
Proof Theory, Semantics and Algebra for
Normative Systems

Xin Sun

Individual and Collective Reasoning Group, University of Luxembourg
xin.sun@uni.lu

Abstract. This paper reports a correspondence between input/output
logic and the theory of joining-system, an algebraic approach to nor-
mative system. The results have the form: every norm (a, x) is logically
derivable from a set of norms G if and only if it is in the space of norms
algebraically generated by G. We present three versions of correspon-
dence: input/output logic and Boolean joining-system, intuitionistic in-
put/output logic and Heyting joining-system, quasi input/output logic
and quasi joining-system. The algebraic approach offers a holistic per-
spective on normative systems. We use isomorphism and embedding of
joining-system to discuss the similarity of normative systems.

Key words: normative system, input/output logic, joining-system, deontic logic

1 Introduction

In their influential book Normative Systems [1], Alchourrón and Bulygin conceive
a normative system as a deductive mechanism, like a black box which produces
normative statements as output, when we feed it descriptive statements as input.
To this tradition also belong various input/output logics [10–12, 18, 20] and the
theory of joining-system [8, 9].

Although sharing the same ancestor, input/output logic and joining-system
have evolved quite separately, and look very different at first sight. Input/output
logic has proof systems and semantics, while joining-system uses algebra as a tool
to model normative systems without referring to proof systems or semantics. In
this paper, we show that the two accounts essentially give the same results,
and can be seen as “two sides of one and the same coin.” The results illustrate
that proof theory, semantics and algebra, as three tools to model normative
systems, provide different perspectives on the investigation of normative systems.
For example, the algebraic approach gives rise to holistic results to normative
systems in the sense that we can use algebraic concepts such as embedding and
isomorphism to compare the structural similarity of different normative systems.
It is the different features of these three tools that motivate us to use all of them.

The layout of this paper is as follows. In Section 2 we give a brief introduction
to input/output logic and joining-system. Then, from Section 3 to 5 we present

correspondence results between input/output logic and joining-system. Section
6 is the section for applications of joining-system. We use examples to illustrate
the holistic views we gain by the algebraic representation of normative systems.
In Section 7 we present some issues for future research and summarize this paper.
For the sake of readability, all proofs are listed in the appendix.

2 Background

2.1 Input/output logic

In a series of papers [11–13], Makinson and van der Torre develop a class of
deontic logic called input/output logic. A gentle and comprehensive introduction
can be found in Makinson and van der Torre [14] and Parent and van der Torre
[19] respectively. In general, the matured version of input/output logic is the
constrained version [12]. For simplicity’s sake, the latter is put aside, and only
unconstrained input/output logics are considered in this paper.

Let P = {p0, p1, . . .} be a countable set of propositional letters and LP be
the propositional language built upon P together with logical constants > and
⊥. Let G be a set of ordered pairs of formulas of LP . A pair (a, x) ∈ G, call
it a norm, is read as “given a, it ought to be x”. A normative system is a set
of norms. G is viewed as a function from 2LP to 2LP such that for a set A of
formulas, G(A) = {x : (a, x) ∈ G for some a ∈ A}.

Makison and van der Torre define out1 to out4 as following:

– out1(G,A) = Cn(G(Cn(A)))
– out2(G,A) =

⋂
{Cn(G(V)) : A ⊆ V, V is complete}

– out3(G,A) =
⋂
{Cn(G(B)) : A ∪G(B) ⊆ B = Cn(B)}

– out4(G,A) =
⋂
{Cn(G(V)) : A ∪G(V) ⊆ V, V is complete}

Here Cn is the classical consequence operator of propositional logic, and a com-
plete set is a set of formulas that is either maxi-consistent or equal to LP .
out1(G,A) to out4(G,A) are called simple-minded output, basic output, simple-
minded reusable output and basic reusable output respectively.

The proof system of input/output logic is based on derivation of ordered pairs
of formulas. An ordered pair of formulas is derivable from a set G iff (a, x) is in
the least set that includes G and closed under a number of rules. The following
are the rules used in input/output logic:

– SI (strengthening the input): from (a, x) to (b, x) whenever b ` a
– WO (weakening the output): from (a, x) to (a, y) whenever x ` y
– AND (conjunction of output): from (a, x),(a, y) to (a, x ∧ y)
– OR (disjunction of input): from (a, x),(b, x) to (a ∨ b, x)
– CT (cumulative transitivity): from (a, x), (a ∧ x, y) to (a, y)

The derivation system based on the rules SI, WO and AND is called deriv1.
Adding OR and CT to deriv1 gives deriv2 and deriv3 respectively. The five
rules together define deriv4. We use (a, x) ∈ derivi(G), or equivalently x ∈

derivi(G, a), to denote the norm (a, x) is derivable from G using rules of deriva-
tion system derivi. Moreover, for a set A of formulas, we use x ∈ derivi(G,A)
to denote the fact that there exist a1 . . . an ∈ A such that (a1 ∧ . . . ∧ an, x) ∈
derivi(G). In Makinson and van der Torre [11], the following completeness the-
orems are given:

Theorem 1 ([11]). Given an arbitrary normative system G and a set A of
formulas, for i ∈ {1, 2, 3, 4}

– x ∈ outi(G,A) iff x ∈ derivi(G,A)

2.2 Theory of joining-system

An algebraic framework for analyzing normative systems was introduced by Lars
Lindahl and Jan Odelstad [7, 16, 8, 9]. The most general form of the theory is
called theory of joining-system [9]. A joining-system is a triple (B1, B2, S) where
B1, B2 are two ordered algebraic structures and S a relation between B1 and
B2 satisfying some conditions. In Lindahl and Odelstad’s work, the algebraic
structure is usually a Boolean quasi-ordering. In this section we discuss Boolean
algebra and move to Heyting algebra and Boolean quasi-ordering in Section 4
and 5 respectively.

Definition 1 (Boolean algebra). A structure A = (A,+, ·,−, 0, 1) is a Boolean
algebra iff it satisfies the following identities:

1. x+ y = y + x, x · y = y · x
2. x+ (y + z) = (x+ y) + z, x · (y · z) = (x · y) · z
3. x+ 0 = x, x · 1 = x
4. x+ (−x) = 1, x · (−x) = 0
5. x+ (y · z) = (x+ y) · (x+ z), x · (y + z) = (x · y) + (x · z)

The elements of a Boolean algebra are ordered as a ≤ b iff a · b = a. It can
be proved that ≤ is reflexive, transitive, and anti-symmetric, therefore ≤ is a
partial order.

Given two Boolean algebras A = (A,+A, ·A,−A, 0A, 1A) and B = (B,+B , ·B ,
−B , 0B , 1B)1 with ordering ≤A and ≤B respectively. For two ordered pairs (a, x),
(b, y) ∈ A × B, we define (a, x) � (b, y) iff b ≤A a and x ≤B y. We say (a, x) is
narrower than (b, y) if (a, x) � (b, y).2

Lindahl and Odelstad use their narrowness relation to define joining-system
to algebraically represent normative systems. To build the correspondence be-
tween input/output logic and joining-system, we introduce joining-system which
are variants of Lindahl and Odelstad’s.

1 For the sake of simplicity, in the rest of this paper a Boolean algebra A always has
the structure (A,+A, ·A,−A, 0A, 1A), and similarly for a Boolean algebra B.

2 Such a narrowness relation is the same as the subinterval relation of Odelstad and
Boman [15].

We define those variants based on Boolean algebra. Resembling the names
of input/output logic, we call those variants of joining-system: simple-minded,
basic, simple-minded reusable and basic reusable respectively. The basic Boolean
joining-system is the one most similar to Lindahl and Odelstad’s. The other
three variants are introduced in the next section.

Definition 2 (Basic Boolean joining-system). A basic Boolean joining-
system is a structure S = (A,B, S) such that A and B are Boolean algebras
and S ⊆ A×B satisfies the following conditions:

1. If (a, x) ∈ S and (a, x) � (b, y), then (b, y) ∈ S.
2. For all finite X ⊆ B, if for all x ∈ X,(a, x) ∈ S, then (a, y) ∈ S for all

y ∈ glb(X).3.
3. For all finite X ⊆ A, if for all x ∈ X, (x, b) ∈ S, then (y, b) ∈ S for all

y ∈ lub(X).4.

If S = (A,B, S) is a basic Boolean joining-system, then we call S a basic Boolean
joining space. We equivalently replace condition 2 and 3 by the following respec-
tively, and use them in later proofs:

2′ If (a, x) ∈ S and (a, y) ∈ S, then (a, x ·B y) ∈ S
3′ If (a, x) ∈ S and (b, x) ∈ S, then (a+A b, x) ∈ S

Moreover, we can equivalently define basic Boolean joining space using the
standard algebraic terminology of ideal and filter:

Definition 3 (Ideal). Let A be a Boolean algebra and I a subset of A. For I to
be an ideal of A, it is necessary and sufficient that the following three conditions
be satisfied:

1. 0A ∈ I
2. for all x, y ∈ I, x+A y ∈ I
3. for all x ∈ I and y ∈ A, if y ≤A x then y ∈ I

Definition 4 (Filter). Let A be a Boolean algebra and F a subset of A. For F
to be a filter of A, it is necessary and sufficient that the following three conditions
are satisfied:

1. 1A ∈ F
2. for all x, y ∈ F , x ·A y ∈ F
3. for all x ∈ F and y ∈ A, if x ≤A y then y ∈ F

Let F↑(X) be the filter generated by X and I↓(X) be the ideal generated by
X. Then we have the following proposition defining joining space by ideal and
filter:

3 Here glb is the abbreviation of greatest lower bound. Formally, glb(X) = {b : ∀x ∈
X, b ≤ x and ∀a, if ∀x ∈ X, a ≤ x, then a ≤ b}

4 lub is the abbreviation of least upper bound. Formally, lub(X) = {a : ∀x ∈ X,x ≤ a
and ∀b, if ∀x ∈ X, x ≤ b, then a ≤ b}

Proposition 1. Given a structure S = (A,B, S), where A,B are Boolean alge-
bras and S ⊆ A × B, S is a basic Boolean joining space in S if and only if it
satisfies the following conditions:

1. For every finite set X ⊆ B and every a ∈ A, if for every x ∈ X, (a, x) ∈ S,
then for every y ∈ F↑(X), (a, y) ∈ S.

2. For every finite set X ⊆ A and every a ∈ A, if for every x ∈ X, (x, b) ∈ S,
then for every y ∈ I↓(X), (y, b) ∈ S.

Up to now, we have defined basic Boolean joining-system and joining space.
But does a basic Boolean joining space always exist? The answer is positive.
As the following proposition shows, the largest and the smallest basic Boolean
joining space always exists.

Proposition 2. Given two Boolean algebras A,B,

1. (A,B, A×B) is a basic Boolean joining-system.
2. If for all i ∈ I, (A,B, Si) is a basic Boolean joining-system, then (A,B,∩i∈ISi)

is a basic Boolean joining-system.

3 Input/output logic and joining-system

3.1 Basic input/output logic and joining-system

In this subsection, we prove that for a set of norms G, a norm (a, x) is derivable
from G in basic input/output logic, if and only if it is in the basic Boolean
joining space generated by G. To show this, we introduce a special Boolean
algebra named Lindenbaum-Tarski algebra.

Let ≡ be the provable equivalence relation on LP , i.e. for every formula
φ, ψ ∈ LP , φ ≡ ψ iff ` φ ↔ ψ. Let L≡P be the set of equivalence classes that
≡ induces on LP . For any formula φ ∈ LP , let [φ] denote the equivalence class
containing φ.

Definition 5 (Lindenbaum-Tarski algebra). The Lindenbaum-Tarski alge-
bra for propositional logic LP is a structure L = (L≡P ,+, ·,−, 0, 1) where [φ] +
[ψ] = [φ ∨ ψ], [φ] · [ψ] = [φ ∧ ψ], −[φ] = [¬φ], 0 = [⊥] and 1 = [>].

For more details of Lindenbaum-Tarski algebra, readers are suggested to con-
sult Chapter 5 of Blackburn [4]. Every Lindenbaum-Tarski algebra is a Boolean
algebra.

Let G be a set of norms. Let G≡ = {([a], [x])|(a, x) ∈ G}. Let S = (L,L, S)
be a basic Boolean joining-system such that G≡ ⊆ S. By Proposition 2 we
know such basic Boolean joining-system always exist. Moreover, there must be a
smallest basic Boolean joining space G2 such that G≡ ⊆ G2 and for every basic
Boolean joining space S that extends G≡, G2 ⊆ S. Here we use the notation G2

for the resemblance of basic input/output logic. Such G2 is the basic Boolean
joining space generated by G≡. The following proposition shows how we can
construct G2.

Proposition 3. Let G′2 be constructed as follows.5

– G0
2 = G≡

– Gi+1
2 contains all ([a], [x]) for which:

1. for some ([b], [y]) ∈ Gi
2, ([b], [y]) � ([a], [x])

2. there exist ([a], [y]), ([a], [z]) ∈ Gi
2 such that [x] = [y] · [z]

3. there exist ([b], [x]), ([c], [x]) ∈ Gi
2 such that [a] = [b] + [c]

Let G′2 =
⋃∞

i=0G
i
2, then G′2 = G2.

With proposition 3 in hand, we now prove a correspondence result. Intu-
itively, this result states that every norm (a, x) is logically derivable from a set
of norms G if and only if it is in the space of norms algebraically generated by
G.

Theorem 2. The following three propositions are equivalent:

1. (a, x) ∈ deriv2(G).
2. ([a], [x]) ∈ G2.
3. x ∈ out2(G, a).

3.2 Input/output logics and joining-system

The previous subsection proves a correspondence between basic input/output
logic and basic Boolean joining-system. We now prove a correspondence between
other input/output logics and other Boolean joining-systems.

Definition 6 (Boolean joining-system). Given a structure S = (A,B, S)
where A,B are Boolean algebras. Given the following conditions:

1. If (a, x) ∈ S and (a, x) � (b, y), then (b, y) ∈ S.
2. If (a, x) ∈ S and (a, y) ∈ S, then (a, x ·B y) ∈ S.
3. If (a, x) ∈ S and (b, x) ∈ S, then (a+A b, x) ∈ S.
4. if (a, x) ∈ S and (a ·A x, y) ∈ S, then (a, y) ∈ S.

– If S satisfies (1) and (2), then S is a simple-minded Boolean joining-system.
S is a simple-minded Boolean joining space of S.

– If S satisfies (1), (2) and (3), then S is a basic Boolean joining-system. S is
a basic Boolean joining space of S.

– If S satisfies (1), (2) and (4), then S is a simple-minded reusable Boolean
joining-system. S is a simple-minded reusable Boolean joining space of S.

– If S satisfies (1), (2), (3) and (4), then S is a basic reusable Boolean joining-
system. S is a basic reusable Boolean joining space of S.

Similar to Proposition 2, we prove the existence of the largest and the smallest
simple-minded/basic/simple-minded reusable/basic reusable joining space.

5 The author thanks a reviewer of Journal of Logic and Computation for his/her
contribution to this proposition.

Proposition 4. Given two Boolean algebras A,B,

1. (A,B, A×B) is a simple-minded/basic/simple-minded reusable/basic reusable
Boolean joining-system.

2. If for all i ∈ I, (A,B, Si) is a simple-minded Boolean joining-system, then
(A,B,∩i∈ISi) is a simple-minded Boolean joining-system. And similarly for
basic/simple-minded reusable/basic reusable joining space.

Let G be a set of ordered pairs of formulas of Lp. Let G1 to G4 be respec-
tively the smallest simple-minded/ basic/simple-minded reusable/basic reusable
joining space that extends G≡. We have the the following correspondence result:

Theorem 3. For i ∈ {1, 2, 3, 4}, The following three propositions are equivalent:

1. (a, x) ∈ derivi(G).
2. ([a], [x]) ∈ Gi.
3. x ∈ outi(G, a).

4 Intuitionistic input/output logic and joining systems

A frequent belief about input/output logic is that it presupposes classical propo-
sitional logic. Parent et al [18] show that this is a misunderstanding by building
input/output logic on top of intuitionistic logic. In this section, we show that
there is an algebraic companion for intuitionistic input/output logic, the Heyt-
ing joining-system. To do this we first introduce intuitionistic input/output logic
and Heyting joining-system, then construct the correspondence.

4.1 Intuitionistic input/output logic

Intuitionistic logic [27] is different from classical logic by omitting the principle of
excluded middle and the reductio ad absurdum rule. Intuitionistic input/output
logic is based on intuitionistic propositional logic (IPL), the propositional frag-
ment of intuitionistic logic.

Given a set of propositional letters P , the language of intuitionistic proposi-
tional logic LI is defined as follows:

a, b ::= ⊥ | p | a ∧ b | a ∨ b | a→ b

Here p ∈ P and we use ¬a as an abbreviation of a→ ⊥.
A proof system of intuitionistic propositional logic is defined via the following

Gentzen sequent calculus [18]:

– Group 1: Let A,B be finite set of formulas
• (Ref) If a ∈ A, then A `I a
• (Mon) A`Ia

A∪B`Ia
• (Cut) A`Ia A∪{a}`Ib

A`Ib
The labels (Ref) and (Mon) are mnemonic for “reflexivity” and “monotony”
respectively.

– Group 2:
• A`Ia A`Ib

A`Ia∧b (∧:I)

• A`Ia∧b
A`Ia (∧:E)

• A`Ia
A`Ia∨b (∨:I)

• A∪{a}`Ic A∪{b}`Ic A`Ia∨b
A`Ic (∨:E)

• A∪{a}`Ib
A`Ia→b (→:I)

• A`Ia A`Ia→b
A`Ib (→:E)

• A`I⊥
A`Ia (⊥:E)

If ∅ `I a then we say a is provable in IPL. If A is infinite, then we let A `I a iff
A′ `I a for some finite A′ ⊆ A.

Let G be a set of ordered pairs of formulas of LI . For a set of formulas
A ⊆ LI , let CnI(A) = {a ∈ LI | A `I a}. To define intuitionistic input/output
logic the concept of saturated set is needed.

Definition 7 (Saturated set [25]). A set A ⊆ LI is said to be saturated if
the following three conditions hold:

1. A 0I ⊥
2. if a ∨ b ∈ A then a ∈ A or b ∈ A
3. if A `I a then a ∈ A

Parent et al [18] define input/output logic based on intuitionistic logic as
follows:

– outI1(G,A) = CnI(G(CnI(A)))
– outI2(G,A) =

⋂
{CnI(G(B)) | A ⊆ B,B is saturated or B = LI}

– outI3(G,A) =
⋂
{CnI(G(B)) | A ∪G(B) ⊆ B = CnI(B)}

– outI4(G,A) =
⋂
{CnI(G(B)) | A ∪G(B) ⊆ B,B is saturated or B = LI}

The proof system of intuitionistic input/output logics are similar to its propo-
sitional counterpart. Parent et al [18] use AND, OR, CT and the intuitionistic
version of SI and WO:

– SII (intuitionistic strengthening the input): from (a, x) to (b, x) whenever
b `I a

– WOI (intuitionistic weakening the output): from (a, x) to (a, y) whenever
x `I y

The derivation system based on the rules SII , WOI and AND is called derivI1 .
Adding OR and CT to derivI1 gives derivI2 and derivI3 respectively. The five rules
together define derivI4 . In Parent et al [18], the following completeness theorems
are given:

Theorem 4 ([18]). Given an arbitrary normative system G and a set A of
formulas,

– For i ∈ {1, 2, 3}, x ∈ outIi (G,A) iff x ∈ derivIi (G,A).
– If x ∈ derivI4(G,A), then x ∈ outI4(G,A).6

6 It is an open problem whether the other direction of the implication holds.

4.2 Heyting joining-system

Definition 8. A Heyting algebra is a partially ordered set (H, 0, 1 ≤, ·,+,→)
with a smallest elements 0, a largest element 1 and three operations ·, + and →
satisfying the following conditions, for all x, y, z ∈ H

1. x ≤ 1

2. x · y ≤ x
3. x · y ≤ y
4. z ≤ x and z ≤ y implies z ≤ x · y
5. 0 ≤ x
6. x ≤ x+ y

7. y ≤ x+ y

8. x ≤ z and y ≤ z implies x+ y ≤ z
9. z ≤ (x→ y) iff z · x ≤ y

A valuation from IPL to a Heyting algebra is a function V : P → H. We
extend V to arbitrary formulas by putting:

V (⊥) = 0

V (>) = 1

V (a ∧ b) = V (a) · V (b)

V (a ∨ b) = V (a) + V (b)

V (a→ b) = V (a)→ V (b)

A formula a is said to be H-valid if V (a) = 1 for all valuations V .

Theorem 5 ([26]). A formula a is provable in IPL iff a is H-valid.

Heyting joining-systems are defined in a similar way to Boolean joining-
systems.

Definition 9 (Heyting joining-system). A Heyting joining-system is a struc-
ture S = (A,B, S) such that A = (A, 0A, 1A ≤A, ·A,+A,→A), B = (B, 0B , 1B ,
≤B , ·B ,+B ,→B) are Heyting algebras and S ⊆ A×B satisfies certain conditions:

1. If (a, x) ∈ S and (a, x) � (b, y), then (b, y) ∈ S.

2. If (a, x) ∈ S and (a, y) ∈ S, then (a, x ·B y) ∈ S.

3. If (a, x) ∈ S and (b, x) ∈ S, then (a+A b, x) ∈ S.

4. if (a, x) ∈ S and (a ·A x, y) ∈ S, then (a, y) ∈ S.

The Heyting joining-system satisfies 1 and 2 is called simple-minded. Adding 3
and 4 produces basic and simple-minded reusable Heyting joining-system respec-
tively. The four condition together give rise to basic reusable Heyting joining-
system.

4.3 Correspondence

Let ≡I be the provable equivalence relation on LI , i.e. for every formula φ, ψ ∈
LI , φ ≡I ψ iff `I φ↔ ψ. Let L≡I

I be the equivalence classes that ≡I induces on
LI . For any formula φ ∈ LI , let [φ]I denote the equivalence class containing φ.

Definition 10 (Intuitionistic Lindenbaum-Tarski algebra). The intuition-
istic Lindenbaum-Tarski algebra for LI is a structure (L≡I

I , 0, 1,≤,+, ·,→) where
0 = [⊥]I , 1 = [>]I , [φ]I ≤ [ψ]I iff [φ]I · [ψ]I = [φ]I , [φ]I + [ψ]I = [φ ∨ ψ]I ,
[φ]I · [ψ]I = [φ ∧ ψ]I , [φ]I → [ψ]I = [φ→ ψ]I .

It can be verified that an intuitionistic Lindenbaum-Tarski algebra is a Heyt-
ing algebra. Let G be a set of ordered pairs of formulas of LI . Let G≡I =
{([a]I , [x]I)|(a, x) ∈ G}, and GI

1 to GI
4 be the simple-minded/basic/simple-

minded reusable/basic reusable Heyting joining-system generated by G≡I re-
spectively. Then we have the following correspondence result between intuition-
istic input/output logics and Heyting joining-system:

Theorem 6. For i ∈ {1, 2, 3}, the following three statements are equivalent:

1. (a, x) ∈ derivIi (G)
2. ([a], [x]) ∈ GI

i

3. x ∈ outIi (G, a)

5 Quasi input/output logic and Boolean quasi-ordering

The algebraic structure Lindahl and Odelstad [7] use for their theory of joining-
system are Boolean quasi-ordering. The logical companion of Boolean quasi-
ordering has not been developed yet. In this section, we fill this gap by building
quasi input/output logic.

5.1 Boolean quasi-ordering

Definition 11 (Boolean quasi-ordering [9]). A Boolean quasi-ordering is
a structure (B,⊥,>,∧,∨,′ , R) such that (B,⊥,>,∧,∨,′) is a Boolean algebra,
and R ⊆ B×B is a binary, reflexive and transitive relation on B which satisfies
the following conditions for all a, b and c in B:

– aRb and aRc implies aR(b ∧ c)
– aRb implies b′Ra′

– (a ∧ b)Ra
– not >R⊥

A reflexive and transitive relation is called a quasi-ordering in Lindahl and Odel-
stad [7]. Various joining-system based on Boolean quasi-ordering are defined as
follows:

Definition 12 (Quasi joining-system). A quasi joining-system is a structure
S = (A,B, S) such that A = (A,⊥A,>A,∧A,∨A,′A , RA), B = (B,⊥B ,>B ,∧B ,
∨B ,′B , RB) are Boolean quasi-orderings and S ⊆ A × B satisfies certain condi-
tions:

1. If (a, x) ∈ S and bRAa and xRBy, then (b, y) ∈ S.
2. If (a, x) ∈ S and (a, y) ∈ S, then (a, x ∧B y) ∈ S
3. If (a, x) ∈ S and (b, x) ∈ S, then (a ∨ bA, x) ∈ S
4. if (a, x) ∈ S and (a ∧A x, y) ∈ S, then (a, y) ∈ S.

The quasi joining-system satisfies 1 and 2 is called simple-minded. Adding 3 and
4 produces basic and simple-minded reusable quasi joining-system respectively.
The four conditions together give basic reusable quasi joining-system.

5.2 Quasi input/output logic

Given a set P of propositional letters, LQ is the propositional language based
on P . Let p ∈ P ,

a, b := > | p | ¬a | a ∧ b | a ∨ b
Analog to Boolean quasi-ordering, we define a quasi entailment `q⊆ LQ×LQ

to be a reflexive and transitive relation satisfying the following:

– a `q b and a `q c implies a `q b ∧ c
– a `q b implies ¬b `q ¬a
– a ∧ b `q a
– a ∧ b `q b
– > 0q ⊥

We further lift `q to `Q⊆ 2LQ × LQ such that A `Q b iff there exist
a1, . . . , an ∈ A such that a1 ∧ . . . ∧ an `q b. For a set of formulas A ⊆ LQ,
we let CnQ(A) = {a ∈ LQ | A `Q a}.

The following proposition shows that `Q is reflexive, transitive, monotonic
and closed under conjunction.

Proposition 5. Every quasi entailment `Q has the following properties:

1. A `Q a for every a ∈ A.
2. If A `Q a and {a} `Q b, then A `Q b.
3. If A `Q a then A ∪B `Q a.
4. If A `Q a and A `Q b, then A `Q a ∧ b.

Given a quasi entailment `Q, we define quasi input/output logic outQ1 to

outQ4 as following:

– outQ1 (G,A) = CnQ(G(CnQ(A)))

– outQ2 (G,A) =
⋂
{CnQ(G(B)) : A ⊆ B = CnQ(B), B is disjunctive}

– outQ3 (G,A) =
⋂
{CnQ(G(B)) : A ∪G(B) ⊆ B = CnQ(B)}

– outQ4 (G,A) =
⋂
{CQn(G(B)) : A ∪G(B) ⊆ B = CnQ(B), B is disjunctive}

Here a set of formulas B is disjunctive if a ∨ b ∈ B implies either a ∈ B or
b ∈ B. outQ1 (G,A) to outQ4 (G,A) are called simple-minded quasi output, basic
quasi output, simple-minded reusable quasi output and basic reusable quasi output
respectively.

The proof system of quasi input/output logics is similar to its propositional
and intuitionistic counterpart. We use AND, OR, CT and the quasi version of
SI and WO:

– SIQ (quasi strengthening the input): from (a, x) to (b, x) whenever b `Q a
– WOQ (quasi weakening the output): from (a, x) to (a, y) whenever x `Q y

The derivation system based on the rules SIQ, WOQ and AND is called derivQ1 .

Adding OR and CT to derivQ1 gives derivQ2 and derivQ3 respectively. The five

rules together defines derivQ4 .

Now we turn to the completeness theorem. We prove the case for outQ1 and

outQ3 . outQ2 and outQ4 are harder to handle. Especially for outQ4 , the fixed point

theoretic technique used for outQ3 cannot be applied to outQ4 in a straightforward
way. We therefore leave them for future work.

Theorem 7. Given an arbitrary normative system G,

(a, x) ∈ derivQ1 (G) iff x ∈ outQ1 (G, a)

For the case of outQ3 , we use a fixed point theoretic technique. Such technique
is versatile to build reusable input/output logics [22]. We define a function fGA :
2LQ → 2LQ such that fGA (X) = CnQ(A ∪ G(X)). It can be proved that fGA
is monotonic with respect to the set theoretical ⊆ relation, and (2LQ ,⊆) is a
complete lattice. Then by Tarski’s fixed point theorem [24] there exist a least
fixed point of fGA . Here a least fixed point of fGA is a set X ⊆ LQ such that
fGA (X) = X and for all Y ⊆ LQ, if fGA (Y) = Y then X ⊆ Y . Let BG

A be the
least fixed point of the function fGA . The following lemma shows how the least
fixed point can be constructed.

Lemma 1. BG
A =

⋃∞
i=0B

G
A,i, where BG

A,0 = CnQ(A), BG
A,i+1 = CnQ(A∪G(BG

A,i)).

When the set A = {a} is a singleton, we use BG
a as an abbreviation of BG

{a}.

The semantics of outQ3 can equivalently be defined by the least fixed point of
fGA .

Theorem 8. Given an arbitrary normative system G,

x ∈ CnQ(G(BG
a)) iff x ∈ outQ3 (G, a)

Theorem 9 (Soundness). If (a, x) ∈ derivQ3 (G) then x ∈ CnQ(G(BG
a))

Theorem 10 (Completeness). If x ∈ CnQ(G(BG
a)), then (a, x) ∈ derivQ3 (G).

5.3 Correspondence

Let ≡Q be the provable equivalence relation on `Q, i.e. for every formula φ, ψ ∈
LQ, φ ≡Q ψ iff `Q φ↔ ψ. Let L≡Q

Q be the equivalence classes that ≡Q induces

on LQ. For any formula φ ∈ LQ, let [φ]Q denote the equivalence class containing
φ.

Definition 13 (Quasi Lindenbaum-Tarski algebra). The quasi Lindenbaum-
Tarski algebra for a quasi logic LQ is a structure (L≡Q

Q , 0, 1,+, ·,−,≤) where

0 = [⊥]Q, 1 = [>]Q, [a]Q + [b]Q = [a ∨ b]Q, [a]Q · [b]Q = [a ∧ b]Q, −[a] = [−a]Q,
[a]Q ≤ [b]Q iff a `Q b.

It can be verified that quasi Lindenbaum-Tarski algebra is a Boolean quasi-
ordering. Let G≡Q = {([a]Q, [x]Q)|(a, x) ∈ G}, GQ

1 and GQ
3 be the simple-

minded/simple-minded reusable quasi joining-system generated by G≡Q respec-
tively. Then we have the following correspondence between quasi input/output
logics and quasi joining-system:

Theorem 11. The following three propositions are equivalent: for i ∈ {1, 3}

1 (a, x) ∈ derivQi (G)

2 ([a], [x]) ∈ GQ
i

3 x ∈ outQi (G, a)

6 Holistic perspectives on normative systems

In this section, we discuss some insights obtained from the algebraic approach
to normative systems. As stated in the Section 1. The algebraic framework gives
us a holistic view on normative systems.

One feature of the input/output framework is that it adopts operational
rather than possible world semantics. There is no exterior structure in such
operational semantics. Therefore tools to compare the similarity of structures,
like bi-simulation and isomorphism, play no role in input/output logic. This
feature makes it difficult to analyze the similarity of normative systems using
input/output logic, although the equivalence of normative systems can be repre-
sented within the input/output framework [5]. Such limitation is an opportunity
for the algebraic framework because it is able to discuss the similarity of nor-
mative systems by extending isomorphism of an algebra to isomorphism of the
joining-system based on the algebra.

6.1 Similarity of normative systems

For two algebraic structures A and B, if they are isomorphic then they are
essentially the same. We can extend the isomorphism of Boolean algebra to
Boolean joining-system.

Definition 14 (Isomorphism of Boolean algebra). For two Boolean alge-
bras A = (A,+, ·,−, 0, 1) and A′ = (A′,+, ·,−, 0, 1) and h a map from A to A′.
We say that h is an isomorphism from A to A′ iff for any x, y ∈ A, h satisfies
the following conditions:

1. h is bijective

2. h(x+ y) = h(x) + h(y)

3. h(x · y) = h(x) · h(y)

4. h(1) = 1

Given an isoporphism h from A to A′, it is easy to check that for all x, y ∈ A
and x′, y′ ∈ A′, if h(x) = x′ and h(y) = y′, then x ≤ y iff x′ ≤ y′. Now we extend
isomorphism to Boolean joining-system.

Definition 15 (Isomorphism of joining-system). For two Boolean joining-
system S = (A,B, S) and S′ = (A′,B′, S′) and h a map from A∪B to A′∪B′. We
say that h is an isomorphism from S to S′ iff h satisfies the following conditions:

1. h is bijective

2. the restriction of h on A is an isomorphism from A to A′

3. the restriction of h on B is an isomorphism from B to B′

4. (a, x) ∈ S iff (h(a), h(x)) ∈ S′

If there exist an isomorphism form S to S′, then we say S and S′ are isomorphic.
Two isomorphic joining-system can naturally be understood as structurally the
same.

In political philosophy, research on totalitarianism [2, 3] views the ideology
of Nazi Germany and Soviet Union to be similar. Stalinism and Nazism are
described as “totalitarian twins”. Using the algebraic representation of normative
systems we can describe such similarity in a mathematical flavor.

Example 1. Let H be “you worship Hitler”, S be “you respect Stalin”, N be
“you are a member of the Nazi Party”, C be “you are a member of the commu-
nist party”, R be “you are against to the rich people”, J be “you hate Jews”.
Let B1 be the Boolean algebra generated by {H,N, J}, B2 be the Boolean
algebra generated by {S,C,R}. Let N1 = {(>, H), (N, J)} be the normative
system saying “you are obligatory to worship Hitler” and “you are obligatory to
hate Jews, given the condition that you are a member of the Nazi Party”. Let
N2 = {(>, S), (C,R)} be the normative system saying “you are obligatory to
respect Stalin” and “you are obligatory to be against to the rich people, given
the condition that you are a member of the communist party”. For the joining-
system (B1, B1, N1) generated by N1 and (B2, B2, N2) generated by N2, we can
build an isomorphism h such that h(H) = S, h(N) = C, h(J) = R. We therefore
conclude that N1 and N2 are similar.

Not only isomorphism can be used as an algebraic tool to analyze the simi-
larity of normative systems, embedding is also a useful tool.

Definition 16 (Embedding of joining-system). For two joining-system S =
(A,B, S) and S′ = (A′, B′, S′) and h a map from A∪B to A′ ∪B′. We say that
h is an embedding from S to S′ iff h satisfies the following conditions:

1. h is injective
2. the restriction of h on A is an isomorphism from A to h(A)
3. the restriction of h on B is an isomorphism from B to h(B)
4. if (a, x) ∈ S then (h(a), h(x)) ∈ S′

In political philosophy, totalitarianism is generally viewed an extreme version
of authoritarianism [21]. That means a normative system of totalitarianism can
be considered as an extension of a normative system of authoritarianism. There-
fore mathematically there should be an embedding from the normative system
of authoritarianism to the normative system of totalitarianism. The following is
an illustration.

Example 2. Let B1, N1 be same as in the previous example. Let G be “you like
Gaddafi”, F be “you are a follower of Gaddafi”, A be “you dislike America”. Let
B3 be the Boolean algebra generated by {G,F,A}. Let N3 = {(>, G)} be the
normative system saying “you are obligatory to like Gaddafi”. For the joining-
system (B1, B1, N1) generated by N1 and (B3, B3, N3) generated by N3, we can
build an embedding h such that h(G) = H,h(F) = N,h(A) = J . We therefore
say that N1 is an extension of N3.

It must be confessed that our examples greatly simplify the complexity of
political philosophy to a degree that lots of valuable information is lost. However,
we still believe that the algebraic approach offers a useful mathematical tool for
political philosophy and ethics in the sense that more complex normative systems
can also be characterized by joining-system. For example, we may let a normative
system contains three subsystems: constitutive norms, obligatory norms and
permissive norms. Such a complex normative system can still be represented
by input/output logic [23], therefore we can develop more complicated joining-
system to algebraically characterize complex normative systems. Using more
complicated joining-system we can discuss the similarity of different ideology
without losing too much valuable information.

6.2 The core of a normative system

In section 2.2 the narrowness relation � is defined as (a, x) � (b, y) iff b ≤A a and
x ≤B y. We now further define the strict narrowness relation ≺ as (a, x) ≺ (b, y)
iff (a, x) � (b, y) and not (b, y) � (a, x). Intuitively, if (a, x) ≺ (b, y) then (a, x)
is logically stronger than (b, y) in the sense that if (a, x) is in a joining-system,
then (b, y) must also be in the joining-system, but not vice verse.

We now use such strict narrowness relation to define the core of a normative
system. A norm (a, x) is minimal in a joining-system S = (A,B, S) iff there is no
(b, y) ∈ S such that (b, y) ≺ (a, x). In Odelstad and Lindahl [17], such a minimal
norm is called a connection from A to B. As noticed by Odelstad and Lindahl

[17], the set of all minimal elements of a joining-system can be viewed as the core
of the system in the sense that the whole system is uniquely determined by its
minimal norms. Therefore we can logically deduce the whole system, if we know
the core of the system. For a joining-system S, let core(S) = {(a, x) ∈ S|(a, x) is
minimal in S} denote the set of all its minimal norms. The following are formal
statements about the properties of the core of finite joining-system.

Observation 1 For every joining-system S = (A,B, S), if S is finite then
core(S) 6= ∅.

Observation 2 For all joining-system S = (A,B, S), if S is finite, then for any
(a, x) ∈ S, there exists (b, y) ∈ core(S) such that (b, y) � (a, x).

Observation 3 For any joining-system S = (A,B, S) and S′ = (A,B, S′),if
both S and S′ are finite, then core(S) = core(S′) iff S = S′.

All the three observations work only for finite joining-system. Observation
1 states that the core always exist. Observation 3 states that the whole sys-
tem is determined by the core. Regarding observation 2, it states that for any
norms which is not in the core, there is a norm in the core which is stronger
and therefore able to generate it. Observation 2 partly answers the problem of
norms redundancy, which is raised by Boella et al [6] and addressed by van der
Torre [28]. According to observation 2, all norms which are not in the core are
redundant.

7 Conclusion and future work

The main contribution of this paper is the correspondence results between in-
put/output logic and joining-system. We present three versions of correspon-
dence: input/output logic and Boolean joining-system, intuitionistic input/output
logic and Heyting joining-system, quasi input/output logic and quasi joining-
system. Quasi input/output logic does not exist before this paper. We develop
it and prove the completeness theorem of simple-minded and simple-minded
reusable quasi input/output logic. We use a fixed point theoretical technique to
prove the completeness of simple-minded reusable quasi input/output logic.

The correspondence results illustrate that normative systems can be ana-
lyzed using three different tools: proof theory, semantics and algebra. Each tool
gives us some insight into normative systems. The algebraic tool offers a holis-
tic perspective on normative systems. We use isomorphism and embedding of
joining-system to discuss the similarity of normative systems.

There are a lot of future work to be done. A natural direction is to build basic
and basic reusable quasi input/output logic, and construct the correspondence
result. Another direction is to use more advanced logic and algebra, say Boolean
algebra with modal operators, to relate input/output logic and joining-system.

Acknowledgments

The author thanks Leendert van der Torre, Xavier Parent, three anonymous
reviewers of the LORI committee, two reviewers of the Journal of Logic and
Computation for their valuable suggestions and comments.

References

1. Carlos E. Alchourron and Eugenio Bulygin. Normative Systems. Springer-Verlag,
Wien New York, 1971.

2. Hannah Arendt. The Origins of Totalitarianism. The World Publishing Company,
Cleveland and New York, 1958.

3. John A. Armstrong. The Politics of Totalitarianism. Random House, New York,
1961.

4. Patric Blackburn, Maarten De Rijke, and Yde Venema. Modal logic. Cambridge
University Press, Cambridge, 2001.

5. Guido Boella, Jan Broersen, and Leendert van der Torre. Reasoning about con-
stitutive norms, counts-as conditionals, institutions, deadlines and violations. In
The Duy Bui, Tuong Vinh Ho, and Quang-Thuy Ha, editors, PRIMA, volume 5357
of Lecture Notes in Computer Science, pages 86–97. Springer, 2008.

6. Guido Boella, Leendert van der Torre, and Harko Verhagen. Introduction to the
special issue on normative multiagent systems. Autonomous Agents and Multi-
Agent Systems, 17(1):1–10, 2008.

7. Lars Lindahl and Jan Odelstad. An algebraic analysis of normative systems. Ratio
Juris, 13:261–278, 2000.

8. Lars Lindahl and Jan Odelstad. Intermediaries and intervenients in normative
systems. Journal of applied logic, pages 229–250, 2008.

9. Lars Lindahl and Jan Odelstad. TJS. a formal framework for normative systems
with intermediaries. In John Horty, Dov Gabbay, Xavier Parent, Ron van der
Meyden, and Leendert van der Torre, editors, Handbook of Deontic Logic and Nor-
mative Systems. College Publications, 2013.

10. David Makinson. On a fundamental problem of deontic logic. In P. McNamara
and H. Prakken, editors, Norms, Logics and Information Systems, pages 29–53.
IOS Press, Amsterdam, 1999.

11. David Makinson and Leendert van der Torre. Input-output logics. Journal of
Philosophical Logic, 29:383–408, 2000.

12. David Makinson and Leendert van der Torre. Constraints for input/output logics.
Journal of Philosophical Logic, 30(2):155–185, 2001.

13. David Makinson and Leendert van der Torre. Permission from an input/output
perspective. Journal of Philosophical Logic, 32:391–416, 2003.

14. David Makinson and Leendert van der Torre. What is input/output logic? In
B. Lowe, W. Malzkorn, and T. Rasch, editors, Foundations of the Formal Sciences
II: Applications of Mathematical Logic in Philosophy and Linguistics, pages 163–
174, 2003.

15. Jan Odelstad and Magnus Boman. Algebras for agent norm-regulation. Annals of
Mathematics and Artificial Intelligence, 42:141–166, 2004.

16. Jan Odelstad and Lars Lindahl. Normative systems represented by Boolean quasi-
orderings. Nordic Journal of Philosophical logic, 5:161–174, 2000.

17. Jan Odelstad and Lars Lindahl. The role of connections as minimal norms in
normative systems. In T. Bench-Capon, A. Daskalopulu, and R. Winkels, editors,
Legal Knowledge and Information Systems. IOS Press, Amsterdam, 2002.

18. Xavier Parent, Dov Gabbay, and Leendert van der Torre. An intuitionistic basis
for input/output logic. In Sven Ove Hasson, editor, David Makinson on Classical
Methods for Non-Classical Problems. Springer, 2012.

19. Xavier Parent and Leendert van der Torre. I/O logic. In John Horty, Dov Gabbay,
Xavier Parent, Ron van der Meyden, and Leendert van der Torre, editors, Handbook
of Deontic Logic and Normative Systems. College Publications, 2013.

20. Xavier Parent and Leendert van der Torre. “Sing and dance!” - input/output
logics without weakening. In Fabrizio Cariani, Davide Grossi, Joke Meheus, and
Xavier Parent, editors, Deontic Logic and Normative Systems - 12th International
Conference, DEON 2014, Ghent, Belgium, July 12-15, 2014. Proceedings, volume
8554 of Lecture Notes in Computer Science, pages 149–165. Springer, 2014.

21. Paul C. Sondrol. Totalitarian and authoritarian dictators: A comparison of fidel
castro and alfredo stroessner. Journal of Latin American Studies, 23(3), 2009.

22. Xin Sun. How to build input/output logics, 2014. Manuscript.
23. Xin Sun and Leendert van der Torre. Combining regulative and constitutive norms

in input/output logic. In Proceedings of 12th International Conference on Deontic
logic and Normative Systems (DEON 2014), 2014.

24. Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5(2):285–309, 1955.

25. Richmond H. Thomason. On the stong semantical completeness of the intuitionistic
predicate calculus. Journal of Symbolic Logic, 33(1):1–7, 1968.

26. Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathematics: An
Introduction. North Holland, Amsterdam, 1988.

27. Dirk van Dalen. Intuitionistic logic. In Handbook of philosophical logic, pages
225–339. Springer, 1986.

28. Leendert van der Torre. Deontic redundancy: A fundamental challenge for deontic
logic. In Guido Governatori and Giovanni Sartor, editors, DEON, volume 6181 of
Lecture Notes in Computer Science, pages 11–32. Springer, 2010.

Appendix

Proposition 1 Given a structure S = (A,B, S), where A,B are Boolean alge-
bras and S ⊆ A × B, S is a basic Boolean joining space of S if and only if it
satisfies the following conditions:

1. For every finite set X ⊆ B and every a ∈ A, if for every x ∈ X, (a, x) ∈ S,
then for every y ∈ F↑(X), (a, y) ∈ S.

2. For every finite set X ⊆ A and every a ∈ A, if for every x ∈ X, (x, b) ∈ S,
then for every y ∈ I↓(X), (y, b) ∈ S.

Proof. Assume S is the basic Boolean joining space of S. For the first condition,
let X be an arbitrary finite subset of B. Without loss of generality, we can let
X = {x1, . . . , xn}. Suppose ∀x ∈ X, (a, x) ∈ S. Then by applying clause 2′ of
Definition 2 finitely many times we have (a, x1 ·B . . . ·B xn) ∈ S. Since for all
y ∈ F↑(X), x1 ·B . . . ·B xn ≤B y, we then know (a, x1 ·B . . . ·B xn) � (a, y).
Therefore (a, y) ∈ S by Definition 2. Similarly we can prove that the second
condition is satisfied.

Now assume S satisfies the two conditions in this proposition. Assume (a, x) ∈
S and (a, x) � (b, y), then x ≤B y and y ∈ F↑(x), hence (a, y) ∈ S. Moreover
we have b ≤A a and b ∈ I↓(a), so we have (b, y) ∈ S. Assume (a, x) ∈ S and
(a, y) ∈ S. Since x ·B y ∈ F↑({x, y}), we know (a, x ·B y) ∈ S. Similarly we can
prove if (a, x) ∈ S and (b, x) ∈ S, then (a +A b, x) ∈ S. Therefore S is a basic
joining space. �

Proposition 2 Given two Boolean algebras A,B,

1. (A,B, A×B) is a basic Boolean joining-system.
2. If for all i ∈ I, (A,B, Si) is a basic Boolean joining-system, then (A,B,∩i∈ISi)

is a basic Boolean joining-system.

Proof. The first item is safely left to readers. Here we prove the second item. For
every finite set X ⊆ A, if for every x ∈ X, (x, b) ∈ ∩i∈ISi, then (x, b) ∈ Si for
every i ∈ I. Therefore by Proposition 1 we have ∀y ∈ I↓(X), (y, b) ∈ Si. So we
must have (y, b) ∈ ∩i∈ISi. Similarly we can prove the first item of Proposition
1. Therefore ∩i∈ISi is a joining space of A×B. �

Proposition 3 Let G′2 be constructed as follows.

– G0
2 = G≡

– Gi+1
2 contains all ([a], [x]) for which:

1. for some ([b], [y]) ∈ Gi
2, ([b], [y]) � ([a], [x])

2. there exist ([a], [y]), ([a], [z]) ∈ Gi
2 such that [x] = [y] · [z]

3. there exist ([b], [x]), ([c], [x]) ∈ Gi
2 such that [a] = [b] + [c]

Let G′2 =
⋃∞

i=0G
i
2, then G′2 = G2.

Proof. We have to show three things: (a) G≡ ⊆ G′2. (b) G′2 is a basic Boolean
joining space. (c) for all G′′ (G′2, G′′ is not a basic Boolean joining space or
G≡ 6⊆ G′′.

(a) This is obvious in view of the construction.
(b) We show that 1, 2′ and 3′ from Definition 2 hold for G′.

• Let ([a], [x]) ∈ G′2 and ([a], [x]) � ([b], [y]). Hence there is i ≥ 0 such that
([a], [x]) ∈ Gi

2. By (1), ([b], [y]) ∈ Gi+1
2 ⊆ G′2.

• Let ([a], [x]), ([b], [y]) ∈ G′2. Hence there is i, j ≥ 0 such that ([a], [x]) ∈
Gi

2 and ([b], [y]) ∈ Gj
2. Let k = max({i, j}). Then ([a], [x]), ([b], [y]) ∈ Gk

2 .
By (2), ([a], [x] · [y]) ∈ Gk+1

2 ⊆ G′2.
• 3′ is shown analogously.

(c) Let G′′ (G′2. Suppose G≡ ⊆ G′′. Hence, there is a minimal i ≥ 1 such that
Gi

2 ∩ (G′2 −G′′) 6= ∅. Let ([a], [x]) ∈ Gi
2 ∩ (G′2 −G′′). We can distinguish the

cases (1), (2) and (3).
According to (1), there is a ([b], [y]) ∈ Gi−1

2 for which ([b], [y]) � ([a], [x]).
Hence, by the minimality of i, ([b], [y]) ∈ G′′. But then G′′ is not a joining
space by Definition 2.
Similarly we can show that in case of (2) and (3) G′′ is not a joining space.
This shows that G′2 is a minimal joining space that extends G≡ and hence
G′2 = G2.

�

Theorem 2 The following three propositions are equivalent:

1. (a, x) ∈ deriv2(G).
2. ([a], [x]) ∈ G2.
3. x ∈ out2(G, a).

Proof. 1⇒ 2 : This can be proved simply by induction one the length of deriva-
tion.
2⇒ 3 : Assume ([a], [x]) ∈ G2. Hence there is an i ≥ 0 such that ([a], [x]) ∈ Gi

2

(see Proposition 3). We show that for each ([a], [x]) ∈ G2, x ∈ out2(G, a) by
induction over i. For the induction base let ([a], [x]) ∈ G0

2 = G≡. Trivially
x ∈ out2(G, a). For the inductive cases, assume the conclusion is true for Gi

2,
consider ([a], [x]) ∈ Gi+1

2 . By proposition 3 we need to deal with three cases.

– If for some ([b], [y]) ∈ Gi
2, ([b], [y]) � ([a], [x]). Then by induction hypotheses

we know y ∈ out2(G, b) = ∩{Cn(G(V)) : b ∈ V, V is complete}. Since
[a] ≤ [b] and [y] ≤ [x] we know a ` b, y ` x and x ∈ Cn(y). Hence
x ∈ ∩{Cn(G(V)) : b ∈ V, V is complete}. Moreover, every complete set
V contains a must contain b, hence ∩{Cn(G(V)) : b ∈ V, V is complete} ⊆
∩{Cn(G(V)) : a ∈ V, V is complete}. Therefore x ∈ ∩{Cn(G(V)) : a ∈ V, V
is complete}, x ∈ out2(G, a).

– If there exist ([a], [y]), ([a], [z]) ∈ Gi
2 such that [x] = [y] · [z]. Then by in-

duction hypotheses we know y, z ∈ out2(G, a) = ∩{Cn(G(V)) : a ∈ V, V
is complete}. Therefore y ∧ z ∈ ∩{Cn(G(V)) : a ∈ V, V is complete} and
x ∈ ∩{Cn(G(V)) : a ∈ V, V is complete}. That is, x ∈ out2(G, a).

– If there exist ([b], [x]), ([c], [x]) ∈ Gi
2 such that [a] = [b] + [c]. Then by in-

duction hypotheses we know x ∈ out2(G, b) and x ∈ out2(G, c). Therefore
x ∈ ∩{Cn(G(V)) : b ∈ V, V is complete} and x ∈ ∩{Cn(G(V)) : c ∈ V, V
is complete}. For every complete set V such that b ∨ c ∈ V , it must be that
either b ∈ V or c ∈ V . Therefore, for every complete set V that contains
b∨ c, x ∈ Cn(V), which means x ∈ ∩{Cn(G(V)) : b∨ c ∈ V, V is complete},
i.e. x ∈ out2(G, b ∨ c), x ∈ out2(G, a).

3⇒ 1 : This is a special case of Theorem 1. �

Proposition 4 Given two Boolean algebra A,B,

1. (A,B, A×B) is a simple-minded/basic/simple-minded reusable/basic reusable
Boolean joining-system.

2. If for all i ∈ I, (A,B, Si) is a simple-minded Boolean joining-system, then
(A,B,∩i∈ISi) is a simple-minded Boolean joining-system. And similarly for
basic/simple-minded reusable/basic reusable joining space.

Proof. Similar to the proof of Proposition 2. �

Theorem 3 For i ∈ {1, 2, 3, 4}, the following three propositions are equivalent:

1. (a, x) ∈ derivi(G).
2. ([a], [x]) ∈ Gi.
3. x ∈ outi(G, a).

Proof. Similar to the proof of Theorem 2. �

Theorem 6 For i ∈ {1, 2, 3}, the following three propositions are equivalent:

1. (a, x) ∈ derivIi (G)
2. ([a], [x]) ∈ GI

i

3. x ∈ outIi (G, a)

Proof. Similar to the proof of Theorem 2. �

Proposition 5 Every quasi entailment `Q has the following properties:

1. A `Q a for every a ∈ A.
2. If A `Q a and {a} `Q b, then A `Q b.
3. If A `Q a then A ∪B `Q a.

4. If A `Q a and A `Q b, then A `Q a ∧ b.

Proof. Here we only prove the case of closed under conjunction. Assume A `Q a
and A `Q b, then there exist a1, . . . , am ∈ A such that a1 ∧ . . . ∧ am `q a,
b1, . . . , bn ∈ A such that b1∧. . .∧bn `q b. Therefore by monotony a1∧. . .∧am∧b1∧
. . .∧bn `q a and a1∧. . .∧am∧b1∧. . .∧bn `q b. Hence a1∧. . .∧am∧b1∧. . .∧bn `q
a ∧ b and A `Q a ∧ b. �

Theorem 7 Given an arbitrary normative system G and a set A of formulas,

(a, x) ∈ derivQ1 (G) iff x ∈ outQ1 (G, a)

Proof. (left-to-right) Assume (a, x) ∈ derivQ1 (G), then we have the following
cases:

1. (a, x) ∈ G. For this case, note that `Q is reflexive, hence a ∈ CnQ(a) and
x ∈ G(CnQ(a)). Again by reflexivity, x ∈ CnQ(G(CnQ(a))).

2. (a, x) is derived by the SIQ rule. In this case, there exist (b, x) ∈ derivQ1 (G)

and a `Q b. By the induction hypothesis we know x ∈ outQ1 (G, b) = CnQ(G
(CnQ(b))). Now by a `Q b and by the transitivity of `Q we know CnQ(b) ⊆
CnQ(a). Therefore by monotony of G(•), which is easy to be checked, we
know G(CnQ(b)) ⊆ G(CnQ(a)). Then by monotony of CnQ(•) we have
CnQ(G(CnQ(b))) ⊆ CnQ(G(CnQ(a))).

3. (a, x) is derived by the WOQ rule. If (a, x) is derived by the WOQ rule, then

there exist y `Q x, (a, y) ∈ derivQ1 (G). By the induction hypothesis we know

y ∈ outQ1 (G, a), y ∈ CnQ(G(CnQ(a))). Therefore there exist z1, . . . , zn ∈
G(CnQ(a)), z1 ∧ . . . ∧ zn `Q y. Hence z1 ∧ . . . ∧ zn `Q x by the transitivity
of `Q. Therefore x ∈ CnQ(G(CnQ(a))).

4. (a, x) is derived by the AND rule. If (a, x) is derived by the AND rule,

then there exist (a, y) ∈ derivQ1 (G), (a, z) ∈ derivQ1 (G) and x is y ∧ z. By

the induction hypothesis we know y ∈ outQ1 (G, a) = CnQ(G(CnQ(a))) and

z ∈ outQ1 (G, a) = CnQ(G(CnQ(a))). Recall that CnQ(•) is closed under
conjunction. Then we have y ∧ z ∈ CnQ(G(CnQ(a))).

(right-to-left) Assume x ∈ outQ1 (G, a), then x ∈ CnQ(G(CnQ(a))). There-
fore there exist x1, . . . , xn ∈ G(CnQ(a)) such that x1 ∧ . . . ∧ xn `Q x. From
x1, . . . , xn ∈ G(CnQ(a)) we can deduce there exist a1, . . . , an ∈ CnQ(a) such
that (a1, x1), . . . , (an, xn) ∈ G. So we have a `Q a1, . . . , a `Q an. Then by

applying the SIQ rule we have (a, x1), . . . , (a, xn) ∈ derivQ1 (G). By further ap-

plying the AND rule we have (a, x1 ∧ . . . ∧ xn) ∈ derivQ1 (G). We then derive

(a, x) ∈ derivQ1 (G) by using the WOQ rule. �

Lemma 1BG
A =

⋃∞
i=0B

G
A,i, whereBG

A,0 = CnQ(A), BG
A,i+1 = CnQ(A∪G(BG

A,i)).

Proof. We first prove that
⋃∞

i=0B
G
A,i is a fixed point of fGA . We prove by showing

the following:

1. A ⊆
⋃∞

i=0B
G
A,i: this is because A ⊆ CnQ(A) = BG

A,0 ⊆
⋃∞

i=0B
G
A,i

2. G(
⋃∞

i=0B
G
A,i) ⊆

⋃∞
i=0B

G
A,i: For every x ∈ G(

⋃∞
i=0B

G
A,i), there exist k such

that x ∈ G(BG
A,k) ⊆ BG

A,k+1 ⊆
⋃∞

i=0B
G
A,i.

3. CnQ(
⋃∞

i=0B
G
A,i) =

⋃∞
i=0B

G
A,i: the right-to-left direction is obvious; for the

other direction: assume x ∈ CnQ(
⋃∞

i=0B
G
A,i), then there exist x1, . . . xn ∈⋃∞

i=0B
G
A,i such that x1 ∧ . . . ∧ xn `Q x. Therefore there exist k such that

x1, . . . xn ∈ BG
A,k. Hence x ∈ BG

A,k+1 ⊆
⋃∞

i=0B
G
A,i.

With the above clauses in hand, we can prove that fGA (
⋃∞

i=0B
G
A,i) ⊆

⋃∞
i=0B

G
A,i.

For the other direction, we prove by induction on i that for every i, BG
A,i ⊆

fGA (
⋃∞

i=0B
G
A,i). Here we omit the details.

So we have proved that
⋃∞

i=0B
G
A,i is a fixed point of fGA . To show that

⋃∞
i=0B

G
A,i

is the least fixed point, we have to show that
⋃∞

i=0B
G
A,i is a subset of every fixed

point of fGA .
Let B an arbitrary set such that B = fGA (B). Again we prove by induction

on i.

1. Base step: By monotony we known that fGA (∅) ⊆ fGA (B) = B. That is,
BG

A,0 = CnQ(A) = CnQ(A ∪G(∅)) ⊆ B.

2. Inductive step: assume BG
A,i ⊆ B. Then fGA (BG

A,i) ⊆ fGA (B) = B. That is,

BG
A,i+1 = CnQ(A ∪G(BG

A,i)) = fGA (BG
A,i) ⊆ fGA (B) = B. �

Corollary 1. – For every A ⊆ L and G ⊆ L× L, A ⊆ BG
A

– For every a ∈ L and G ⊆ L× L, BG
a = CnQ(BG

a).
– If x ∈ CnQ(G(BG

a)), then x ∈ BG
a .

Theorem 8 Given an arbitrary normative system G,

x ∈ CnQ(G(BG
a)) iff x ∈ outQ3 (G, a)

Proof. (sketch) The “right to left” direction is proved by showing that {a} ∪
G(BG

a) ⊆ BG
a (see Corollary 1) and CnQ(BG

a) = BG
a (see Corollary 1). For the

other direction, notice that BG
a is a subset of every set B such that {a}∪G(B) ⊆

B = CnQ(B). �

Lemma 2. For every a, b ∈ L,G ⊆ L× L, if a `Q b then BG
b ⊆ BG

a .

Proof. We will prove that for every i, BG
b,i ⊆ BG

a,i. We prove by induction on i.

If i = 0, then BG
b,0 = CnQ(b) ⊆ CnQ(a) = BG

a,0.

Assume i = k + 1 and BG
b,k ⊆ BG

a,k. Then BG
b,k+1 = CnQ({b} ∪ G(BG

b,k)). From

BG
b,k ⊆ BG

a,k we deduce G(BG
b,k) ⊆ G(BG

a,k). Now by the monotony of CnQ(•) we

know CnQ({b} ∪G(BG
b,k)) ⊆ CnQ({a} ∪G(BG

a,k)). Hence BG
b,k+1 ⊆ BG

a,k+1.

So we have proved for every i, BG
b,i ⊆ BG

a,i. With this result in hand, we can

easily deduce that BG
b ⊆ BG

a . �

Lemma 3. If x ∈ CnQ(G(BG
a)), then BG

a = BG
a∧x.

Proof. By Lemma 2 we know that BG
a ⊆ BG

a∧x. For the other direction, we need
to prove that for every i, BG

a∧x,i ⊆ BG
a . We prove this by induction on i.

– Base step: Let i = 0, we then have BG
a∧x,i = CnQ(a ∧ x). By Corollary 1 we

have a ∈ BG
a and x ∈ BG

a . Then again by Corollary 1 we have a ∧ x ∈ BG
a .

– Inductive step: Assume for i = k, BG
a∧x,k ⊆ BG

a . Then BG
a∧x,k+1 = CnQ({a∧

x} ∪ G(BG
a∧x,k)). From BG

a∧x,k ⊆ BG
a we get G(BG

a∧x,k) ⊆ G(BG
a) ⊆ BG

a by
the monotonicity of G and by item 3 of Corollary 1. By the base step we have
a∧x ∈ BG

a . Then by Corollary 1 we know CnQ({a∧x}∪G(BG
a∧x,k)) ⊆ BG

a .

That is, BG
a∧x,k+1 ⊆ BG

a . �

Theorem 9 If (a, x) ∈ derivQ3 (G) then x ∈ CnQ(G(BG
a))

Proof. Assume (a, x) ∈ derivQ3 (G), then we prove by induction on the length of
the derivation.

– (Base step) Assume (a, x) ∈ G, then by Corollary 1 we have a ∈ BG
a . Hence

x ∈ G(BG
a) ⊆ CnQ(G(BG

a)).

– Assume (a, x) ∈ derivQ3 (G) and it is derived by using SIQ from (b, x) ∈
derivQ3 (G) and a `Q b. Then by inductive hypothesis we have x ∈ CnQ(G(BG

b)).
By Lemma 2 we know BG

b ⊆ BG
a . Therefore we further have G(BG

b) ⊆
G(BG

a), CnQ(G(BG
b)) ⊆ CnQ(G(BG

a)). Hence x ∈ CnQ(G(BG
a)).

– Assume (a, x) is (a, x1 ∧ x2), (a, x) ∈ derivQ3 (G) and it is derived by using
AND from (a, x1) and (a, x2). Then by inductive hypothesis we have x1, x2 ∈
CnQ(G(BG

a)). Therefore x1 ∧ x2 ∈ CnQ(G(BG
a)).

– Assume (a, x) ∈ derivQ3 (G) and it is derived by using WOQ from (a, x1) ∈
derivQ3 (G) and x1 `Q x. Then by inductive hypothesis we have x1 ∈ CnQ(G(BG

a)).
Since x1 `Q x, we can prove that x ∈ CnQ(G(BG

a)).

– Assume (a, x) ∈ derivQ3 (G) and it is derived by using CT form (a, x1) ∈
derivQ3 (G) and (a ∧ x1, x) ∈ derivQ3 (G). Then by inductive hypothesis we
have x1 ∈ CnQ(G(BG

a)) and x ∈ CnQ(G(BG
a∧x1

)). Then by Lemma 3 we
have BG

a = BG
a∧x1

. Therefore x ∈ CnQ(G(BG
a)). �

Lemma 4. For all i, if b ∈ BG
a,i and (b, x) ∈ G, then (a, x) ∈ derivQ3 (G)

Proof. We prove by induction on i.

– Base step: Let i = 0. Then b ∈ BG
a,0 = CnQ(a). Hence a `Q b. Therefore we

can apply SIQ to a `Q b and (b, x) ∈ G to derive (a, x) ∈ derivQ3 (G).
– Inductive step: Assume for i = k, if b ∈ BG

a,k and (b, x) ∈ G, then (a, x) ∈
derivQ3 (G). Now let b ∈ BG

a,k+1. Then b ∈ CnQ({a} ∪ G(BG
a,k)), and there

exist b1 . . . bn ∈ G(BG
a,k) such that a ∧ b1 ∧ . . . ∧ bn `Q b. Then apply SIQ to

(b, x) ∈ G and a∧b1∧ . . .∧bn `Q b we have (a∧b1∧ . . .∧bn, x) ∈ derivQ3 (G).

Note that for each i ∈ {1, . . . , n}, from bi ∈ G(BG
a,k) we know there is

ai ∈ BG
a,k such that (ai, bi) ∈ G. Now by inductive hypothesis we have

(a, bi) ∈ derivQ3 (G). Then applying the AND rule we have (a, b1∧ . . .∧ bn) ∈
derivQ3 (G). From (a, b1 ∧ . . . ∧ bn) ∈ derivQ3 (G) and (a ∧ b1 ∧ . . . ∧ bn, x) ∈
derivQ3 (G) we adopt the CT rule to derive (a, x) ∈ derivQ3 (G). �

Theorem 10 If x ∈ CnQ(G(BG
a)), then (a, x) ∈ derivQ3 (G).

Proof. Assume x ∈ CnQ(G(BG
a)), then there exist x1, . . . , xn ∈ G(BG

a) such
that x1∧ . . .∧xn `Q x. For each i ∈ {1, . . . , n}, from xi ∈ G(BG

a) we know there
is ai ∈ BG

a such that (ai, xi) ∈ G. From ai ∈ BG
a we know there exist k such

that ai ∈ BG
a,k. Now by Lemma 4 we know (a, xi) ∈ derivQ3 (G). Then applying

the AND rule we have (a, x1 ∧ . . . ∧ xn) ∈ derivQ3 (G). Then by the WOQ rule

we have (a, x) ∈ derivQ3 (G). �

Theorem 11 The following three propositions are equivalent: for i ∈ {1, 3}

1. (a, x) ∈ derivQi (G)

2. ([a], [x]) ∈ GQ
i

3. x ∈ outQi (G, a)

Proof. Similar to the proof of Theorem 2. �

Observation 1 For every joining-system S = (A,B, S), if S is finite then
core(S) 6= ∅.

Proof. The proof is trivial. Due to the fact that S is finite, there is no infinite
descending chain on ≺. �

Observation 2 For all joining-system S = (A,B, S), if S is finite, then for any
(a, x) ∈ S, there exists (b, y) ∈ core(S) such that (b, y) � (a, x).

Proof. Let (a, x) be an arbitrary norm in S. If (a, x) ∈ core(S), then (a, x) �
(a, x) and we are done. If (a, x) /∈ core(S), then (a, x) is not a minimal norm.
Hence there exist some (b, y) such that (b, y) ≺ (a, x). If (b, y) ∈ core(S) then we
are done. If not, then there exist some (c, z) such that (c, z) ≺ (b, y). Since S is
finite, this procedure will stop at some point. Then by transitivity of �, there
must exist some (a′, x′) ∈ core(S) such that (a′, x′) � (a, x). �

Observation 3 For any joining-system S = (A,B, S) and S′ = (A,B, S′), if
both S and S′ are finite, then core(S) = core(S′) iff S = S′. �

Proof. The right to left direction is trivial. For the left to right direction. Assume
core(S) = core(S′). For any (a, x) ∈ S, by Observation 2 there exist (b, y) ∈
core(S) such that (b, y) � (a, x). By assumption we know (b, y) ∈ core(S′).
Then by the definition of joining space we know (a, x) ∈ S′. Therefore S ⊆ S′.
Similarly we can prove S ⊇ S′. �

