
Using State-Based Planning Heuristics for
Partial-Order Causal-Link Planning

Pascal Bercher, Thomas Geier, and Susanne Biundo

Institute of Artificial Intelligence,
Ulm University, D-89069 Ulm, Germany,
email: firstName.lastName@uni-ulm.de

Abstract. We present a technique which allows partial-order causal-
link (POCL) planning systems to use heuristics known from state-based
planning to guide their search.

The technique encodes a given partially ordered partial plan as a new
classical planning problem that yields the same set of solutions reach-
able from the given partial plan. As heuristic estimate of the given partial
plan a state-based heuristic can be used estimating the goal distance of
the initial state in the encoded problem. This technique also provides
the first admissible heuristics for POCL planning, simply by using ad-
missible heuristics from state-based planning. To show the potential of
our technique, we conducted experiments where we compared two of the
currently strongest heuristics from state-based planning with two of the
currently best-informed heuristics from POCL planning.

1 Introduction

In most of today’s classical planning approaches, problems are solved by informed
(heuristic) progression search in the space of states. One reason for the success of
this approach is the availability of highly informed heuristics performing a goal-
distance estimate for a given state. In contrast, search nodes in plan-based search
correspond to partially ordered partial plans; thus, the heuristics known from
state-based planning are not directly applicable to plan-based search techniques.

One of the most important representatives of plan-based search is partial-
order causal-link (POCL) planning [13, 17]. POCL planning benefits from its
least-commitment principle enforcing decisions during planning only if necessary.
For instance, POCL planning can be done lifted thereby avoiding premature vari-
able bindings. POCL planning has greater flexibility at plan execution time [14]
and eases the integration for handling resource or temporal constraints and du-
rative actions [20, 3]. Its knowledge-rich plans furthermore enable the generation
of formally sound plan explanations [19].

However, developing well-informed heuristics for POCL planning is a chal-
lenging task [21]; thus, heuristics are still rare. To address this shortcoming, we
propose a technique which allows to use heuristics already known from state-
based search in POCL planning, rather than developing new heuristics.

2 Pascal Bercher, Thomas Geier, and Susanne Biundo

This technique works by transforming a current search node, i.e., a partially
ordered partial plan, into a new planning problem, into which the given partial
plan is completely encoded, s.t. solutions for the new problem correspond to so-
lutions reachable from the encoded search node. Then, we evaluate the heuristic
estimate of the transformed problem’s initial state using any heuristic known
from state-based search, and use it as heuristic estimate of the search node. As
it turns out, not every state-based heuristic works with our technique, but we
obtained promising empirical results for some of them.

The remainder of the paper is structured as follows: the next section is de-
voted to the problem formalization. Section 3 introduces the proposed trans-
formation. In Section 4, we discuss several issues and questions arising when
using the technique in practice. In Section 5, we evaluate our approach by com-
paring our POCL planning system using four different heuristics: two of them
are the currently best-informed heuristics known for POCL planning, whereas
the other two use state-of-the-art heuristics known from state-based planning in
combination with our problem encoding. Finally, Section 6 concludes the paper.

2 POCL Planning

A planning domain is a tuple D = 〈V,A〉, where V is a finite set of boolean
state variables, S = 2V is the set of states, and A is a finite set of actions, each
having the form (pre, add , del), where pre, add , del ⊆ V. An action is applicable
in a state s ∈ S if its precondition pre holds in s, i.e., pre ⊆ s. Its application
generates the state (s \ del) ∪ add . The applicability and application of action
sequences is defined as usual. A planning problem in STRIPS notation [5] is a
tuple π = 〈D, sinit , g〉 with sinit ∈ S being the initial state and g ⊆ V being
the goal description. A solution to π is an applicable action sequence starting in
sinit and generating a state s ⊇ g that satisfies the goal condition.

POCL planning is a technique that solves planning problems via search in
the space of partial plans. A partial plan is a tuple (PS ,≺, CL). PS is a set of
plan steps, each being a pair l:a with an action a ∈ A and a unique label l ∈ L
with L being an infinite set of label symbols to differentiate multiple occurrences
of the same action within a partial plan. The set ≺ ⊂ L×L represents ordering
constraints and induces a strict partial order on the plan steps in PS . CL is a
set of causal links. A causal link (l, v, l′) ∈ L× V × L testifies that the precon-
dition v ∈ V of the plan step with label l′ (called the consumer) is provided by
the action with label l (called the producer). That is, if l:(pre, add , del) ∈ PS ,
l′:(pre ′, add ′, del ′) ∈ PS , and (l, v, l′) ∈ CL, then v ∈ add and v ∈ pre ′. Further-
more, we demand l ≺ l′ if (l, v, l′) ∈ CL.

Now, π can be represented as a POCL planning problem 〈D, Pinit〉, where
Pinit := ({l0:a0, l∞:a∞}, {(l0, l∞)}, ∅) is the initial partial plan. The actions a0
and a∞ encode the initial state and goal description: a0 has no precondition and
sinit as add effect and a∞ has g as precondition and no effects. A solution to
such a problem is a partial plan P with no flaws. Flaws represent plan elements
violating solution criteria. An open precondition flaw is a tuple (v, l) ∈ V × L

Using State-Based Planning Heuristics for POCL Planning 3

specifying that the precondition v of the plan step with label l is not yet protected
by a causal link. A causal threat flaw is a tuple (l, (l′, v, l′′)) ∈ L×CL specifying
that the plan step l:(pre, add , del) with v ∈ del may be ordered between the
plan steps with label l′ and l′′. We say, the plan step with label l threatens the
causal link (l′, v, l′′), since it might undo its protected condition v.

If a partial plan P has no flaws, every linearization of its plan steps respect-
ing its ordering constraints is a solution to the planning problem in STRIPS
notation. Hence, P is called a solution to the corresponding POCL problem.

POCL planning can be regarded as a refinement procedure [12], since it
refines the initial partial plan Pinit step-wise until a solution is generated. The
algorithm works as follows [22]. First, a most-promising partial plan P is selected
based on heuristics estimating the goal-distance or quality of P . Given such a
partial plan P , a flaw selection function selects one of its flaws and resolves it. For
that end, all modifications are applied, which are all possibilities to resolve the
given flaw. A causal threat flaw (l, (l′, v, l′′)) ∈ FCausalThreat can only be resolved
by promotion or demotion. These modifications promote the plan step with
label l before the one with label l′, and demote it behind the one with label l′′,
respectively. An open precondition flaw (v, l) ∈ FOpenPrecondition can only be
resolved by inserting a causal link (l′, v, l) which protects the open precondition
v. This can be done either by using a plan step already present in the current
partial plan, or by a new action from A. The two-stage procedure of selecting a
partial plan, calculating its flaws, and selecting and resolving a flaw is repeated
until a partial plan P without flaws is generated. Hence, P is a solution to the
POCL planning problem and returned.

3 Using State-Based Heuristics for POCL Planning

We encode a partially ordered partial plan into a new STRIPS planning problem.
A similar encoding was already proposed by Ramı́rez and Geffner [18]. However,
their encoding was used in the context of plan recognition for compiling obser-
vations away and it does not feature a partial order, causal links, nor did they
state formal properties.

Given a planning problem in STRIPS notation π = 〈〈V,A〉, sinit , g〉 and
a partial plan P = (PS ,≺, CL), let encplan(P, π) = 〈〈V ′,A′〉, s′init , g′〉 be the
encoding of P and π with:

V ′ := V ∪ {l−, l+ | l:a ∈ PS , l /∈ {l0, l∞}}
A′ := A ∪ {encplanStep(l:a,≺) | l:a ∈ PS , l /∈ {l0, l∞}}, with

encplanStep(l:(pre, add , del),≺)

:= (pre ∪ {l−} ∪ {l′+ | l′≺ l, l′ 6= l0}, add ∪ {l+}, del ∪ {l−}),
s′init := sinit ∪ {l− | l:a ∈ PS , l /∈ {l0, l∞}}
g′ := g ∪ {l+ | l:a ∈ PS , l /∈ {l0, l∞}}

The resulting problem subsumes the original one and extends it in the follow-
ing way: all plan steps in P become additional actions in A′ (we do not encode

4 Pascal Bercher, Thomas Geier, and Susanne Biundo

the artificial start and end actions, since their purpose is already reflected by
the initial state and goal description). For each plan step l:a, we introduce two
indicator variables l− and l+ that encode that l:a has not or has been executed.
Initially, none of the actions representing the encoding of these plan steps are
marked as executed and the (additional) goal is to execute all of them. Further-
more, these actions use the indicator variables to ensure that they can only be
executed in an order consistent with the partial order of the partial plan.

Although the encoding can be done in linear time [1], the effort for evaluating
heuristics might increase as search progresses, since the resulting problem is of
larger size than the original one. We will discuss this issue in the next section.

For the sake of simplicity, the formally specified function encplan ignores causal
links. Since causal links induce additional constraints on a partial plan (cf. Sec-
tion 2), compiling them away, too, captures even more information. The com-
pilation can be done as follows: let (l1, v, l2) be a causal link, l1:a1 and l2:a2
the two corresponding plan steps, and a′1 and a′2 their encodings within A′. We
need to ensure that no action with v as delete effect can be inserted between
a′1 and a′2. To that end, we introduce a counter variable count(v) which counts
how many causal links with the protected condition v are “currently active”.1 To
update that counter correctly, any (encoded) action producing a causal link with
condition v has the precondition count(v) = i and the effect count(v) = i + 1.
Analogously, any (encoded) action consuming such a causal link has the precon-
dition count(v) = i and the effect count(v) = i − 1. Then, any (encoded and
non-encoded) action having v in its delete list has the precondition count(v) = 0.
Note that the original planning problem does not need to be changed for every
partial plan, although we need to add the precondition count(v) = 0 to each
action for which there is a causal link (l1, v, l2) in the current partial plan. We
can process the domain only once by adding the precondition count(v) = 0 to
any action for any state variable v in advance. Concerning the overall runtime
for compiling away causal links, assume a′ being a (compiled) action consuming
n and providing m causal links. Then, |CL|(n+m) actions must be created to
provide all possible combinations of the count variables, where CL is the set of
causal links of the partial plan to be encoded. The compilation is therefore expo-
nential in the maximal number of preconditions and effects of all actions. Hence,
assuming the planning domain is given in advance, our compilation is polyno-
mial. In practice, it is also polynomial if the domain is not given in advance,
because the maximal number of preconditions and effects is usually bounded by
a small constant and does not grow with the domain description.

Before we can state the central property of the transformed problem, we
need some further definitions. Let P = (PS ,≺, CL) be a partial plan. Then,
ref (P) := {〈PS ′,≺′, CL′〉 | PS ′ ⊇ PS ,≺′ ⊇ ≺, CL′ ⊇ CL} is called the set of all
refinements of P , i.e., the set of all partial plans which can be derived from P

1 For the sake of simplicity, we use functions to describe the counter. Since these
functions are simple increment and decrement operations, converting them into the
STRIPS formalism is possible in linear time w.r.t. their maximum value which is
bound by the number of causal links in the given partial plan.

Using State-Based Planning Heuristics for POCL Planning 5

by adding plan elements. Let sol(π) be the set of all solution plans of π. We call
sol(π, P) := sol(π) ∩ ref (P) the set of all solutions of π refining P .

Now, we define mappings to transform partial plans derived from the plan-
ning problem encplan(P, π) to partial plans from the original planning problem π.2

The functions decplanStep(l:(pre, add , del),V) := l:(pre ∩ V, add ∩ V, del ∩ V) and
decplan(〈PS ,≺, CL〉, π) := 〈{decplanStep(l:a,V) | l:a ∈ PS},≺, {(l, v, l′) ∈ CL | v ∈
V}〉 are called the decoding of a plan step and a partial plan, respectively. Thus,
given a partial plan P ′ from the planning problem encplan(P, π), decplan(P

′, π)
eliminates the additional variables and causal links used by the encoding.

The following proposition states that every solution of the original planning
problem, which is also a refinement of the given partial plan, does also exist
as a solution for the encoded problem and, furthermore, the converse holds as
well: every solution of the encoded problem can be decoded into a solution of
the original one, which is a refinement of the given partial plan, too. Thus, the
set of solutions of the transformed planning problem is identical to the set of
solutions of the original problem, reachable from the current partial plan.

Proposition 1 Let π be a planning problem and P a partial plan. It holds:

• if there is a partial plan Psol , s.t. Psol ∈ sol(π, P), then there exists a partial
plan P ′sol with P ′sol ∈ sol(encplan(P, π)) and decplan(P

′
sol , π) = Psol

• if there is a partial plan P ′sol , s.t. P ′sol ∈ sol(encplan(P, π)), then decplan(P
′
sol , π)

∈ sol(π, P)

Assuming the plan quality is based on action costs, we can use that propo-
sition to find a heuristic function h(π, P) that estimates the goal distance in π
from the partial plan P by transforming π and P into the planning problem
π′ = encplan(P, π) and setting h(π, P) := max{hsb(π′, s′init)− cost(P), 0}, where
hsb is any heuristic that takes a state as input. We need to subtract the action
costs of P , since a heuristic estimate for P excludes the actions already present in
P , whereas a heuristic estimate for s′init should detect the necessity of inserting
them and hence includes their cost as well. Taking the maximum of that value
and zero is done in case the heuristic is overly positive and returns an estimated
cost value lower than those of the actions already present in P .

Since, due to Proposition 1, the set of solutions of π is isomorphic to the
solutions of π′, even regarding action costs, using an admissible heuristic hsb
consequently makes h(π, P) admissible, too. This is an interesting property of our
approach, since there are no admissible POCL heuristics known to the literature.

Example. Let π = 〈〈V,A〉, sinit , g〉 be a planning problem with V := {a, b, c},
A := {({b}, {a}, {b}), ({a}, {c}, {a})}, sinit := {a, b}, and g := {a, c}. Let P be
a partial plan which was obtained by a POCL algorithm as depicted below:

l2:A1 l1:A2b
¬b
a

a
¬a
c

a

b

a
c

2 For the sake of simplicity, our decoding assumes that no causal links were compiled
away. Decoding the encoded causal links is straight-forward.

6 Pascal Bercher, Thomas Geier, and Susanne Biundo

The arrows indicate causal links and A1 and A2 the actions of A. P has only
one open precondition: (a, l∞), which encodes the last remaining goal condition.

The transformed problem, without compiling away causal links, is given by
encplan(P, π) = 〈〈V ′,A′〉, s′init , g′〉 with:

V ′ := {a, b, c, l1+, l1−, l2+, l2−}
A′ := {({b}, {a}, {b}}), // A1

({b, l2−}, {a, l2+}, {b, l2−}), // enc(l2:A1)

({a}, {c}, {a}), // A2

({a, l1−, l2+}, {c, l1+}, {a, l1−})} // enc(l1:A2)

s′init := {a, b, l1−, l2−}
g′ := {a, c, l1+, l2+}

A heuristic estimate based on the transformed problem may incorporate the
negative effects of l2:A1 and l1:A2 and has thus the potential to discover the
partial plan/state to be invalid and thus prune the search space.

4 Discussion

Relaxation. Not every state-based heuristic is suited for our proposed approach.
In order to determine how informed a chosen heuristic function is when used
with our technique, one has to investigate the effect of the (heuristic-dependent)
relaxation on the actions in Anew := A′ \A. The actions in Anew (together with
the additional goals) encode the planning progress so far, just like the current
state does in state-based planning. Thus, relaxing them can have a strong impact
on the resulting heuristic values. For instance, in our experiments, we noticed
that the FF heuristic [10] always obtains the same estimates for the encoded
problems of all search nodes making the heuristic blind.

Preprocessing. Some heuristics, like merge and shrink abstraction (M&S) [4, 9],
perform a preprocessing step before the actual search and make up for it when
retrieving each single heuristic value. Since we obtain a new planning problem
for each single partial plan, a naive approach using this kind of heuristics would
also perform that preprocessing in every search node, which is obviously not
beneficial (and no pre-processing). Thus, given a specific heuristic, one has to
investigate whether certain preprocessing steps can be done only once and then
updated per partial plan if necessary.

Runtime. Although the transformation itself can be done efficiently, the time
of evaluating heuristics might increase with the size of the encoded problem.
At first glance, this might seem a strange property, since one would expect the
heuristic calculation time either to remain constant (as for abstraction heuristics
[4, 9]) or to decrease (as for the add or FF heuristics [6, 10]), as a partial plan
comes closer to a solution. However, since partial plans are complex structures

Using State-Based Planning Heuristics for POCL Planning 7

and many interesting decision problems involving them are NP hard w.r.t. their
size [15], it is not surprising that evaluating heuristic estimates becomes more
expensive as partial plans grow in size.

Ground Planning. The presentation of the proposed transformation in the pa-
per assumes a ground problem representation. However, the approach also works
for lifted planning without alterations to the encoding function. In lifted plan-
ning [22], the given partial plan is only partially ground, i.e., some action param-
eters are bound to constants, and the remaining ones are either unconstrained,
codesignated or non-codesignated. Using the same encoding process but ignor-
ing these designation constraints already works as described, since the initial
state of the resulting encoded planning problem is still ground and evaluating
its heuristic estimate is thus possible without alterations. Encoding the designa-
tion constraints is also possible, but ignoring them is just a problem relaxation
as is ignoring causal links.

5 Evaluation

We implemented the described encoding without compiling away causal links in
our POCL planning system. We compare the performance of planning using the
encoding with two state-of-the-art state-based heuristics against the currently
best-informed POCL heuristics. We also show results for a state-based planner.

The used POCL planner is implemented in Java R©. As search strategy, we
use weighted A* with weight 2. That is, a partial plan p with minimal f value is
selected, given by f(p) := g(p) + 2 ∗ h(p) with g(p) being the cost of p and h(p)
being its heuristic estimate. In cases where several partial plans have the same f
value, we break ties by selecting a partial plan with higher cost; remaining ties
are broken by the LIFO strategy thereby preferring the newest partial plan.
As flaw selection function, we use a sequence of two flaw selection strategies.
The first strategy prefers newest flaws (where all flaws detected in the same
plan are regarded equally new). On a tie, we then use the Least Cost Flaw
Repair strategy [11], which selects a flaw for which there are the least number
of modifications, thereby minimizing the branching factor. Remaining ties are
broken by chance. We configured our system to plan ground, because our current
implementation only supports a ground problem encoding.

As POCL heuristics, we selected the two currently best-informed heuristics:
the Relax Heuristic [16] and the Additive Heuristic for POCL planning [22]. They
are adaptations of the FF heuristic [10] and the add heuristic [6], respectively.
Both heuristics identify the open preconditions of the current partial plan and
estimate the action costs to achieve them based on delete relaxation using a
planning graph [2]. These heuristics are implemented natively in our system.3

3 Our implementation of the Relax Heuristic takes into account all action costs in
a relaxed plan, whereas the original version assumes cost 0 for all actions already
present. We used our variant for the experiments, since it solved more problems than
the original version.

8 Pascal Bercher, Thomas Geier, and Susanne Biundo

As state-based heuristics, we chose the LM-Cut heuristic [8], which is a
landmark-based heuristic and an admissible approximation to h+, and the Merge
and Shrink (M&S) heuristic [4, 9], which is an abstraction-based heuristic.

To evaluate heuristics from state-based planning, we chose to use an existing
implementation. When planning using state-based heuristics, the POCL planner
creates a domain and problem PDDL file for each search node encoding the
corresponding partial plan, but ignoring causal links. We then use a modified
version of the Fast Downward planning system [7] that exits after calculating
the heuristic value for the initial state. While this approach saved us much
implementation work, the obtained results are to be interpreted with care, since
the process of calling another planning system in each search node is rather
time-consuming: while the average runtime of the Add and Relax heuristics is
at most 4 ms per search node over all evaluated problems, the LM-Cut heuristic
has a mean runtime of 958 ms and a median of 225 ms. For the M&S heuristic4,
the mean is 7,500 ms and the median 542 ms. The very high runtimes of M&S
are contributed to the fact that it performs a preprocessing step for every search
node. Of course, in a native implementation of that heuristic in combination with
our problem encoding, one would have to investigate whether an incremental
preprocessing is possible as discussed in the last section.

Thus, the results using the state-based configurations are bound to be dom-
inated by all others in terms of solved instances and runtime. Therefore, we
focus our evaluation on the quality of the heuristics measured by the size of the
produced search space in case a solution was found.

We evaluate on the non-temporal STRIPS problems taken from the Inter-
national Planning Competitions (IPC) 1 to 5. Domains from the IPC 6 and 7
use action costs, which our system does not support. Missing domains from the
IPC 1 to 5 use language features that cannot be handled either by our planner
or by Fast Downward. From each domain we chose a number of instances con-
secutively, beginning with the smallest ones. The used domains and problems
are given in Table 1; furthermore, the table contains the number of solved in-
stances per domain by any of the four configurations. We also included results
for the state-based planner Fast Downward. This planner, which is implemented
in C++, clearly dominates our Java based POCL planner. For one problem,
Fast Downward with M&S created 737 million nodes while our POCL planner
created at most 2.9 million nodes, both for Add and Relax heuristic. Despite
this discrepancy, the performance of the POCL planner using the Add heuristic
surpasses Fast Downward using M&S in some domains.

The POCL planner was given 15 minutes of CPU time and 2GB of memory
for each problem. For the configurations using the encoding, the call to Fast
Downward also counts towards the time limit (including time spent generating
the additional PDDL files), but not towards the memory limit. For the compar-
ison with Fast Downward, we used a 15 minute wall time limit and no memory
limit. All experiments were run on a 12 core Intel Xeon R© with 2.4GHz.

4 We chose f -preserving abstractions and 1500 abstract states. We chose a rather low
number of abstract states to speed up the calculation time.

Using State-Based Planning Heuristics for POCL Planning 9

0

100

200

300

1 100
Time [s]

(a) Solved instances over CPU time.

0

100

200

300

1e+02 1e+04 1e+06
Created Search Nodes

(b) Solved instances over created nodes.

0

50

100

150

200

10 100 1000 10000
Created Search Nodes

PBAdd PBRelax PBLM−Cut PBM&S

(c) Enlarged view of 1b; solved instances over created nodes.

Fig. 1: These plots show the number of solved instances on their y-axis, while the
x-axis shows either CPU time or the number of created nodes. The configura-
tions PBAdd and PBRelax stand for POCL planning using the Add or the Relax
heuristic, respectively. PBLM-Cut and PBM&S denote POCL planning using the
LM-Cut and the Merge and Shrink heuristic.

10 Pascal Bercher, Thomas Geier, and Susanne Biundo

Figure 1a shows the number of solved instances over the used CPU time. As
we can observe the transformation-based heuristics are severely dominated by
the natively implemented POCL heuristics, as we expected. Figures 1b and 1c
show the size of the explored search space over the number of solved instances.
This means that configurations with higher curves solve more problems using
the same number of visited nodes. We can observe that both transformation-
based heuristics act more informed than the existing POCL heuristics in the
beginning. The transformation-based heuristic using LM-Cut remains above the
best existing POCL heuristic (Add) for the complete range of problems it could
solve. When using M&S the performance deteriorates for the more complex
problems, which we attribute to the small number of abstract states. In fact, a
reasonable number of abstract states should be chosen domain dependently [9]. It
is also the case that many runs experienced time outs after having explored only
a small number of nodes. This means that the true curves of the transformation-
based heuristics are expected to lie higher than depicted.

In summary, we can state that the experiments offer a promising perspective
on the usefulness of the proposed transformation-based heuristics. In particular
the LM-Cut heuristic proved to act more informed than the currently best known
POCL heuristic, in addition to being the first known admissible one. Since the
calculation of LM-Cut does not rely on preprocessing, like the Merge and Shrink
heuristic does, we are optimistic that a native implementation of LM-Cut for
POCL planning will offer a significant performance boost for POCL planning.

6 Conclusion

We presented a technique which allows planners performing search in the space
of plans to use standard classical planning heuristics known from state-based
planning. This technique is based on a transformation which encodes a given
partial plan by means of an altered planning problem, s.t. evaluating the goal
distance for the given partial plan corresponds to evaluating the goal distance
for the initial state of the new planning problem.

We evaluated our approach by running our POCL planning system with two
of the currently best-informed heuristics for POCL planning and two state-of-
the-art-heuristics from state-based planning based on the proposed transforma-
tion. Whereas the first two heuristics are natively implemented in our system,
the latter two are obtained by running Fast Downward in each search node and
extracting its heuristic estimate for the initial state. The empirical data shows
that our encoding works well with the evaluated state-based heuristics. In fact,
one of these heuristics is even more informed than the best evaluated POCL
heuristic, as it creates smaller search spaces in order to find solutions.

In future work we want to implement the encoding of causal links and eval-
uate our technique using a native implementation of the (state-based) LM-cut
heuristic. Furthermore, we want to investigate whether the LM-cut heuristic can
be directly transferred to the POCL setting without the compilation.

Using State-Based Planning Heuristics for POCL Planning 11

Table 1: This table gives the number of used problems per domain (n) and
the number of solved instances per configuration and domain. The first config-
urations use our plan-based configurations and the right-most columns are the
results of the state-based Fast Downward planner. All problems in the same block
belong to the same IPC, from 1 to 5. A bold entry specifies the most number of
solved instances among all configurations of the POCL planning system.

Domain n PBAdd PBRelax PBLM-Cut PBM&S SBLM-Cut SBM&S

grid 5 0 0 0 0 2 2
gripper 20 14 20 1 1 20 8
logistics 20 16 15 6 0 16 1
movie 30 30 30 30 30 30 30
mystery 20 8 10 5 5 13 13
mystery-prime 20 3 4 2 1 12 12

blocks 21 2 3 3 5 21 21
logistics 28 28 28 27 5 28 15
miconic 100 100 53 65 29 100 68

depot 22 2 2 1 1 11 7
driverlog 20 7 9 3 3 15 12
freecell 20 0 0 0 0 6 6
rover 20 20 19 9 5 18 8
zeno-travel 20 4 4 3 5 16 13

airport 20 18 15 6 5 20 18
pipesworld-noTankage 20 8 5 1 1 18 19
pipesworld-Tankage 20 1 1 1 1 11 14
satellite 20 18 18 4 3 15 7

pipesworld 20 1 1 1 1 11 14
rover 20 0 0 0 0 18 8
storage 20 7 9 5 5 17 15
tpp 20 9 8 5 5 9 7

total 526 296 254 178 111 427 318

Acknowledgements

This work is done within the Transregional Collaborative Research Centre SFB/
TRR 62 “Companion-Technology for Cognitive Technical Systems” funded by
the German Research Foundation (DFG).

References

1. Bercher, P., Biundo, S.: Encoding partial plans for heuristic search. In: Proceed-
ings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling
(KEPS 2013). pp. 11–15 (2013)

2. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artificial
Intelligence 90, 281–300 (1997)

3. Coles, A., Coles, A., Fox, M., Long, D.: Forward-chaining partial-order planning.
In: Proceedings of the 20th International Conference on Automated Planning and
Scheduling (ICAPS 2010). pp. 42–49. AAAI Press (2010)

12 Pascal Bercher, Thomas Geier, and Susanne Biundo

4. Dräger, K., Finkbeiner, B., Podelski, A.: Directed model checking with distance-
preserving abstractions. In: Valmari, A. (ed.) SPIN. Lecture Notes in Computer
Science, vol. 3925, pp. 19–34. Springer (2006)

5. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2, 189–208 (1971)

6. Haslum, P., Geffner, H.: Admissible heuristics for optimal planning. In: Proceedings
of the 5th International Conference on Artificial Intelligence Planning Systems
(AIPS 2000). pp. 140–149. AAAI Press (2000)

7. Helmert, M.: The fast downward planning system. Journal of Artificial Intelligence
Research (JAIR) 26, 191–246 (2006)

8. Helmert, M., Domshlak, C.: Landmarks, critical paths and abstractions: Whats
the difference anyway? In: Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS 2009). vol. 9, pp. 162–169 (2009)

9. Helmert, M., Haslum, P., Hoffmann, J.: Flexible abstraction heuristics for opti-
mal sequential planning. In: Proceedings of the 17th International Conference on
Automated Planning and Scheduling (ICAPS 2007). pp. 176–183 (2007)

10. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research (JAIR) 14, 253–302
(May 2001)

11. Joslin, D., Pollack, M.E.: Least-cost flaw repair: A plan refinement strategy for
partial-order planning. In: Proceedings of the 12th National Conference on Artifi-
cial Intelligence (AAAI 1994). pp. 1004–1009. AAAI Press (1994)

12. Kambhampati, S.: Refinement planning as a unifying framework for plan synthesis.
AI Magazine 18(2), 67–98 (1997)

13. McAllester, D., Rosenblitt, D.: Systematic nonlinear planning. In: Proceedings of
the Ninth National Conference on Artificial Intelligence (AAAI 1991). pp. 634–639.
AAAI Press (1991)

14. Muise, C., McIlraith, S.A., Beck, J.C.: Monitoring the execution of partial-order
plans via regression. In: Proceedings of the 22nd International Joint Conference on
Artificial Intelligence (IJCAI 2011). pp. 1975–1982. AAAI Press (2011)

15. Nebel, B., Bäckström, C.: On the computational complexity of temporal projection,
planning, and plan validation. Artificial Intelligence 66(1), 125–160 (1994)

16. Nguyen, X., Kambhampati, S.: Reviving partial order planning. In: Proceedings
of the 17th International Joint Conference on Artificial Intelligence (IJCAI 2001).
pp. 459–466. Morgan Kaufmann (2001)

17. Penberthy, J.S., Weld, D.S.: UCPOP: A sound, complete, partial order planner for
ADL. In: Proceedings of the third International Conference on Knowledge Repre-
sentation and Reasoning. pp. 103–114. Morgan Kaufmann (1992)

18. Ramı́rez, M., Geffner, H.: Plan recognition as planning. In: Boutilier, C. (ed.)
Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI 2009). pp. 1778–1783. AAAI Press (July 2009)

19. Seegebarth, B., Müller, F., Schattenberg, B., Biundo, S.: Making hybrid plans
more clear to human users – a formal approach for generating sound explanations.
In: Proceedings of the 22nd International Conference on Automated Planning and
Scheduling (ICAPS 2012). pp. 225–233. AAAI Press (6 2012)

20. Vidal, V., Geffner, H.: Branching and pruning: An optimal temporal POCL planner
based on constraint programming. Artificial Intelligence 170(3), 298–335 (2006)

21. Weld, D.S.: Systematic nonlinear planning: A commentary. AI Magazine 32(1),
101–103 (2011)

22. Younes, H.L.S., Simmons, R.G.: VHPOP: Versatile heuristic partial order planner.
Journal of Artificial Intelligence Research (JAIR) 20, 405–430 (2003)

