Skip to main content

Prediction of Surface Texture Characteristics in Turning of FRPs Using ANN

  • Conference paper
Book cover Engineering Applications of Neural Networks (EANN 2013)

Abstract

The objective of the present study is to develop an artificial neural network (ANN) in order to predict surface texture characteristics for the turning performance of a fiber reinforced polymer (FRP) composite. Full factorial design of experiments was designed and conducted. The process parameters considered in the experiments were cutting speed and feed rate, whilst the depth of cut has been held constant. The corresponding surface texture parameters that have been studied are the Ra and Rt. A feed forward back propagation neural network was fitted on the experimental results. It was found that accurate predictions of performance can be achieved through the feed forward back propagation (FFBP) neural network developed for the surface texture parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mata, F., Petropoulos, G., Ntziantzias, I., Davim, J.P.: A surface roughness analysis in turning of polyamide PA-6 using statistical techniques. Int. J. Mater. Prod. Technol. 37(1-2), 173–187 (2010)

    Article  Google Scholar 

  2. Palanikumar, K., Mata, F., Davim, J.P.: Analysis of surface roughness parameters in turning of FRP tubes by PCD tool. J. Mater. Process. Technol. 204, 469–474 (2008)

    Article  Google Scholar 

  3. Davim, J.P., Silva, L.R., Festas, A., Abrão, A.M.: Machinability study on precision turning of PA66 polyamide with and without glass fibre reinforcing. Materials and Design 30(2), 228–234 (2009)

    Article  Google Scholar 

  4. Aravindan, S., Naveen, S.A., Noorul, H.A.: A machinability study of GFRP pipes using statistical techniques. Int. J. Adv. Manuf. Technol. 37, 1069–1081 (2008)

    Article  Google Scholar 

  5. Işık, B.: Experimental investigations of surface roughness in orthogonal turning of unidirectional glass-fiber reinforced plastic composites. Int. J. Adv. Manuf. Technol. 37, 42–48 (2008)

    Article  Google Scholar 

  6. Palanikumar, K., Karunamoorthy, L., Karthikeyan, R.: Parametric optimization to minimise the surface roughness on the machining of GFRP composites. J. Mater. Sci. Technol. 22(1), 66–72 (2006)

    Google Scholar 

  7. Kechagias, J., Petropoulos, G., Iakovakis, V., Maropoulos, S.: An investigation of surface texture parameters during turning of a reinforced polymer composite using design of experiments and analysis. Int. J. of Experimental Design and Process Optimisation 1(2-3), 164–177 (2009)

    Article  Google Scholar 

  8. Gadelmawla, E.S., et al.: Roughness parameters. J. Mat. Proces. Techn. 56, 1–13 (2002)

    Google Scholar 

  9. Petropoulos, G.P., Pantazaras, C.N., Vaxevanidis, N.M., Ntziantzias, I., Korlos, A.: Selecting subsets of mutually unrelated ISO 13565-2:1997 surface roughness parameters in turning operations. Int. J. Comp. Mat. Sci. & Surf. Eng. 1(1), 114–128 (2007)

    Google Scholar 

  10. Lin, C.T., Lee, G.C.S.: Neural fuzzy systems-A neuro-fuzzy synergism to intelligent systems, pp. 205–211. Prentice Hall PTR (1996)

    Google Scholar 

  11. Kechagias, J., Iakovakis, V.: A neural network solution for LOM process performance. Int. J. Adv. Manuf. Technol. 43(11), 1214–1222 (2008)

    Google Scholar 

  12. Vaxevanidis, N.M., Markopoulos, A., Petropoulos, G.: Artificial neural network modelling of surface quality characteristics in abrasive water jet machining of trip steel sheet. In: Davim, J.P. (ed.) Artificial Intelligence in Manufacturing Research, ch. 5, pp. 79–99. Nova Publishers (2010)

    Google Scholar 

  13. Ozel, T., Karpat, Y.: Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks. Int. J. Mach. Tools Manuf. 45, 467–479 (2005)

    Article  Google Scholar 

  14. Jiao, Y., Lei, S., Pei, Z.J., Lee, E.S.: Fuzzy adaptive networks in machining process modeling: surface roughness prediction for turning operations. Int. J. Mach. Tools Manuf. 44, 1643–1651 (2004)

    Article  Google Scholar 

  15. Levenberg, K.: A method for the solution of certain problems in least squares. Quart. Appl. Math. 2, 164–168 (1944)

    MathSciNet  MATH  Google Scholar 

  16. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM. J. Appl. Math. 11, 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  17. El-Mounayri, H., Kishawy, H., Tandon, V.: Optimized CNC end-milling: A practical approach. Int. J. CIM 15, 453–470 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karagiannis, S., Iakovakis, V., Kechagias, J., Fountas, N., Vaxevanidis, N. (2013). Prediction of Surface Texture Characteristics in Turning of FRPs Using ANN. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2013. Communications in Computer and Information Science, vol 383. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41013-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41013-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41012-3

  • Online ISBN: 978-3-642-41013-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics