. In contrast, the Bernstein race (panel (b)) terminates after 4,586
observations.

6 Conclusion

We proposed a generalization of racing algorithms to much broader classes of
statistics than those previously considered in the literature. Our novel method of
constructing empirical Bernstein bounds based on a jackknife estimate of vari-
ance has been shown to be theoretically rigorous in a variety of settings, and we
have also shown through empirical simulations that our asymptotic Bernstein
bounds lead to massive speedups in practice. We expect that similar types of
arguments used to establish fast concentration of the jackknife estimate of vari-
ance could be used to prove the validity of asymptotic jackknife intervals for
many relevant statistics. Even in settings where theoretical results are hard to
derive, however, our method provides a general technique for producing empirical
Bernstein intervals, which may be extremely useful for the practitioner.
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and Richard Samworth for helpful discussions.
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