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Abstract. Co-references are traditionally used when integrating data from 

different datasets. This approach has various benefits such as fault tolerance, 

ease of integration and traceability of provenance; however, it often results in 

the problem of entity consolidation, i.e., of objectively stating whether all the 

co-references do really refer to the same entity; and, when this is the case, 

whether they all convey the same intended meaning. Relying on the sole 

presence of a single equivalence (owl:sameAs) statement is often problematic 

and sometimes may even cause serious troubles. It has been observed that to 

indicate the likelihood of an equivalence one could use a numerically weighted 

measure, but the real hard questions of where precisely these values come from 

arises. We propose and discuss an answer to this question. 
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1   Introduction 

Co-references (i.e. reference to the same resource) are widely used in Linked Data 

to integrate data from different datasets. The simplest and usual way of representing 

co-references is to state the explicit equivalence between two RDF nodes connecting 

them through the owl:sameAs property. Hu [1] noted that despite other properties 

such as inverse functional properties, functional properties and maximum cardinality 

that may indirectly confirm the equivalence of two resources, the bulk of equivalence 

relationships in Linked Data are traditionally given by explicit owl:sameAs 

statements (henceforth also called equivalence statements or simply equivalences). 
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Using co-references is probably unavoidable in a distributed environment
1
 and brings 

various benefits such as fault tolerance, ease of integration and traceability of 

provenance [2]. However, it often results in the open problem of objectively stating 

whether all the co-references do really refer to the same entity (a well known problem 

sometimes called object identification, entity consolidation, etc.) and, most 

importantly, whether all co-references convey the same intended meaning, as OWL 

specifications
2
 would require. owl:sameAs statements do not always honor this 

rigorous semantics. For example, [3] reports four very different typologies of use of 

owl:sameAs they actual found in Linked Data (contextualization, referential opacity, 

similitude, and reference misplacement). While these different uses appear to be 

acceptable and sometimes even useful for some applications (e.g. surfing the web of 

Linked Data for general knowledge, such as finding that Berlin is a city in Germany, 

together with a number of other cities), for others, especially for those using 

automatic reasoning, a higher degree of precision is indeed needed [4]. 

Looking at existing properties in well known vocabularies conveying the meaning 

of equivalence and similitude, one could think of a classification of the strength of 

this kind of relationship. For example, [5] points out that rdf:seeAlso is much 

“weaker” than owl:sameAs; and [3] that the SKOS vocabulary has a number of 

“matching” predicates that are close in meaning to owl:sameAs without however 

implying full identity (skos:broadMatch, skos:narrowMatch, skos:closeMatch, etc.). 

However, their use may be subjective and even if one is tempted to engage with some 

sort of numerically weighted uncertainty measure of identity, the real hard questions 

of where precisely will these real values come from [3] arises. Our first question to 

answer. 

2   Related Works 

At the time of writing there are two main ways of creating equivalence 

relationships: automatic and manual. Automatically generated equivalences
3
 depend 

on the effectiveness of various adopted algorithms in detecting similar property 

values presented by candidate equivalent resources (and obviously on the public 

availability of such property values). Many of these algorithms are domain-

independent and – as opposite to humans – tend to disregard semantic nuances in 

favour of the sought similitude. Thus, reliable links are often established after manual 

inspections of candidate resources.  

Manually established equivalence links depends on the publisher’s knowledge 

about the referent, the meaning they intend to convey, their understanding of the 

candidate equivalent resources in other datasets and her knowledge about contextual 

                                                           
1  Attempts to provide single unique identifiers, such as [14, 15], at the end result in 

centralized systems. 

2  According to OWL specifications, two RDF subjects stated to be equivalent should be 

identical, and thus perfectly interchangeable in all the statements they appear. 

3  The Ontology Alignment Evaluation Initiative website (http://oaei.ontologymatching.org/) 

contains articles and reports about several methods which have been compared in various  

schema matching campaigns starting from 2004. 



aspects (for instance, when linking data from medical domains, a publisher might be 

well aware that a high precision is needed). 

As equivalence is a transitive and symmetric property, sets of resources that 

convey the same meaning, seen as nodes connected by owl:sameAs arcs, should form 

a complete directed graph, in which every pair of distinct nodes is connected by a pair 

of unique arcs, one in each direction.  

 “Consistent Reference Service” (CRS) is a concept that has been proposed in the 

past to deal with equivalences [12].  A CRS is a framework that aggregates “real” co-

references into bundles. A user can look for a reference and get all the co-references 

belonging to the same bundle (a well-known instantiation of a CRS is “sameAs.org”, 

which is exposed both as a web site and a web API
4
).  

The genesis for CRS deployment was to cope with the questions of how to deal 

with nodes related by owl:sameAs predicates which should form a complete directed 

graph, either explicitly or by inference. In combining different graphs where 

equivalences have been defined or identified, a CRS takes the only safe action and 

asserts all the (N
2
) individual owl:sameAs links connecting all the possible pairs of 

nodes. In practice, however, other topologies are observable. In 2010, working on 

equivalence links connecting RDF nodes from the BTC2010 corpus, Ding [6,7] found 

that their distribution exhibits the power law pattern characteristic of scale-free 

networks, i.e. few nodes have many incoming arcs while others have much fewer 

ones.  

3   Method 

We observe [8] that co-references coming from different datasets show a dynamic 

tendency to aggregate into groups of graph nodes within which edges are much more 

dense than between them. In literature, these groups are known as “clusters” [9]. 

These empirical findings led us to a second question: why does this happen?  

Answering this question means analyzing equivalence network using cluster 

detection techniques. In general, the graph clustering problem is NP-hard, therefore 

no algorithm exists to solve it in polynomial time; at the time of writing only 

heuristics are available. Newman and Girvan [10] propose the concept of modularity 

as a measure of the degree of clustering of a graph. The modularity is defined as the 

fraction of edges falling in the resulting disjoint connected components minus the 

expected value that the same quantity would have if the graph had random 

connections between nodes. They also describe an iterative procedure to identify 

possible clusters based on betweenness centrality of each edge
5
 (number of shortest 

paths passing through the edge) in the graph. At each step, the edge with the highest 

betweenness is removed; as edges with high betweenness are likely to be the ones 

connecting different clusters, the modularity increases until a maximum value is 

                                                           
4  Whereas sameAs.org maintains its own CRS, it also hosts several others maintained by 

different organizations. 

5  Many cluster detection algorithms work on undirected graphs, thus on edges, not on arcs. To 

account for arcs that mutually connect two nodes, we assume that the corresponding edge 

connecting the two nodes has a double weight. 



reached. The remaining connected components are likely to represent the sought 

clusters. In [8] we illustrate the results obtained applying this algorithm to a subset of 

equivalence relationships taken from the Linked Open Data cloud. Despite Newman 

and Girvan’s algorithm, and other similar ones, actually being able to detect clusters, 

unfortunately they often tend to overestimate their number; due to the choice of edge 

betweenness as a criterion, some topologies (e.g. star-like structures) are not seen as 

clusters and are thus decomposed into single nodes. A different approach recently 

proposed by Noack [11] seems to overcome this behavior. In Noack’s approach, a 

graph is seen as a metaphor of a mechanical system where each node is a particle 

whose “position” is determined by the “forces” acting on it. Close particles tend to 

repulse each other; edges, which can vary their “length”, provide attractive forces that 

tie particles together. At the equilibrium the fraction between the average edge length 

and the average node distance is minimized. By making edges short and distances 

between not connected nodes long, this approach tends to highlight clusters. 

Noack identifies a whole class of “clustering” energy models which satisfy these 

properties and differ only for the law used in the mathematical formulation of the 

attractive and the repulsive forces between particles. Two relevant models of this 

class are “LinLog” and “QuadLin”; both of them are below discussed.  

LinLog energy model. Let N(G) be the set of nodes in the graph G, x, y two 

arbitrary nodes, px and py their own position in a spatial system R
n
. Given two disjoint 

non empty sets of nodes U, V such that U∪V=N(G) we denote with E(U,V) the set of 

pairs of nodes connected by edges (x,y) with x∈U and y∈V. We call the pair (U,V) a 

bipartition of G, and define its density as 

 

dU,V = |E(U,V)| / (|U|⋅|V|) 

 

where | · | is the cardinality of a set. The LinLog energy model is then defined by 

the formula 

 

 E = ∑ x,y∈E(U,V) ||px -py|| – ∑x∈N(G), y∈N(G), x≠y ln(||px -py||)   
 

where E is the energy associated to the system. In LinLog, initially, the position of 

each node is set using a random function; the position then evolves according to the 

forces acting on each node determined by the energy model. Noack demonstrates that, 

when the system reaches a stable equilibrium, the harmonic mean of the distance 

between any pair of nodes x, y belonging to an arbitrary bipartition U, V is inversely 

proportional to the density of the bipartition dU,V: 

 

harmdist (U,V) = |U|⋅|V| / (∑x∈U, y∈V 1 / ||px -py|| ) = 1 / dU,V 

 

Because the harmonic mean distance weights small distances much higher than 

large distances, this energy models is particularly useful when drawing graphs. In 

fact, the well known graph visualization toolkit Gephi
6
 uses LinLog to produces nice 

graph layouts (Figure 2). 

QuadLin energy model.  The QuadLin energy model is defined by the formula 

                                                           
6   Gephi, an open source graph visualization and manipulation software, https://gephi.org/. 



 

 E = ∑ x,y∈E(U,V) ½||px -py||
2
 – ∑x∈N(G), y∈N(G), x!=y ||px -py|| 

 

where symbols have the usual meaning. QuadLin makes the arithmetic mean of the 

distance between any pair of nodes of an arbitrary bipartition inversely proportional to 

the density of the bipartition dU,V: 

 

arithdist (U,V) = ∑x∈U, y∈V  ||px -py|| / (|U|⋅|V|) = 1 / dU,V 

 

At the equilibrium, nodes belonging to the same cluster tend to stay very close, 

much closer than in any other clustering energy model. This makes QuadLin 

particularly appealing for solving our original problem. In fact, the inverse of the 

distance between two nodes could be used a measure of the strength of their 

connection; which – in the case of an equivalence network – can be taken as an 

indication of the likelihood of their equivalence. 

The previous equation could be written as 

 

∑x∈U, y∈V  ||px -py||  = (|U|⋅|V|)
2 
/ |E(U,V)| 

 

which should hold for any possible bipartition of the original graph, i.e. it is an over-

determined system of linear equations which, in principle, could be solved using the 

linear least squares approach. Unfortunately, the total number of possible bipartitions 

of a graph G is the cardinality of the power set of N(G), 2
|N(G)|

, minus two (the empty 

set and N(G) itself). Thus, the most efficient existing way of solving such a system 

for non trivial graphs is by simulation. 

4   Implementation 

To illustrate the effectiveness of clustering energy model when applied to our 

original problem, we implemented a simple demonstrator system. The system is made 

up of a front-end and a back-end (Figure 1).  

The front-end client runs in a Web browser as an AJAX application. After the user 

specifies a reference to a corresponding resource, the client connects to the back-end 

server, retrieves all known equivalences for that resources and displays them in the 

form of a 2D animation. Equivalent resources are presented as floating bubbles 

(Figure 2). The size of each bubble is proportional to its degree, i.e. the number of 

equivalences for the corresponding resource. The position of a bubble is finally 

determined by the composition of forces acting on it, forces derived from the 

QuadLin energy model. Their relative positions provide an indication of the strength 

of the equivalence. The bubbles also react to pointing device gestures, as if they 

altered their stable equilibrium. Clusters may be easily detected by looking at the 

different sets of nearby bubbles.  

The back-end server performs two functions: retrieving equivalences from a RDF 

triplestore and providing a corresponding graph model, which, serialized, is sent to 

the client. The triplestore acts a cache server for RDF data extracted from Sindice. 



 

 

Figure 1. System architecture. The system is made up of a front-end, running in a Web browser, 

and a back-end, implemented as a Java 2 Enterprise application. 

The back-end is implemented as a Java 2 Enterprise application running on Apache 

Tomcat 6.0 servlet container. The triplestore is Aduna Sesame server v2.60 powered 

by Gentoo Linux MySQL server v5.1. All the server-side software is hosted into a 

i686 Intel Xeon CPU 3060 machine, 2.40GHz processor, 1,048,772kB RAM, featured 

Gentoo Linux Base System 1.12 OS, kernel 2.6.18-xen. 

 

 
 

Figure 2. Front-end. Equivalent resources presented as floating bubbles. The size of each 

bubble is proportional to the number of its equivalence links. The position is determined by the 

composition of forces acting on it, according to the QuadLin energy model. 

The client part is implemented using Google Web Toolkit, and is suitable to run on 

a variety of HTML 5 enabled browsers. The client runs a porting of the program 

originally developed by Noack
7
; but, differently from the original software, the 

porting uses the QuadLin energy model. 

 

                                                           
7 The original program by Noack is available at http://code.google.com/p/linloglayout/ 



5   Evaluation 

Figure 3 shows the equivalence network obtained starting from the resource 

<http://rdf.freebase.com/ns/en.mount_everest>. We generated this picture using the 

Gephi framework which adopts the LinLog energy model. In this representation, the 

harmonic (not the arithmetic) mean of the length of the edges connecting two clusters 

is proportional to the inverse of the inter-cluster density; this feature provides a more 

readable layout, suitable, e.g., for this article’s format, but reduces the inter-cluster 

nodes distance and increase the intra-cluster one. If QuadLin were used instead, nodes 

in the same cluster would be much closer and clusters more distant, as in Figure 2. 

Through the use of colours, Figure 3 also illustrates clusters as detected by Newman 

and Girvan’s algorithm (section 2): nodes with different colours belong to different 

clusters.  

Inspecting this figure, we see that LinLog (as well as QuadLin) recognizes the star-

like topology around the resource <http://rdf.freebase.com/ns/en.mount_everest> and 

places all nodes belonging to this structure closer each others (bottom left of the 

picture). Newman and Girvan’s algorithm fails in recognizing this topology, probably 

because of the small clustering coefficient
8
 it presents: nodes and links in the picture 

are in fact marked with dozens of different colours, each meaning a potential different 

cluster. The star-like structure, also reported in [7], reflects the asymmetric use of 

owl:sameAs by the Freebase community: their nodes link many resources in DBpedia 

that however do not represent the very same concept (and in fact are not interlinked 

with each other, lowering the cluster coefficient). 

A second structure is detected in the middle of the picture. This structure develops 

around the DBpedia resource <http://dbpedia.org/resource/Mount_Everest> and 

connects nodes belonging to a number of other domains. This structure has indeed a 

higher cluster coefficient and is correctly recognized by all the algorithms (LinLog, 

QuadLin and Newman and Girvan’s algorithm). 

The top right corner of the picture clearly shows a third cluster, connected to the 

previously described one by one single arc. The cluster is well separated from the 

other two, although not reflected by LinLog – the same distance measured out after 

applying the QuadLin algorithm is about 130% of the distance between the two 

previous structures. This is not surprising: because of one single arc connecting the 

two structures, the density of the corresponding bipartition is small and the nodes on 

the two sides are far. In our method, a great spatial distance implies a marked 

semantic difference. Looking at this third cluster, we realize that all its nodes refer to 

a different entity: Sun Valley in Blaine County, Idaho, US. 

                                                           
8 The clustering coefficient is a local property of a node and is defined as the fraction between 

the average number of edges between the neighbors of a node and the average number of 

possible edges between these neighbors. 



 
 

Figure 3. The equivalence network for the entity “Mount Everest” (picture generated using the 

Gephi framework which adopts the LinLog energy model). 

6   Discussion (and Answers to Questions) 

Question #1 – (from section 1) Where could a possible weighted uncertainty 

measure of identity come from? Experimental evidences show that co-references 

coming from different datasets show a tendency to aggregate into star-like structures, 

and more in general into clusters. Missing intra-cluster arcs can be probably 

interpreted as omitted equivalences and isolated inter-cluster arcs are likely to 

represent wrongly stated equivalences. To distinguish the two case, we assume two 



thresholds, m and M, run a simulation, and calculate the edge length ||px -py|| between 

each pair of connected nodes (x,y). If ||px -py||<m, then nodes are in the same cluster 

and likely to be equivalent; if ||px -py||>M, probably the two nodes are different from 

each other and would be better characterized by the owl:differentFrom relationship. 

 The difference between clusters and non-clusters lies purely in the density of the 

links connecting a given group of nodes, and in the density of the links connecting 

this group with the rest of the graph. This “vague” definition does not provide any 

canonical value to distinguish a cluster from a weaker group of nodes. Therefore the 

aforementioned thresholds have to be evaluated for each equivalence network. Are 

there advantages in shifting the original dilemma of evaluating the strength of a single 

equivalence link to the (maybe as difficult) problem of finding global thresholds for 

the equivalence network the link belongs to? We think so. First, a metric has been 

defined, enabling ranking of the strength of different equivalence links. Second, 

statistics could help in defining canonical or typical values like thresholds. We expect 

to mine these values from massive batch processing we are currently carrying on. 

Question #2 – (from section 2) Why do nodes aggregate into clusters? In our 

interpretation, this phenomenon typically reflects the partition of linked data 

publishers into communities, where nodes representing similar concepts inside the 

two different communities of publishers are loosely coupled. The communities may 

have different purposes, degree of specialization and ways of defining equivalences. 

For instance, DBpedia provides lots of hyponyms (i.e. more specialized terms, finer 

granule definitions) while other data providers – including Freebase – publish more 

generic definitions. Nodes from Freebase usually link hyponyms in DBPedia, 

semantic nuances are not captured during the linkage and are flattened as 

“equivalences” with the corresponding hyperonym (i.e. the more generic tem). 

Though a mistake when considering the formal semantics, this way of establishing 

equivalences is not always annoying; sometimes it is even helpful end users who 

might want to follow links to discover slightly different meanings and thus increase 

their knowledge about a subject.  

On the other hand, the raising of new communities and addition of new nodes and 

links in the future might create new specialized clusters “detached” from the parent 

ones and reflecting hyponyms more closely. This phenomenon probably mirrors the 

way knowledge specializes, beginning from a rough level of definition and getting 

structured when interests from members of domain-specific communities start 

developing. Cluster detection techniques may provide effective insights for this 

investigation. 

7   Conclusions 

Equivalence links connecting co-references may be seen as a graph known as 

“equivalence network”. In this paper we introduced a method to rank equivalence 

links based on the contextual knowledge of the topology of this graph. The rank 

provides an estimation of the strength of each equivalence link. The method can be 

used either in batch processing mode (suitable to provide analysis of massive datasets 

and to extract canonical values) or interactively; here we presented a simple prototype 



which exploits the latter option. As a tool, it may help Linked Data engineers to better 

understand and “debug” equivalence networks and, indirectly, to unveil different 

emerging communities of publishers, their different goals and linking strategies. 
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