
Algorithmic Debugging for Intelligent Tutoring:

How to Use Multiple Models and Improve
Diagnosis

Claus Zinn

Department of Computer Science, University of Konstanz
Funded by the DFG (ZI 1322/2/1)
claus.zinn@uni-konstanz.de

Abstract. Intelligent tutoring systems (ITSs) are capable to intelli-
gently diagnose learners’ problem solving behaviour only in limited and
well-defined contexts. Learners are expected to solve problems by closely
following a single prescribed problem solving strategy, usually in a fixed-
order, step by step manner. Learners failing to match expectations are
often met with incorrect diagnoses even when human teachers would
judge their actions admissible. To address the issue, we extend our pre-
vious work on cognitive diagnosis, which is based on logic programming
and meta-level techniques. Our novel use of Shapiro’s algorithmic debug-
ging now analyses learner input independently against multiple models.
Learners can now follow one of many possible algorithms to solve a given
problem, and they can expect the tutoring system to respond with im-
proved diagnostic quality, at negligible computational costs.

1 Introduction

The intelligent tutoring community aims at building computer systems that
simulate effective human tutoring. A key building block is the diagnoser that
analyses learner input for correctness with regard to the current problem solving
context. Much of the intelligent behavior of state-of-the-art tutoring systems
is due to learning interactions that highly constrain learners’ scope of action.
Usually, learners are expected to solve a given problem by executing the steps of a
single prescribed procedure. User interfaces ask learners to enter their answers in
a structured and often piece-meal fashion, and systems intervene after each and
every problem-solving step, preventing learners to pursue their own (correct or
potentially erroneous) problem-solving paths. The tight leash between tutoring
system and learners has more practical than pedagogical reasons. While human
tutors are capable of dealing with free discovery interactions and recognizing and
accommodating alternative problem-solving strategies, most machine tutors only
possess a fixed single problem solving strategy to diagnose anticipated input.

In [9], we propose a novel method to trace learners’ problem solving behaviour
using the programming technique algorithmic debugging. In [10], we interleave
our method with program transformations to perform deep cognitive analyses.
While our method has many benefits (e.g., low authoring costs, any-time feed-
back), so far, it only uses a single frame of reference. In this paper, we extend

http://nbn-resolving.de/urn:nbn:de:bsz:352-245687

273

our previous work by comparing learner behaviour independently against mul-
tiple models. Our new contribution permits learners to exhibit a wider range of
problem solving strategies, while at the same time improving diagnostic quality,
with little additional computational cost.

The paper is structured as follows. Sect. 2 introduces the cognitive task multi-
column subtraction as tutoring domain. It presents the technique of algorithmic
debugging, and our adaptation of the method to support reasoning about learner
input. Sect. 3 is the main part of the paper, and shows how our variant of algo-
rithmic debugging can be improved to track learner behaviour across multiple
models, while at the same time improving the quality of the diagnosis. Sect. 4
discusses related work, while Sect. 5 concludes.

2 Background

2.1 Encoding Cognitive Task Models in Prolog

Cognitive task analysis (CTA) aims at giving a qualitative account of the pro-
cessing steps an individual problem solver takes to solve a given task. Our re-
search uses logic programming as vehicle for encoding cognitive task models
and for tracking and diagnosing learner behaviour. Our domain of instruction
is multi-column subtraction, a well-studied domain in the ITS community. Its
expert model(s), resulting from CTA, can be concisely encoded in Prolog. In the
Austrian method (AM), see Fig. 1, sums are processed column by column, from
right to left. The predicate subtract/2 determines the number of columns, and
calls mc subtract/3, which implements the recursion (decrementing the column
counter CC at each recursive call). The clause process column/3 gets a partial
sum, processes its right-most column and takes care of borrowing (add ten to -

minuend/3) and payback (increment/3) actions. A column is represented as a
term (M, S, R) representing minuend, subtrahend and result cell. If the sub-
trahend S is greater than the minuend M, then M is increased by 10 (borrowing)
before the difference M-S is taken. To compensate, the S in the column left to
the current one is increased by one (payback). – The introduction of the column
counter CC is not an essential part of the subtraction method, but a technical
requirement for mechanising the Oracle part of our diagnosis engine (see below).

We have also been implementing three other subtraction algorithms that re-
use code fragments from Fig. 1. The trade-first variant of the Austrian method
(TF) performs the same steps as the Austrian method, but in a different order;
first, all payback and borrowing operations are executed, then all differences
are taken. The decomposition method (DC) realizes the payback operation by
decrementing minuends rather than incrementing subtrahends. The left-to-right
method (LR) processes sums in the opposite direction; also, payback operations
are performed on result rather than minuend or subtrahend cells.

2.2 Algorithmic Debugging for Tutoring

Shapiro’s algorithmic debugging technique defines a systematic manner to iden-
tify bugs in programs [6]. In the top-down variant, the program is traversed from

274

subtract(PartialSum, Sum) :- length(PartialSum, LSum),

mc_subtract(LSum, PartialSum, Sum).

mc_subtract(_, [], []).

mc_subtract(CC, Sum, NewSum) :-

process_column(CC, Sum, Sum1),

shift_left(Sum1, Sum2, ProcessedColumn), CC1 is CC - 1,

mc_subtract(CC1, Sum2, SumFinal),

append(SumFinal, [ProcessedColumn], NewSum).

process_column(CC, Sum, NewSum) :-

butlast(Sum, LastColumn), allbutlast(Sum,RestSum),

subtrahend(LastColumn, Sub), minuend(LastColumn, Min),

(Sub > Min

-> (add_ten_to_minuend(CC, LastColumn, LastColumn1),

take_difference(CC, LastColumn1, LastColumn2),

butlast(RestSum, LastColumnRestSum), allbutlast(RestSum, RestSum1),

increment(CC, LastColumnRestSum, LastColumnRestSum1),

append(RestSum1,[LastColumnRestSum1,LastColumn2],NewSum))

; (take_difference(CC, LastColumn, LastColumn1),

append(RestSum,[LastColumn1], NewSum))).

shift_left(SumList, RestSumList, Item) :-

allbutlast(SumList, RestSumList), butlast(SumList, Item).

add_ten_to_minuend(CC, (M,S,R), (M10,S, R)) :- irreducible, M10 is M+10.

increment(CC, (M,S,R), (M, S1,R)) :- irreducible, S1 is S+1.

take_difference(CC, (M,S,_R), (M, S, R1)) :- irreducible, R1 is M-S.

minuend((M,_S,_R), M). subtrahend((_M,S,_R), S).

Fig. 1. Multi-column subtraction (Austrian method)

the goal clause downwards. At each step during the traversal of the program’s
AND/OR tree, the programmer is taking the role of the oracle, and answers
whether the currently processed goal holds or not. If the oracle and the buggy
program agree on the result of a goalG, then algorithmic debugging passes to the
next goal on the goal stack. Otherwise, the goal G is inspected further. Eventu-
ally an irreducible agreement will be encountered, hence locating the program’s
clause where the buggy behaviour is originating from. In [9], we turn Shapiro’s
algorithm on its head: instead of having the oracle specifying how the assumed
incorrect program should behave, we take the expert program to take the role of
the buggy program, and the role of the oracle is filled by a student’s potentially
erroneous answers. An irreducible disagreement between program behaviour and
given answer then indicates a student’s potential misconception. In [9], we have
also described how to mechanise the Oracle by reconstructing learners’ answers
from their submitted solution. In [10], we refine the Oracle to complement
irreducible disagreements with the attributes incorrect, missing, or superflu-
ous. We then interleave algorithmic debugging with program transformation to

275

incrementally reconstruct, from the expert program, an erroneous procedure that
the learner is following, allowing deep diagnoses of learners with multiple bugs.

Example. Our algorithmic debugger, given the learner’s answer to 401− 199:

4 10 11

- 1 9 10 9

= 3 1 2

and the Austrian method (see Fig. 1), yields the following (abbreviated) dialogue:

do you agree that the following goal holds:

mc_subtract(3, [(4, 1, R1), (0, 9, R2), (1, 9, R3)],

[(4, 2, 2), (10, 10, 0), (11, 9, 2)]) |: no.

process_column(3, [(4,1,R1), (0,9,R2), (1, 9,R3)],

[(4,1,R1), (0,10,R2), (11,9,2)]) |: no.

add_ten_to_minuend(3, (1,9,R3), (11,9,R3) |: yes.

increment(2, (0, 9, R2), (0, 10, R2)) |: no.

=> irreducible disagreement: ID = increment(2, (0,9,R2), (0,10,R2))

Whenever the learner submits a solution, such a dialogue can be automat-
ically generated, and hence, the irreducible disagreement deduced. Compared
with existing methods for cognitive diagnosis, our method has a number of ad-
vantages. To locate learners’ errors, it requires only an expert model, which is an
executable Prolog program; no representation of buggy knowledge is required.
Moreover, learners are no longer limited to providing their solution in a piece-
meal fashion; algorithmic debugging easily copes with input that spans multiple,
potentially erroneous, problem-solving steps. Like many other approaches, how-
ever, our method only supported a single expert model to solve a given task; it
thus fails to recognise learners using algorithms different than the prescribed one.
The application of our variant of Shapiro’s algorithm on the Austrian method
will return irreducible disagreements (“errors”) for learners who correctly follow
one of the other three subtraction algorithms. Moreover, when learners follow one
of the other algorithms incorrectly, error diagnosis will return incorrect analyses
as they are based on the assumption of the Austrian method. Clearly, tutoring
systems shall be less prescriptive when asking learners to tackle problems.

3 Input Analysis across Models

The diagnostic engine of our tutoring system shall be able, e.g., to cope with
learners following any of the four subtraction methods, or erroneous variants
thereof. The method reported in [9] must be generalized.

276

Step Austrian (AM) Trade-first (TF) Decomposition (DC) Left-to-right (LR)

1

4 0 11
- 1 9 9

=

4 0 11
- 1 9 9

=

4 0 11
- 1 9 9

=

4 0 1
- 1 9 9

= 3

2
4 0 11

- 1 91 9

=

4 0 11
- 1 91 9

=

4 10 11
- 1 9 9

=

4 10 1
- 1 9 9

= 3

3

4 0 11
- 1 91 9

= 2

4 10 11
- 1 91 9

=

4 9 10 11
- 1 9 9

=

4 10 1
- 1 9 9

= 2 3

4
4 10 11

- 1 91 9

= 2

4 10 11
- 11 91 9

=

3 4 9 10 11
- 1 9 9

=

4 10 1
- 1 9 9

= 23 1

5

4 10 11
- 11 91 9

= 2

4 10 11
- 11 91 9

= 2

3 4 9 10 11
- 1 9 9

= 2

4 10 11
- 1 9 9

= 23 1

6
4 10 11

- 11 91 9

= 0 2

4 10 11
- 11 91 9

= 0 2

3 4 9 10 11
- 1 9 9

= 0 2

4 10 11
- 1 9 9

= 23 01

7

4 10 11
- 11 91 9

= 2 0 2

4 10 11
- 11 91 9

= 2 0 2

3 4 9 10 11
- 1 9 9

= 2 0 2

4 10 11
- 1 9 9

= 23 01 2

Fig. 2. Problem Solving States in Four Algorithms for Multi-Column Subtraction

3.1 Correct Learner Behaviour

For the time being, consider learners being perfect problem solvers. They will
solve any given subtraction problem by consistently following one of the four
aforementioned subtraction algorithms. At any problem solving stage, we would
like to identify the algorithm that they are most likely following. Fig. 2 depicts
all correct states for solving the subtraction problem 401 − 199 in each of the
four algorithms. Fig. 3 illustrates the basic idea of our approach, which we will
later refine. Given some partial learner input at the root (the learner is cor-
rectly executing the trade-first variant, see boxed third step in Fig. 2), we run
algorithmic debugging on each of the four subtraction methods. As a result, we
obtain four different diagnoses. With regard to AM, the learner failed to take
the difference in the ones column; for TF, he failed to increment the subtrahend
in the hundreds column; for DC, he failed to decrement the minuend in the tens;
and for LR, he failed to take the difference in the hundreds column.

This result is unsatisfactory as we cannot derive which of the algorithms the
learner is following. For this, let us consider the number of agreements before

277

4 10 11
- 1 91 9

=
AM

������
����

����
����

TF�����
�

DC ����
�� LR

�����
����

����
����

�

4 10 11
- 1 91 9

= 2

4 10 11
- 1 1 91 9

=

4 10 911
- 1 91 9

=

4 10 11
- 1 91 9

= 3

Fig. 3. Algorithmic Debugging (AD) for Four Algorithms on Identical Input

an irreducible disagreement between program and learner behaviour is identi-
fied. While all methods disagree on their respective top goal subtract/2, there
are varying reducible disagreements that contain partial agreements. For AM,
while disagreeing with the goal process column/3 (ones column), we have two
agreements with regard to its observable actions in the subgoals add ten to

minuend/3 (ones column) and increment/3 (tens column). For TF, we have an
agreement with regard to process column/3 in the ones column, but a disagree-
ment for this clause in the tens column. However, we find an agreement with
one of its subgoals, namely add ten to minuend/3, yielding a total of two agree-
ments. For DC, while disagreeing with the goal process column/3 in the ones
column, we find two agreements, one with its subgoal add ten to minuend/3,
and one with the partial execution of the decrement operation. And for LR,
there are zero agreements before the irreducible disagreement is found. In sum-
mary, the number of agreements only indicates that the learner is most likely
not following the LR method; all other methods receive two agreements.

First Refinement. To better rank the methods, we now take into account the
size of the code pieces that are being agreed upon. For this, we count the number
of irreducible agreements before the first irreducible disagreement. Fig. 4 depicts
the relevant execution trace of AM for the task 401 − 199. All leafs that are
marked “irreducible” (see Fig. 1) have weight 1; the weights of nodes are ac-
cumulated upwards. For brevity, borrow represents add ten to minuend/3, and
payback represents increment/3.With this refinement, there is no change in the
agreement score for AM, DC and LR – as all agreements are on leafs nodes. For
TF, however, the score increases by one; our agreement on process column/3

in the ones column now contributes a value of 2 rather than 1 (as the TF imple-
mentation of this predicate has the two leaf nodes add ten to minuend/3 and
increment/3). For the given example, the refinement thus yields the intended
diagnosis; in fact, this holds for most problem solving steps given in Fig. 2.

Evaluation. Each of the four matrices in Fig. 5 shall be read as overlay to
Fig. 2. Fig. 5(a), e.g., gives the results of analysing each problem solving step
– performed in each of the four subtraction methods – in the context of AM.
Learners perfectly executing AM receive “full marks” when their actions are
evaluated against AM; when their actions are evaluated against the other three

278

subtract7
�������� �������

��

process column3

�������

��			
			

			

		

subtract4
�������

�
�����

��

borrow1 process column3

��������
�

���
���

���
��

��

subtract1
������� �����

�

take diff1 borrow1 process column1

��
subtract0

��
payback1 take diff1 take diff1 finished0

payback1

Fig. 4. Execution Trace for the Austrian Method on 401− 199

methods, they receive a lesser score. It shows that our first refinement weighting
yields the correct diagnoses in all cases.

AM TF DC LR

1 1 1 0
2 2 1 0
3 2 1 0
4 2 2 0
5 5 2 0
6 6 2 0
7 7 2 0
(a) Ref: AM

AM TF DC LR

1 1 1 0
2 2 1 0

2 3 2 0

3 4 2 0
5 5 2 0
6 6 2 0
7 7 2 0
(b) Ref: TF

AM TF DC LR

1 1 1 0
1 1 2 0
1 2 3 0
2 2 4 0
2 2 5 0
2 2 6 0
2 2 7 0
(c) Ref: DC

AM TF DC LR

0 0 0 1
0 0 0 2
0 0 0 3
0 0 0 4
1 1 2 5
1 1 2 6
1 1 2 7
(d) Ref: LR

Fig. 5. Evaluation Matrix (Correct Learner Behaviour)

3.2 Buggy Learner Behaviour

Learner errors are rarely random but result from correctly executing a procedure
that has been acquired incorrectly [7,8]. This makes it possible to analyse learner
input in terms of expert models or buggy deviations thereof. We distinguish prob-
lematic cases that cannot be reliably associated with expert models, standard
cases that can be associated with expert models, and complex error patterns
that can only be matched to carefully designed buggy models, see Fig. 6.

Problematic Cases. Consider Fig. 6(a), where the student always subtracted
the smaller from the larger digit. With no payback and borrowing operation ob-
served, there cannot be sufficient evidence to link learner behaviour to any of the
four algorithms. Nevertheless, algorithmic debugging returns useful diagnoses:
the irreducible disagreement indicates that the learner failed to borrow in the
ones (AM, TF, DC) or tens (LR) column. In Fig. 6(b), the learner forgets to
payback after borrowing. Since the main differentiator between the four methods
is the location of the payback operation. we cannot, in principle, differentiate
between the methods. Again, our algorithmic debugger yields the same type of
diagnosis: the learner forgot to payback, either by failing to increment the sub-
trahend in the tens column (AM, TF), or by failing to decrement the minuends in
the tens (and hundreds) column (DC), or by failing to decrement the result cell

279

4 0 1
- 1 9 9

= 3 9 8
(a) Smaller from larger digit

4 10 11
- 1 9 9

= 3 1 2
(b) Forgot to payback

4 10 11
- 11 91 9

= 2 0 3
(c) Wrong subtraction fact

34 910 11 0
- 1 9 9 9

= 2 0 2 0
(d) Zero digit confusion

1 11 12 3
- 4 91 01
= 1 7 2 2
(e) Combining LR with AM

Fig. 6. Three Groups of Frequent Errors

in the hundreds column (LR). It shows that the comparison of learner behaviour
against a set of models strengthens the credibility of the diagnosis.

Standard Cases. Erroneous behaviour that is not directly related to borrowing
and payback can be better associated with one of the four subtraction methods.
In Fig. 6(c), the learner has followed AM or TF, but got a basic subtraction fact
wrong in the ones column. In Fig. 6(d), the student has followed DC, but showed
a misconception wrt. columns where the minuend is zero (ones column); in this
case, the learner takes the result cell to be zero as well. Note that both errors
occur – with respect to AM and DC – early in the problem solving process,
and both solutions have no other errors. When we run algorithmic debugging on
Fig. 6(c), we obtain wrt. AM and TF an incorrect difference in the ones column
(2 agreements). For DC, the learner failed to decrement minuends in the tens
and hundreds (2 agreements); and for LR, there is a superfluous increment of
the subtrahend in the ones (0 agreement). With each of AM, TF and DC sharing
the same number of irreducible agreements, we cannot select one diagnosis over
the other. Running the diagnoser on Fig. 6(d), we obtain no agreement for AM,
TF, and DC (failed to borrow in the ones column), and also no agreement for
LR (superfluous decrement of minuend in the thousands). Given that Fig. 6(d)
is almost correct wrt. DC, we need to further refine our algorithm to better
recognise the method learners are following.

Second Refinement. When errors occur early in the problem solving process, our
simple algorithm for method recognition must perform poorly. Now, instead of
only counting the number of irreducible agreements before the first irreducible
disagreement, we also take into consideration irreducible agreements after the
first and any subsequent irreducible disagreements. I.e., once an irreducible dis-
agreement between expert model and learner behaviour has been identified, our
algorithmic debugger now continues to trace through and analyse the execution
tree until all agreements and disagreements have been counted, see Fig. 7.

With this refinement, we now get these (dis-)agreement scores for Fig. 6(c):
For AM and TF, we obtain 6 irreducible agreements (i.e., correct cell modifica-
tions), and 1 irreducible disagreement (erroneous difference in the ones column).
For DC, we have 4 irreducible agreements (correct borrow in the ones; initiated

280

1: NumberAgreements← 0, NumberDisagreements← 0
2: Goal ← top-clause of subtraction routine
3: Problem ← current task to be solved, Solution ← learner input to task
4: procedure algorithmicDebugging(Goal)
5: if Goal is conjunction of goals (Goal1, Goal2) then
6: ← algorithmicDebugging(Goal1)
7: ← algorithmicDebugging(Goal2)
8: end if
9: if Goal is system predicate then
10: ← call(Goal)
11: end if
12: if Goal is not on the list of goals to be discussed with learners then
13: Body ← getClauseSubgoals(Goal)
14: ← algorithmicDebugging(Body)
15: end if
16: if Goal is on the list of goals to be discussed with learners then
17: SystemResult ← call(Goal), given Problem
18: OracleResult ← call(Goal), given Problem and Solution
19: if results agree on Goal then
20: Weight ← computeWeight(Goal)
21: NumberAgreements← NumberAgreements+Weight
22: else
23: if Goal is leaf node (or marked as irreducible) then
24: NumberDisagreements← NumberDisagreements+ 1
25: else
26: Body ← getClauseSubgoals(Goal)
27: ← algorithmicDebugging(Body)
28: end if
29: end if
30: end if
31: end procedure
32: Score← NumberAgreements−NumberDisagreements

Fig. 7. Pseudo-code: Top-Down traversal of model, keeping track of (dis-)agreements

payback in the tens; correct differences in the tens and hundreds), and 5 irre-
ducible disagreements (wrong difference in the ones; two superfluous increments
of the subtrahend in the tens and hundreds; incorrect minuends in the tens and
hundreds as payback is not fully carried out). For LR, we yield 4 irreducible
agreements (correct borrowing in the ones and tens and correct differences in
the tens and hundreds), and 3 irreducible disagreements (incorrect difference
in the ones, and two superfluous increments of the subtrahends in the tens and
hundreds). Combining the (dis-)agreements, we get for AM/TF the highest score
(6− 1 = 5), and hence correctly recognize that the learner followed this method.
Our scoring for Fig. 6(d) also correctly determines that the learner followed DC.

Complex Error Patterns. Some learner input is too erroneous to be associated
with any of the available expert models. Consider Fig. 6(e), where the learner
is mixing-up two expert algorithms, applying the Austrian method from left to

281

right. Running our algorithmic debugger against all four expert models will yield
the following irreducible (dis-)agreements. For AM and TF, 2− 8 = −6; for DC,
2−8 = −6; and for LR, 4−6 = −2. All diagnoses acknowledge that learners per-
formed two correct borrow operations, but missed that corresponding paybacks
were performed, albeit at wrong positions. While the LR method is identified
as the most likely candidate, the diagnoses are unsatisfactory; they are not suf-
ficiently close to the compound diagnosis “combines two algorithms”. Here, it
is advisable to complement expert with buggy models to capture such complex
erroneous behaviour. If we add the respective buggy model to the existing expert
models, a run of algorithmic debugging against the resulting five models clearly
associates the learners’ solutions in Fig. 6(e) with the buggy model.

4 Related Work

Logic Programming Techniques in Tutoring. There is only little recent research
in the ITS community that builds upon logic programming and meta-level rea-
soning techniques. In [1], Beller & Hoppe also encode expert knowledge for doing
subtraction in Prolog. To identify student error, a fail-safe meta-interpreter ex-
ecutes the Prolog code by instantiating its output parameter with the student
answer. While standard Prolog interpretation would fail on erroneous outputs,
a fail-safe meta-interpreter can recover from execution failure, and can also re-
turn an execution trace. Beller & Hoppe then formulate error patterns , which
they match against the execution trace; with each match indicating a plausible
student bug. It is unclear, however, how Beller & Hoppe deal with learner in-
put that cannot be properly diagnosed against some given model, as the chosen
model sets the stage for all possible execution traces and the patterns that can be
defined on them. Their approach would need to be extended to multiple models,
including a method to rank matches of error patterns to execution traces.

In Looi’s tutoring system [4], Prolog itself is the domain of instruction, and
diagnosing learner input is naturally defined in terms of analysing Prolog code.
Learners’ programs are debugged with the help of different LP techniques such
as the automatic derivation of mode specifications, dataflow and type analysis,
and heuristic code matching between expert and student code. Moreover, Looi
employs Shapiro’s algorithmic debugging techniques [6] in a standard way to
test student code with regard to termination, correctness and completeness. It is
interesting that Looi also mechanised the Oracle. Expert code that most likely
corresponds to given learner code is identified and executed to obtain Oracle
answers.Given the variety and quality of the expert code, Looi’s approach should
be able to track learners following multiple solution paths.

In [3], Kawai et al. also represent expert knowledge as a set of Prolog clauses;
Shapiro’s Model Inference System (MIS) [6], following an inductive logic pro-
gramming approach, is used to synthesize learners’ (potentially erroneous) pro-
cedure from expert knowledge and student answers. Once the procedure to
fully capture learner behaviour is constructed, Shapiro’s Program Diagnosis Sys-
tem, based upon standard algorithmic debugging, is used to identify students’
misconceptions, i.e., the bugs in the MIS-constructed program. The inductive

282

approach helps addressing the issue that learners may follow one of many possi-
ble solution paths, given that the expert knowledge used for synthesis is carefully
designed.

Both Kawai et al. and Looi’s work use algorithmic debugging in the traditional
sense, thus requiring an erroneous procedure. By turning Shapiro’s algorithm on
its head, we are able to identify simple and common learner errors by only using
expert models. For the diagnosis of more complex error patterns, our approach
naturally admits the use of additional, buggy, models. Our taking into account
of multiple models adds to the robustness and the quality of the diagnosis, esp.
given our well-defined criteria for differentiating between models.

Model Tracing Tutors. Most intelligent tutoring systems are based on production
rule systems [2]. Here, declarative knowledge is encoded as working memory ele-
ments (WMEs) of the production system, and procedural knowledge is encoded
as IF-THEN rules. Model tracing allows the recognition of learner behaviour:
whenever the learner performs an action, the rule engine tries to find a sequence
of rules that can reproduce the learner’s action – and update the working memory
correspondingly. With the successor state identified, the system can then provide
adaptive feedback. Model tracing tutors, however, have two major drawbacks;
high authoring costs, and the need to keep learners close to the correct solution
path to tame the combinatorial explosion in the forward-reasoning rule engine.

We focus on the authoring cost.Asproduction rule systemsare forward-chaining,
goal-directnessmustbe inducedbypreconditions that checkwhethergoal-encoding
WMEs hold, or postconditions that maintain goal stacks or perform sub-goaling.
Moreover, as conditions are framed in terms of WMEs, there is little if any ab-
straction. The programmer thus has the tedious burden to give a correct and com-
plete specification of a rule’s pre- and postconditions, glueing-together declarative
and procedural knowledge. This makes rules verbose, and hence less readable and
maintainable.When each expert rule is associatedwith buggy variants, a cognitive
model ofmulti-column subtraction can grow quickly to more than fifty rules. Their
authoring becomes increasingly complicated, costly, and a process prone to error.
It is thus not surprising that there is no tutoring system based on production rules
that supports more than a single algorithm for solving a given task. This is in line
withO’Shea et al,whoargues thatmodel tracing systemshavehadonly limited suc-
cess in modelling arithmetic skills. They only “build single-level representations,
with no support for modelling multiple algorithms” [5, p. 265].

5 Conclusion

In our previous work, we presented a variant of algorithmic debugging that
compares learner action against a single expert model. We have extended our
approach to multiple models. Our refined method now continues past the first
and any subsequent irreducible disagreements until the entire execution tree of
a Prolog program has been traversed. In the process, agreements and disagree-
ments are being counted, and the code size being agreed upon taken into account.

283

These numbers are used to identify, among all available models, the algorithm
the learner is most likely following. For the domain of multi-column subtrac-
tion, we have illustrated the effectiveness of our approach. Perfect learners get
correct diagnoses at any stage of their problem solving process. Our approach
is also robust for erroneous problem solving. For this, we have distinguished
three cases. For problematic cases, where the lack of a central skill prevents any
discrimination between given expert models, our multi-model analysis yields,
nevertheless, a consistent set of irreducible disagreements that clearly indicates
the missing, central skill in question. We have also illustrated the effectiveness
of our method for standard cases where the central skills are observable, but
other errors are made. For complex error pattern, where learners exhibit central
skills, but perform them in a seemingly untimely or chaotic manner, our method
is equally applicable. By complementing expert models with buggy models, and
by subsequently analysing learner input in the context of both expert and buggy
models, we yield diagnoses of high accuracy. Our extension has three benefits.
First, the tutoring system can be less prescriptive as learners can now follow one
of many predefined algorithms to tackle a given problem. Second, the quality
of the diagnosis improves despite of the wider range of input that is taken into
account. Third, the improvement comes with little computational costs.

References

1. Beller, S., Hoppe, U.: Deductive error reconstruction and classification in a logic
programming framework. In: Brna, P., Ohlsson, S., Pain, H. (eds.) Proc. of the
World Conference on Artificial Intelligence in Education, pp. 433–440 (1993)

2. Corbett, A.T., Anderson, J.R.: Knowledge tracing: Modeling the acquisition of
proc. knowledge. User Modeling and User-Adapted Interaction 4, 253–278 (1995)

3. Kawai, K., Mizoguchi, R., Kakusho, O., Toyoda, J.: A framework for ICAI systems
based on inductive inference and logic programming. New Generation Computing 5,
115–129 (1987)

4. Looi, C.-K.: Automatic debugging of Prolog programs in a Prolog Intelligent Tu-
toring System. Instructional Science 20, 215–263 (1991)

5. O’Shea, T., Evertsz, R., Hennessy, S., Floyd, A., Fox, M., Elson-Cook, M.: Design
choices for an intelligent arithmetic tutor. In: Self, J. (ed.) Artificial Intelligence and
Human Learning: Intelligent Computer-Aided Instruction, pp. 257–275. Chapman
and Hall Computing (1988)

6. Shapiro, E.Y.: Algorithmic Program Debugging. ACM Distinguished Dissertations.
MIT Press (1983); Thesis (Ph.D.) – Yale University (1982)

7. VanLehn, K.: Mind Bugs: the origins of proc. misconceptions. MIT Press (1990)
8. Young, R.M., O’Shea, T.: Errors in children’s subtraction. Cognitive Science 5(2),

153–177 (1981)
9. Zinn, C.: Algorithmic debugging to support cognitive diagnosis in tutoring systems.

In: Bach, J., Edelkamp, S. (eds.) KI 2011. LNCS, vol. 7006, pp. 357–368. Springer,
Heidelberg (2011)

10. Zinn, C.: Program analysis and manipulation to reproduce learner’s erroneous rea-
soning. In: Albert, E. (ed.) LOPSTR 2012. LNCS, vol. 7844, pp. 228–243. Springer,
Heidelberg (2013)

	Text1: Zuerst ersch. in : KI 2013: Advances in Artificial Intelligence : 36th Annual German Conference on AI, Koblenz, Germany, September 16-20, 2013 ; Proceedings / edited by Ingo J. Timm, Matthias Thimm. - Berlin : Springer, 2013. - S. 272-283. - (Lecture notes in computer science ; 8077). - ISBN 978-364-24094-2-4http://dx.doi.org/10.1007/978-3-642-40942-4_24
	Text2: Konstanzer Online-Publikations-System (KOPS)URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-245687

