

Edinburgh Research Explorer

Branching-Time Model Checking Gap-Order Constraint Systems

Citation for published version:
Mayr, R & Totzke, P 2013, Branching-Time Model Checking Gap-Order Constraint Systems. in Reachability
Problems: 7th International Workshop, RP 2013, Uppsala, Sweden, September 24-26, 2013 Proceedings.
Springer Berlin Heidelberg, pp. 171-182. https://doi.org/10.1007/978-3-642-41036-9_16

Digital Object Identifier (DOI):
10.1007/978-3-642-41036-9_16

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Reachability Problems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://doi.org/10.1007/978-3-642-41036-9_16
https://doi.org/10.1007/978-3-642-41036-9_16
https://www.research.ed.ac.uk/en/publications/60ff8ba4-e9d2-423b-9fa6-905cf937b862

Branching-Time Model Checking Gap-Order
Constraint Systems

Richard Mayr and Patrick Totzke

University of Edinburgh, UK

Abstract. We consider the model checking problem for Gap-order Con-
straint Systems (GCS) w.r.t. the branching-time temporal logic CTL,
and in particular its fragments EG and EF. GCS are nondeterministic
infinitely branching processes described by evolutions of integer-valued
variables, subject to Presburger constraints of the form x−y ≥ k, where
x and y are variables or constants and k ∈ N is a non-negative constant.
We show that EG model checking is undecidable for GCS, while EF is
decidable. In particular, this implies the decidability of strong and weak
bisimulation equivalence between GCS and finite-state systems.

1 Introduction

Counter machines [Min67] extend a finite control-structure with unbounded
memory in the form of counters that can hold arbitrarily large integers (or natu-
ral numbers), and thus resemble basic programming languages. However, almost
all behavioral properties, e.g., reachability and termination, are undecidable for
counter machines with two or more counters [Min67]. For the purpose of formal
software verification, various formalisms have been defined that approximate
counter machines and still retain the decidability of some properties. E.g., Petri
nets model weaker counters that cannot be tested for zero, and have a decidable
reachability problem [May84].

Gap-order constraint systems [Boz12,BP12] are another model that approx-
imates the behavior of counter machines. They are nondeterministic infinitely
branching processes described by evolutions of integer-valued variables, subject
to Presburger constraints of the form x− y ≥ k, where x and y are variables or
constants and k ∈ N is a non-negative constant. Unlike in Petri nets, the coun-
ters can be tested for zero, but computation steps still have a certain type of
monotonicity that yields a decidable reachability problem. In fact, control-state
reachability is decidable even for the more general class of constrained multiset
rewriting systems [AD06].

Previous work. Beyond reachability, several model checking problems have been
studied for GCS and related formalisms. The paper [Cer94] studies Integral Rela-
tional Automata (IRA), a model that is subsumed by GCS. It is shown that CTL
model checking of IRA is undecidable in general, but the existential and universal
fragments of CTL∗ remain decidable for IRA. Termination and safety proper-
ties for GCS were studied in [Boz12,BP12]. In particular, LTL model checking

is PSPACE complete for GCS. Moreover, model checking GCS is decidable for
the logic ECTL∗, but undecidable for ACTL∗, which are the existential and
universal fragments of CTL∗ respectively. These fragments do not allow arbi-
trary nesting of path quantifiers and negation and are therefore orthogonal to
EF and EG, which allow nesting of negation and operators EF/EG but forbid
the respective other operator.

Our contribution. We study the decidability of model checking problems for GCS
with fragments of computation-tree logic (CTL), namely EF and EG. While
general CTL model checking of GCS is undecidable (even for the weaker model
of IRA [Cer94]), we show that it is decidable for the logic EF. On the other hand,
model checking is undecidable for the logic EG. An immediate consequence of
our decidability result for EF is that strong and weak bisimulation equivalence
are decidable between GCS and finite-state systems.

2 Gap-Order Constraint Systems

Let Z and N denote the sets of integers and non-negative integers. A labeled
transition system (LTS) is described by a triple T = (V,Act , −→) where V is
a (possibly infinite) set of states, Act is a finite set of action labels and −→ ⊆
V ×Act × V is the labeled transition relation. We use the infix notation s

a−→s′
for a transition (s, a, s′) ∈ −→, in which case we say T makes an a-step from s
to s′. For a set S ⊆ V of states and a ∈ Act we define the set of a-predecessors
by Prea(S) = {s′|s′ a−→s ∈ S} and let Pre∗(S) = {s′|s′−→∗s ∈ S}. A state in
a LTS is often referred to as a process.

We fix a finite set Var of variables ranging over the integers and a finite set
Const ⊆ Z of constants. Let Val denote the set of variable evaluations ν : Var →
Z. To simplify the notation, we will sometimes extend the domain of evaluations
to constants, where they behave as the identity, i.e., ν(c) = c for all c ∈ Z.

Definition 1 (Gap-Constraints). A gap clause over (Var ,Const) is an in-
equation of the form

(x− y ≥ k) (1)

where x, y ∈ Var ∪ Const and k ∈ Z. A clause is called positive if k ∈ N. A
(positive) gap constraint is a finite conjunction of (positive) gap clauses. A gap
formula is an arbitrary boolean combination of gap clauses.

An evaluation ν : Var → Z satisfies the clause C : (x− y) ≥ k (write ν |= C)
if it respects the prescribed inequality. That is,

ν |= (x− y) ≥ k ⇐⇒ ν(x)− ν′(y) ≥ k. (2)

We define the satisfiability of arbitrary gap formulae inductively in the usual
fashion and write Sat(ϕ) = {ν ∈ Val | ν |= ϕ} for the set of evaluations that
satisfy the formula ϕ. In particular, an evaluation satisfies a gap constraint iff
it satisfies all its clauses. A set S ⊆ Val of evaluations is called gap-definable if
there is a gap formula ϕ with S = Sat(ϕ).

We will consider processes whose states are described by evaluations and
whose dynamics is described by stepwise changes in these variable evaluations,
according to positive gap-order constraints.

Let Var ′ = {x′|x ∈ Var} be the set of primed copies of the variables. These
new variables are used to express constraints on how values can change when
moving from one evaluation to another: x′ is interpreted as the next value of
variable x. A transitional gap-order clause (-constraint, -formula) is a gap-order
clause (-constraint, -formula) with variables in Var ∪Var ′.

For evaluations ν : Var → Z and ν′ : Var → Z we define the combined
evaluation ν ⊕ ν′ : Var ∪Var ′ → Z of variables in Var ∪Var ′ by

ν ⊕ ν′(x) =

{
ν(x), if x ∈ Var

ν′(x), if x ∈ Var ′.
(3)

Transitional gap-clauses can be used as conditions on how evaluations may evolve
in one step. For instance, ν may change to ν′ only if ν ⊕ ν′ |= ϕ for some gap-
clause ϕ.

Definition 2. A Gap-Order Constraint System (GCS) is given by a finite set
of transitional gap-clauses together with a labeling function. Formally, a GCS
is a tuple G = (Var ,Const ,Act , ∆, λ) where Var ,Const ,Act are finite sets of
variables, constants and action symbols, ∆ is a finite set of positive transitional
gap-order constraints over (Var ,Const) and λ : ∆→ Act is a labeling function.
Its operational semantics is given by an infinite LTS with states Val where

ν
a−→ν′ ⇐⇒ ν ⊕ ν′ |= C (4)

for some constraint C ∈ ∆ with λ(C) = a. For a set M ⊆ Val of evaluations we
write PreC(M) for the set {ν | ∃ν′ ∈M.ν ⊕ ν′ |= C} of C-predecessors.

Observe that a constraint (x − 0 ≥ 0) ∧ (0 − x ≥ 0) is satisfied only by
evaluations assigning value 0 to variable x. Similarly, one can test if an evaluation
equates two variables. Also, it is easy to simulate a finite control in a GCS using
additional variables.1 What makes this model computationally non-universal is
the fact that we demand positive constraints: while one can easily demand an
increase or decrease of variable x by at least some offset k ∈ N, one cannot
demand a difference of at most k (nor exactly k).

Example 1. Consider the GCS with variables {x, y} and single constant {0} with
two constraints ∆ = {CX, CY } for which λ(CX) = a and λ(CY) = b.

CX =((x− x′ ≥ 1) ∧ (y′ − y ≥ 0) ∧ (y − y′ ≥ 0) ∧ (x′ − 0 ≥ 0)) (5)

CY =((y − y′ ≥ 1) ∧ (x′ − x ≥ 0) ∧ (y′ − 0 ≥ 0)). (6)

1 In fact, [BP12,Boz12] consider an equivalent notion of GCS that explicitly includes
a finite control.

This implements a sort of lossy countdown where every step strictly decreases
the tuple (y, x) lexicographically: CX induces a-steps that decrease x while pre-
serving the value of y and CY induces b-steps that increase x arbitrarily but
have to decrease y at the same time. The last clauses in both constraints ensure
that x and y never change from a non-negative to a negative value.

In the sequel, we allow ourselves to abbreviate constraints for the sake of read-
ability. For instance, the constraint CX in the previous example could equiva-
lently be written as (x > x′ ≥ 0) ∧ (y = y′).

3 Branching-Time Logics for GCS

We consider (sublogics of) the branching-time logic CTL over processes defined
by gap-order constraint systems, where atomic propositions are gap-clauses. The
denotation of an atomic proposition C = (x− y ≥ k) is JCK = Sat(C), the set of
evaluations satisfying this constraint. Well-formed CTL formulae are inductively
defined by the following grammar, where C ranges over the atomic propositions
and a ∈ Act over the action symbols.

ψ ::= C | true | ¬ψ | ψ ∧ ψ | 〈a〉ψ | EFψ | EGψ | E(ψUψ) (7)

For the semantics, let Pathsω(ν0) be the set of infinite derivations

π = ν0
a0−→ν1

a1−→ν2 . . . (8)

of G starting with evaluation ν0 ∈ Val and π(i) = νi the ith evaluation νi on
π. Similarly, we write Paths∗(ν0) for the set of finite paths from ν0 and let
Paths(ν0) = Pathsω(ν0) ∪ Paths∗(ν0). The denotation of composite formulae is
defined in the standard way.

JCK = Sat(C) (9)

JtrueK = Val (10)

J¬ψK = Val \ JψK (11)

Jψ1 ∧ ψ2K = Jψ1K ∩ Jψ2K (12)

J〈a〉ψK = Prea(JψK) (13)

JEFψK = {ν | ∃π ∈ Paths∗(ν). ∃i ∈ N. π(i) ∈ JψK} (14)

JEGψK = {ν | ∃π ∈ Pathsω(ν). ∀i ∈ N. π(i) ∈ JψK} (15)

JE(ψ1Uψ2)K = {ν | ∃π ∈ Paths(ν). ∃i ∈ N. (16)

π(i) ∈ Jψ2K ∧ ∀j < i.π(j) ∈ Jψ1K}

We use the usual syntactic abbreviations false = ¬true, ψ1∨φ2 = ¬(¬ψ1∧¬φ2).
The sublogics EF and EG are defined by restricting the grammar (7) defining

well-formed formulae: EG disallows subformulae of the form E(ψ1Uψ2) and
EFψ and in EF, no subformulae of the form E(ψ1Uψ2) or EGψ are allowed.
The Model Checking Problem is the following decision problem.

Input: A GCS G = (Var , Const,Act , ∆, λ), an evaluation ν : Var → Z
and a formula ψ.

Question: ν |= ψ?

Cerans [Cer94] showed that general CTL model checking is undecidable for
gap-order systems. This result holds even for restricted CTL without next op-
erators 〈a〉. In the following section we show a similar undecidability result for
the fragment EG. On the other hand, model checking GCS with the fragment
EF turns out to be decidable; cf. Section 5.

4 Undecidability of EG Model Checking

Theorem 1. The model checking problem for EG formulae over GCS is unde-
cidable.

Proof. By reduction from the halting problem of deterministic 2-counter Minsky
Machines (2CM). 2-counter machines consist of a deterministic finite control,
including a designated halting state halt , and two integer counters that can
be incremented and decremented by one and tested for zero. Checking if such a
machine reaches the halting state from an initial configuration with control-state
init and counter values x1 = x2 = 0 is undecidable [Min67].

Given a 2CM M , we will construct a GCS together with an initial evaluation
ν0 and a EG formula ψ such that ν0 |= ψ iff M does not halt.

First of all, observe that we can simulate a finite control of n states using
one additional variable state that will only ever be assigned values from 1 to n.
To do this, let [p] ≤ n be the index of state p in an arbitrary enumeration of the
state set. Now, a transition p−→q from state p to q introduces the constraint
(state = [p] ∧ state′ = [q]). We will abbreviate such constraints by (p−→q) in
the sequel and simply write p to mean the clause (state = [p]).

We use two variables x1, x2 to act as integer counters. Zero-tests can then
directly be implement as constraints (x1 = 0) or (x2 = 0). It remains to show
how to simulate increments and decrements by exactly 1. Our GCS will use
two auxiliary variables y, z and a new state err . We show how to implement
increments by one; decrements can be done analogously.

Consider the x1-increment p
x1=x1+1−→ q that takes the 2CM from state p to

q and increments the counter x1. The GCS will simulate this in two steps, as
depicted in Figure 1 below. The first step can arbitrarily increment x1 and will
remember (in variable y) the old value of x1. The second step does not change
any values and just moves to the new control-state. However, incrementing by
more than one in the first step enables an extra move to the error state err
afterwards. This error-move is enabled if one can assign a value to variable z
that is strictly in between the old and new value of x1, which is true iff the
increment in step 1 was not faithful. The incrementing transition of the 2CM is

p toq q

err

x′
1 > x1 = y

y < z < x1

x′
1 = x1

Fig. 1. Forcing faithful simulation of x1-increment. All steps contain the additional
constraint x′

2 = x2, which is not shown, to preserve the value of the other counter x2.

thus translated to the following three constraints.

(p−→toq) ∧ (x′1 > x1 = y) ∧ (x′2 = x2) (17)

(toq −→q) ∧ (x′1 = x1) ∧ (x2 = x2) (18)

(toq −→err) ∧ (y < z < x1). (19)

If we translate all operations of the 2CM into the GCS formalism as indicated
above, we end up with an overapproximation of the 2CM that allows runs that
faithfully simulate runs in the 2CM but also runs which ‘cheat’ and possibly
increment or decrement by more than one and still don’t go to state err in the
following step.

We enforce a faithful simulation of the 2CM by using the formula that is
to be checked, demanding that the error-detecting move is never enabled. The
GCS will only use a unary alphabet Act = {a} to label constraints. In particular,
observe that the formula 〈a〉err holds in every configuration which can move to
state err in one step. Now, the EG formula

φ = EG(¬halt ∧ ¬ 〈a〉err) (20)

asserts that there is an infinite path which never visits state halt and along which
no step to state err is ever enabled. This means ϕ is satisfied by evaluation
ν0 = {state = [init], x1 = x2 = y = z = 0} iff there is a faithful simulation of
the 2CM from initial state init with both counters set to 0 that never visits the
halting state. Since the 2CM is deterministic, there is only one way to faithfully
simulate it and hence ν0 |= ψ iff the 2CM does not halt. ut

5 Decidability of EF Model Checking

Let us fix sets Var and Const of variables and constants, respectively. We will
use an alternative characterization of gap-constraints called monotonicity graphs
(MG) which are finite graphs with nodes Var ∪ Const .2

Monotonicity graphs can be used to represent sets of evaluations. We show
that so represented sets are effectively closed under all logical connectors allowed
in EF, and one can thus evaluate a formula bottom up.

2 These were called Graphose Inequality Systems in [Cer94].

Definition 3 (Monotonicity Graphs). A monotonicity graph (MG) over
(Var ,Const) is a finite, directed graph M = (V,E) with nodes V = Var ∪Const
and edges labeled by elements of Z ∪ {−∞,∞}.

An evaluation ν : Var → Z satisfies M if for every edge (x
k−→y) it holds

that ν(x) − ν(y) ≥ k. We write ν |= M in this case and let Sat(M) denote the
set of evaluations satisfying M .

Let M(x, y) ∈ {−∞,∞}∪ Z denote the least upper bound of the sums of the
labels on any path from node x to node y. The closure |M | is the unique complete

monotonicity graph with edges x
M(x,y)−→ y for all x, y ∈ Var ∪ Const.

The degree of M is the smallest K ∈ N such that k = −∞ or k ≥ −K for
all edge labels k in M . It is the negation of the smallest finite negative label or
0 if no such label exists.

The following lemma states some basic properties of monotonicity graphs that
can easily be verified.

Lemma 1.

1. Sat(M) = ∅ for any monotonicity graph M that contains an edge labeled by
∞ or some cycle with positive weight sum.

2. |M | is polynomial-time computable from M and Sat(M) = Sat(|M |).
3. If we fix sets Var ,Const of variables and constants then for any gap-constraint

C there is a unique MG MC containing an edge x
k−→y iff there is a clause

x− y ≥ k in C, for which Sat(MC) = Sat(C).

The last point of this lemma states that monotonicity graphs and gap-constraints
are equivalent formalisms. We thus talk about transitional monotonicity graphs
over (Var ,Const) as those with nodes Var ∪Var ′∪Const and call a MG positive
if it has degree 0. We further define the following operations on MG.

Definition 4. Let M,N be monotonicity graphs over Var ,Const and V ⊆ Var.

– The restriction M |V of M to V is the maximal subgraph of M with nodes
V ∪ Const.

– The projection Proj (M,V) = |M |V is the restriction of M ’s closure to V .

– The intersection M ⊗N is the MG that contains and edge x
k−→y if k is the

maximal label of any edge from x to y in M or N .
– The composition G◦M of a transitional MG G and M is obtained by consis-

tently renaming variables in M to their primed copies, intersecting the result
with G and projecting to Var∪Const. G◦M := Proj (M[Var 7→Var ′]⊗G,Var).

These operations are surely computable in polynomial time. The next lemma
states important properties of these operations; see also [Cer94,BP12].

Lemma 2.

1. Sat(Proj (M,V)) = {ν|V : ν ∈ Sat(M)}.
2. Sat(M ⊗N) = Sat(M) ∩ Sat(N)

3. Sat(G ◦M) = {ν | ∃ν′ ∈ Sat(M). ν ⊕ ν′ ∈ Sat(G)} = PreG(M).

4. If M has degree n and G is a transitional MG of degree 0, then G ◦M has
degree ≤ n.

We will use monotonicity graphs to finitely represent sets of evaluations. To that
end, let us call a set S ⊆ Val MG-definable if there is a finite set {M0,M1, . . . ,Mk}
of MG such that

S =
⋃

0≤i≤k

Sat(Mi). (21)

Call S MGn-definable if there is such a set of MG with degree ≤ n.

Example 2. The monotonicity graph on the left below corresponds to the con-
traint CX in Example 1. On the right we see its closure (where edges labeled by
−∞ are omitted). Both have degree 0.

x x′

y y′

0

1

0

0

0

x x′

y y′

0

1

1

0

0

0

Let us compute the CX-predecessors of the set S = {ν | ν(x) > ν(y) = 0} which
is characterized by the single MG on the right below.

0

x

y
0

0

2

2 0

x x′

y y′

1

0

0

1

0
0

0

x

y

0

0

1

If we rename variables x and y to x′ and y′ and intersect the result with MCX
we get the MG in the middle. We project into V ar ∪ Const by computing the
closure and restricting the result accordingly. This leaves us with the MG on
the left, which characterizes the set PreCX(S) = {ν | ν(x) ≥ 2 ∧ ν(y) = 0} as
expected.

We have seen how to construct a representation of the C-predecessors PreC(S)
and thus Prea(S) for MG-definable set S, gap-constraints C and actions a ∈ Act .
The next lemma is a consequence of Lemma 1, point 3 and asserts that we can
do the same for complements.

Lemma 3. The class of MG-definable sets is effectively closed under comple-
ments.

Proof. By Lemma 1 we can interpret a set M = {M0,M1, . . . ,Mk} as gap-
formula in DNF. One can then use De Morgan’s laws to propagate negations to
atomic propositions, which are gap-clauses x − y ≥ k for which the negation is
expressible as gap-clause y− x ≥ −(k+ 1). It remains to bring the formula into
DNF again, which can be interpreted as set of MG. ut

Observe that complementation potentially constructs MG with increased degree.
This next degree is bounded by the largest finite edge-label in the current graph
plus one, but nevertheless, an increase of degree cannot be avoided. The classes
of MGn-definable sets are therefore not closed under complement.

Example 3. The set S = {ν | ν(x) > ν(y) = 0} from the previous example
corresponds to the gap-formula ϕS = (x− 0 ≥ 1) ∧ (0− y ≥ 0) ∧ (y − 0 ≥ 0).

Its complement is characterized by the set Sc = {(0 −2−→x), (y
−1−→0), (0

−1−→y)},
which contains a MG of degree 2.

It remains to show that we can compute Pre∗(S) for MG-definable sets S.
We recall [Cer94] the following partial ordering on monotonicity graphs and its
properties.

Definition 5. Let M,N be MG over (Var ,Const). We say M covers N (write
N vM) if for all x, y ∈ Var ∪ Const it holds that N(x, y) ≤M(x, y).

Lemma 4.

1. If N vM then Sat(N) ⊇ Sat(M).
2. v is a WQO on MGn for every fixed n ∈ N.

Note that point 1 states that a v-bigger MG is more restrictive and hence has a
smaller denotation. Also note that v is not a well ordering on the set of all MG,
because edges may be labeled with arbitrary integers (and hence ever smaller
negative ones).

Lemma 5. Let S be a MGn-definable set of evaluations. Then Pre∗(S) is MGn-
definable and a representation of Pre∗(S) can be computed from a representation
of S.

Proof. It suffices to show the claim for a set characterized by a single mono-
tonicity graph M because Pre∗(S ∪ S′) = Pre∗(S) ∪ Pre∗(S′). Assume that M
has degree n.

We proceed by exhaustively building a tree of MG, starting in M . For every
node N we compute children G ◦ N for all of the finitely many transitional
MG G in the system. Point 4) of the Lemma 2 guarantees that all intermediate
representations have degree ≤ n. By Lemma 4, point 2, any branch eventually
ends in a node that covers a previous one and Lemma 4, point 1 allows us to
stop exploring such a branch. We conclude that Pre∗(M) can be characterized
by the finite union of all intermediate MG. ut

Finally, we are ready to prove our main result.

Theorem 2. EF Model checking is decidable for Gap-order constraint systems.
Moreover, the set JψK of evaluations satisfying an EF-formula ψ is effectively
gap-definable.

Proof. We can evaluate a formula bottom up, representing the sets satisfying
subformulae by finite sets of MG. Atomic propositions are either true or gap-
clauses and can thus be written directly as MG. For composite formulae we use
the properties that gap-definable sets are effectively closed under intersection
(Lemma 2) and negation (Lemma 3), and that we can compute representations
of Prea(S) and Pre∗(S) for MG-definable sets S by Lemmas 2 and 5.

The key observation is that although negation (i.e., complementing) may
increase the degree of the intermediate MG, this happens only finitely often
in the bottom up evaluation of an EF formula. Computing representations for
modalities 〈a〉 and EF does not increase the degree. ut

6 Applications

We consider labeled transition systems induced by GCS. In a weak semantics, one
abstracts from non-observable actions modeled by a dedicated action τ ∈ Act .
The weak step relation =⇒ is defined by

τ
=⇒ =

τ−→∗ , and for a 6= τ,
a

=⇒ =
τ−→∗ · a−→ · τ−→∗ .

Bisimulation and weak bisimulation are semantic equivalences in van Glabbeeks
linear time – branching time spectrum [Gla01], which are used to compare the
behavior of processes. Their standard co-inductive definition is as follows.

Definition 6. A binary relation R ⊆ V 2 on the states of a labeled transition
system is a bisimulation if sRt implies that

1. for all s
a−→s′ there is a t′ such that t

a−→t′ and s′Rt′, and

2. for all t
a−→t′ there is a s′ such that s

a−→s′ and s′Rt′.

Similarly, R is a weak bisimulation if in both conditions above −→ is replaced by
=⇒. (Weak) bisimulations are closed under union, so there exist unique maximal
bisimulation ∼ and weak bisimulation ≈ relations, which are equivalences on V .

Let the maximal (weak) bisimulation between two LTS with state sets S and T
be the maximal (weak) bisimulation in their union projected into (S×T)∪(T×S).

The Equivalence Checking Problem is the following decision problem.

Input: Given LTS T1 = (V1,Act , −→) and T2 = (V2,Act , −→),
states s ∈ V1 and t ∈ V2 and an equivalence R.

Question: sRt?

In particular, we are interested in checking strong and weak bisimulation be-
tween processes of GCS and finite systems. Note that the decidability of weak

bisimulation implies the decidability of the corresponding strong bisimulation as
∼ and ≈ coincide for LTS without τ labels.

We recall (see e.g. [KJ06,JKM98]) that finite systems admit characteristic
formulae up to weak bisimulation in EF.

Theorem 3. Let T1 = (V1,Act , −→) be an LTS with finite state set V1 and T2 =
(V2,Act , −→) be an arbitrary LTS. For every state s ∈ V1 one can construct an
EF-formula ψs such that t ≈ s ⇐⇒ t |= ψs for all states t ∈ V2.

The following is a direct consequence of Theorems 3 and 2.

Theorem 4. For every GCS G = (V ar, Const,Act , ∆, λ) and every LTS T =
(V,Act , −→) with finite state set V, the maximal bisimulation ≈ between TG and
T is effectively gap-definable.

Proof. By Theorems 3 we can compute, for every state s of T, a characteristic
formula ψs that characterizes the set of evaluations {ν | ν ≈ s} = JψsK. By
Theorem 2 these sets are MG- and thus gap-definable. Since the class of gap-
definable sets is effectively closed under finite unions and ≈ =

⋃
s∈V JψsK, the

result follows. ut

Considering that gap-formulae are particular formulae of Presburger Arith-
metic, we know that gap-definable sets have a decidable membership problem.
Theorem 4 thus implies the decidability of equivalence checking between GCS
processes and finite systems w.r.t. strong and weak bisimulation.

7 Conclusion

We have shown that model checking gap-order systems with the logic EG is
undecidable while the problem remains decidable for the logic EF. An imme-
diate consequence of the latter result is the decidability of strong and weak
bisimulation checking between GCS and finite systems.

The decidability of EF model checking is shown by using finite sets of mono-
tonicity graphs or equivalently, gap-formulae to represent intermediate results in
a bottom-up evaluation. This works because the class of arbitrary gap-definable
sets is effectively closed under union and complements and one can compute
finite representations of Pre(S) and Pre∗(S) for gap-definable sets S.

Our decidability result relies on a well-quasi-ordering argument to ensure
termination of the fixpoint computation for Pre∗(S), and therefore does not
yield any meaningful upper complexity bound.

Interesting open questions include determining the exact complexity of model
checking GCS with respect to EF. We also plan to investigate the decidability
and complexity of checking behavioral equivalences like strong and weak bisimu-
lation between two GCS processes as well as checking (weak) simulation preorder
and trace inclusion.

References

[AD06] P A Abdulla and G Delzanno. Constrained multiset rewriting. In Proc.
AVIS06, 5th int. workshop on on Automated Verification of InfiniteState Sys-
tems, 2006.

[Boz12] Laura Bozzelli. Strong termination for gap-order constraint abstractions of
counter systems. In LATA, pages 155–168, 2012.

[BP12] Laura Bozzelli and Sophie Pinchinat. Verification of gap-order constraint
abstractions of counter systems. In VMCAI, pages 88–103, 2012.

[Cer94] Karlis Cerans. Deciding properties of integral relational automata. In ICALP,
pages 35–46, 1994.

[Gla01] R.J. van Glabbeek. The linear time – branching time spectrum I; the seman-
tics of concrete, sequential processes. In J.A. Bergstra, A. Ponse, and S.A.
Smolka, editors, Handbook of Process Algebra, chapter 1, pages 3–99. Elsevier,
2001.

[JKM98] Petr Jančar, Antońın Kučera, and Richard Mayr. Deciding bisimulation-like
equivalences with finite-state processes. In ICALP, pages 200–211, 1998.

[KJ06] Antońın Kučera and Petr Jančar. Equivalence-checking on infinite-state sys-
tems: Techniques and results. TPLP, 6(3):227–264, 2006.

[May84] Ernst W. Mayr. An algorithm for the general petri net reachability problem.
SIAM J. Comput., 13(3):441–460, 1984.

[Min67] Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1967.

