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Abstract. This paper presents a formal framework for run-time enforcement
mechanisms, or monitors, based on probabilistic input/output automata [3, 4],
which allows for the modeling of complex and interactive systems. We asso-
ciate with each trace of a monitored system (i.e., a monitor interposed between
a system and an environment) a probability and a real number that represents
the cost that the actions appearing on the trace incur on the monitored system.
This allows us to calculate the probabilistic (expected) cost of the monitor and
the monitored system, which we use to classify monitors, not only in the typical
sense, e.g., as sound and transparent [17], but also at a more fine-grained level,
e.g., as cost-optimal or cost-efficient. We show how a cost-optimal monitor can
be built using information about cost and the probabilistic future behavior of the
system and the environment, showing how deeper knowledge of a system can
lead to construction of more efficient security mechanisms.

1 Introduction

A common approach to enforcing security policies on untrusted software is run-time
monitoring. Run-time monitors, e.g., firewalls and intrusion detection systems, observe
the execution of untrusted applications or systems, e.g., web browsers and operating
systems, and ensure that their behavior adheres to a security policy.

Given the ubiquity of run-time monitors and the negative impact they have on the
overall security of the system if they fail to operate correctly, it is important to have
a good understanding of their behavior and strong guarantees about their correctness.
Such guarantees can be achieved through the use of formal reasoning.

Schneider introduced security automata [22], an automata-based framework to for-
mally model and reason about run-time enforcement of security policies. Several ex-
tensions have been proposed to investigate different definitions of and requirements for
enforcement, such as soundness, transparency, and effectiveness (e.g., [17]). A common
observation is that once requirements for enforcement are set more than one implemen-
tation of a monitor might be able to fulfill them.

Two examples of common run-time enforcement mechanisms are transport layer
proxies and TCP scrubbers [18]. Both of these convert ambiguous TCP flows to un-
ambiguous ones, thereby preventing attacks that seek to avoid detection by network
intrusion detection systems (NIDS). Transport layer proxies interpose between a client
and a server and create two connections: one between the client and the proxy, and one



between the proxy and the server. TCP scrubbers leave the bulk of the TCP processing
to the end points: they maintain the current state of the connection and a copy of packets
sent by the external host but not acknowledged by the internal receiver. Fig. 1 (adapted
from [18]) depicts the differences between the two mechanisms in a specific scenario.
Although both mechanisms correctly enforce the same high-level “no ambiguity” pol-
icy, the proxy requires twice the amount of buffering as the scrubber, which suggests
that the proxy is more costly (in terms of computational resources).
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Fig. 1: TCP transport layer proxies and scrubbers. The circled por-
tions represent the amount of time that data is buffered.

Recent work has
started looking at
cost as a metric to
classify and com-
pare such moni-
tors. Drabik et al.
introduced a frame-
work that calcu-
lated the overall
cost of enforcement
based on costs as-
signed to the en-
forcement actions
performed by the
monitor [10]; this framework can be used to calculate and compare the cost of different
monitors’ implementations. This framework provides means to reason about cost-aware
enforcement, but its enforcement model does not capture interactions between the tar-
get and its environment, including the monitor; recent work has shown that capturing
such interactions can be valuable [19]. In addition, in practice the cost of running an
application may depend on the ordering of its actions, which may in turn depend on
the scheduling strategy. Finally, one might also wish to ensure that a monitor enforces a
cost policy, which defines which costs are acceptable; practical cost policies can depend
on a probabilistic model of the system’s behavior, e.g., take into account the likelihood
of particular events. For example, a security policy that describes how to protect a sys-
tem against different attacks might depend on the probability that these attacks, e.g., a
DDOS attack or insider attack, will occur against that particular system.

The main contribution of this paper is a formal framework that enables us to (1)
model monitors that interact with probabilistic targets and environments (i.e., targets
and environments whose behavior we can characterize probabilistically), (2) check
whether such monitors enforce a given security policy, and (3) calculate and compare
their cost of enforcement. More precisely:

1. Our framework is based on probabilistic I/O automata [3, 4]. This allows us to
reason about partially ordered events in distributed and concurrent systems, and the
probabilities of events and sequences of events.

2. We extend probabilistic I/O automata with abstract schedulers to allow fair com-
parison of systems where a policy is enforced on a target by different monitors.

3. We define cost security policies and cost enforcement, richer notions of (boolean)
security policies and enforcement [22]. Cost security policies assign a cost to each
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trace, allowing richer classification of traces than just as bad or good. We also show
how to encode boolean security policies as cost security policies.

4. Finally, we show how to use our framework to compare monitors’ implementations
and we identify the sufficient conditions for constructing cost-optimal monitors.

2 Background

We introduce our notation in §2.1 and then briefly review probabilistic I/O automata
(PIOA) [3, 4] in §2.2; more details can be found in our technical report [20] or standard
PIOA references, e.g., [3, 4]. In §2.3 we extend PIOA by introducing the notion of
abstract schedulers, which we use in the cost comparison of monitors in §5. Finally, in
§2.4, we show how to use PIOA to model practical scenarios through a running example
that we will use in the rest of the paper to illustrate the main ideas of our framework.

2.1 Preliminaries

A σ−field over a set X is a set F ⊆ 2X that contains the empty set and is closed
under complement and countable union. A pair (X,F) where F is a σ−field over X ,
is called a measurable space. A measure on a measurable space (X,F) is a function
µ : F → [0,∞] that is countably additive: for each countable family {Xi}i of pairwise
disjoint elements of F , µ(∪iXi) = Σiµ(Xi).

A probability measure on (X,F) is a measure on (X,F) such that µ(X) = 1. A
sub-probability measure on (X,F) is a measure on (X,F) such that µ(X) ≤ 1. We
use Disc(X) and SubDisc(X) to denote, respectively, the set of discrete probability
measures and discrete sub-probability measures on X . If µ is a probability measure
then use supp(µ) to denote the set of elements that have non-zero measure.We let δ(x)
denote the discrete probability measure that assigns probability 1 to {x}.

A signed measure on (X,F) is a function ν : F → [−∞,∞] such that: (1) ν(∅) =
0, (2) ν assumes at most one of the values±∞, and (3) for each countable family {Xi}i
of pairwise disjoint elements of F , ν(∪iXi) = Σiµ(Xi) with the sum converging
absolutely if ν(∪iXi) is finite.

Given two discrete measures µ1, µ2 we denote by µ1 × µ2 the product measure,
such that µ1 × µ2(x, y) = µ1(x) · µ2(y) (i.e., component-wise multiplication).

A function f : X → Y is said to be measurable from (X,FX) → (Y,FY ) if the
inverse image of each element of FY is an element of FX . Given measurable f from
(X,FX)→ (Y,FY ) and a measure µ on (X,FX), the function f(µ) defined on FY by
f(µ)(C) = µ(f−1(C)) for eachC ∈ Y is a measure on (Y,FY ) and is called the image
measure of µ under f . If FX = 2X , FY = 2Y , and µ is a sub-probability measure,
then the image measure f(µ) is a sub-probability satisfying f(µ)(Y ) = µ(X).

2.2 Probabilistic I/O Automata

An action signature S is a triple of three disjoint sets of actions: input, output, and inter-
nal actions (denoted as input(S), output(S), and internal(S)). The external actions
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extern(S)=input(S) ∪ output(S) model the interaction of the automaton with the en-
vironment. Given a signature S we write acts(S) for the set of all actions contained in
the signature, i.e., acts(S) = input(S) ∪ output(S) ∪ internal(S).

A probabilistic I/O automaton (PIOA) P is a tuple (sig(P ), Q(P ), q̄P , R(P )),
where: (1) sig(P ) is an action signature; (2) Q(P ) is a (possibly infinite) set of states;
(3) q̄P is a start state, with q̄P ∈ Q(P ); and (4) R(P )⊆Q(P )× acts(P )×Disc(Q(P ))
is a transition relation, where Disc(Q(P )) is the set of discrete probability measures on
Q(P ).

Given a PIOA P , we write acts(P ) for acts(sig(P )). We assume that P satisfies
the following conditions: (i) Input enabling: For every state q ∈ Q(P ) and input action
α ∈ input(P ), α is enabled4 in q; and (ii) Transition determinism: For every state
q ∈ Q(P ) and action α ∈ acts(P ), there is at most one µ ∈ Disc(Q(P )) such that
(q, α, µ) ∈ R(P ). If there exists exactly one such µ, it is denoted by µq,α, and we write
tranq,α for the transition (q, α, µq,α).

A non-probabilistic execution e of P is either a finite sequence, q0, a1, q1, a2,
. . . , ar, qr, or an infinite sequence q0, a1, q1, a2, . . . , ar, qr, . . . of alternating states
and actions such that: (1) q0 = q̄P , and (2) for every non-final i, there is a transition
(qi, ai+1, µ) ∈ R(P ) with qi+1 ∈ supp(µ).

We write fstate(e) for q0, and, if e is finite, we write lstate(e) for the last state
of e . The trace of an execution e , written trace(e), is the restriction of e to the set of
external actions of P . We say that t is a trace of P if there is an execution e of P such
that trace(e) = t . We use execs(P ) and traces(P ) (resp., execs∗(P ) and traces∗(P ))
to denote the set of all (resp., all finite) executions and traces of an PIO automaton P .

The symbol λ denotes the empty sequence. We write e1; e2 for the concatenation of
two executions the first of which has finite length and lstate(e1) = fstate(e2). When
σ1 is a finite prefix of σ2, we write σ1 � σ2, and, if a strict finite prefix, σ1 ≺ σ2.

An automaton that models a complex system can be constructed by composing
automata that model the system’s components. When composing automata Pi, where
i ∈ I and I is finite, their signatures are called compatible if their output actions are dis-
joint and the internal actions of each automaton are disjoint with all actions of the other
automata. When the signatures are compatible we say that the corresponding automata
are compatible too. The composition P =

∏
i∈I Pi of a set of compatible automata

{Pi : i ∈ I} is defined as:

1. sig(P ) =
∏
i∈I sig(Pi) =

(
output(P ) = ∪i∈Ioutput(Pi), internal(P ) =

∪i∈I internal(Pi), input(P ) = ∪i∈I input(Pi)− ∪j∈Ioutput(Pj)
)

;
2. Q(P ) =

∏
i∈I Q(Pi);

3. q̄P =
∏
i∈I q̄Pi ;

4. R(P ) is equal to the set of triples (q , a,
∏
i∈I µi) such that:

(a) a is enabled in some qi ∈ q , i ∈ I and
(b) for all i ∈ I if a ∈ acts(Pi) then (qi, a, µi) ∈ R(Pi), otherwise µi = δ(qi).

Nondeterministic choices in P are resolved using a scheduler. A scheduler for P is
a function σ : execs∗(P ) → SubDisc(R(P )) s.t., if (q, a, µ) ∈ supp(σ(e)) then q =

4 If a PIOA P has a transition (q, α, µ) ∈ R(P ) then we say that action α is enabled in state q.
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lstate(e). Thus, σ decides (probabilistically) which transition (if any) to take after each
finite execution e . Since this decision is a discrete sub-probability measure, it may be
the case that σ chooses to halt after e with non-zero probability: 1− σ(e)(R(P )) > 0.

A scheduler σ together with a finite execution e generates a measure εσ,e on the
σ−field FP generated by cones of executions, where the cone Ce′ of a finite execution
e ′ is the set of executions that have e ′ as prefix. The construction of the σ−field is
standard [3, 4]. The measure of a cone εσ,e(Ce′) is defined recursively as:

1. 0, if e ′ 6� e and e 6� e ′;
2. 1, if e ′ � e;
3. εσ,e(Ce′′)µσ(e′′)(a, q), if e ′ is of the form e ′′ a q, e � e ′′. Here, µσ(e′′)(a, q)

is defined to be σ(e ′′)(tranlstate(e′′),a)µlstate(e′′),a(q), that is, the probability that
σ(e ′′) chooses a transition labeled by a and that the new state is q.

Given a probability measure ε on FP , we define the trace distribution of ε, denoted
tdist(ε) to be the image measure of ε under trace, i.e., for each cone of traces Ct,
trace(ε)(Ct) = ε(trace−1(Ct)). We denote by tdists(P ) the set of trace distributions of
(probabilistic executions of) P .

2.3 Abstract Schedulers

In this section we introduce abstract schedulers, a novel extension of PIOA and one
of the contributions of this paper. Abstract schedulers are used in the cost compari-
son of monitors (§5). Given a signature S, an abstract scheduler τ for S is a function
τ : (extern(S))∗ → SubDisc(extern(S)). τ decides (probabilistically) which action
appears after each finite trace5 t . Note that an abstract scheduler τ assigns probabilities
to all possible (finite) traces over the given signature.

An abstract scheduler τ together with a finite trace t generate a measure ζτ,t on
the σ−field FPT

generated by cones of traces, where the cone Ct′ of a finite trace t ′

is the set of traces that have t ′ as prefix. The measure of a cone ζτ,t(Ct′) is defined
recursively as:

1. 0, if t ′ 6� t and t 6� t ′;
2. 1, if t ′ � t ;
3. ζτ,t(Ct′′)τ(t ′′)({a}), if t ′ is of the form t ′′; a, t � t ′′.

Standard measure theoretic arguments ensure that ζτ,t is well defined and a proba-
bility measure.

Refining abstract schedulers. Abstract schedulers give us (sub-)probabilities for all
possible traces over a given signature. However, a given PIOA P might exhibit only
a subset of all those possible traces. Thus, we would like to have a way to refine an
abstract scheduler τ to a scheduler σ that corresponds to the particular PIOA P and is
“similar” to τ w.r.t. assigning probabilities. This similarity can be made more precise

5 Note that the term “trace” is overloaded: it refers to either the result of applying the function
trace to an execution e or to a sequence of external actions. It will be clear from the context to
which of the two cases we refer each time.
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as follows. First, if an abstract scheduler τ assigns a zero probability to a trace t , then
this means that t cannot happen (e.g., the system stops due to overheating). Thus, even
if t is a trace that P can exhibit, we would like σ to assign it a zero probability. Second,
assume we have a trace t that can be extended with actions a, b, or c, and an abstract
scheduler τ that assigns a non-zero probability to all traces t ;X , with X ∈ {a, b, c}
and τ(t)(X) = 1, i.e., τ does not allow for the system to stop after t . If t ; a is a trace
that P can exhibit, we would like σ to assign it the same probability as τ . However,
if P cannot exhibit that trace, σ should assign it a zero probability. But then σ would
be a sub-probability measure, i.e., it would allow for P to halt, whereas τ does not. To
solve this problem, we proportionally re-distribute the probabilities that τ assigns to the
traces that P can exhibit. These two cases are formalized as follows.

Given an abstract scheduler τ over a signature S, and a PIOA P with sig(P ) =
S, we define the refinement function refn(τ, P ) = τ ′, where τ ′ : (extern(S))∗ →
SubDisc(extern(S)), i.e., a function that maps an abstract scheduler and a PIOA to
another abstract scheduler, as follows:
Let t = t ′; a ∈ (extern(S))∗ in

– if t 6∈ traces(P ) or τ(t ′)({a}) = 0, then τ ′(t ′)({a}) = 0;
– otherwise, τ ′(t ′)({a}) = τ(t′)({a})(

τ(t′)(A)
)

+
(

1−τ(t′)(extern(S))
) ,

where A = {x ∈ extern(S) | t ′;x ∈ traces(P )}.

Given an abstract scheduler τ and a PIOA P , standard measure theoretic arguments
ensure that if τ together with a finite trace t generate a probability measure ζτ,t on the
σ−field FPT

generated by cones of traces, so does the abstract scheduler refn(τ, P ),
i.e., it generates a probability measure ζ ′refn(τ,P ),t on the σ−field FPT

.
We now formalize the relationship between schedulers and abstract schedulers.

Given an abstract scheduler τ over a signature S, and a PIOA P with sig(P ) = S,
a scheduler σ is derivable from τ iff σ is a scheduler for P such that for all executions
e ∈ execs(P ) the trace distributions of εσ,e are equal to the probability measures of
trace(e) assigned by the refinement of τ on P , i.e., for all executions e, e ′′ ∈ execs(P ),
tdist(εσ,e)(Ce′′) = ζ ′refn(τ,P ),trace(e)(Ctrace(e′′)).

2.4 Running Example Modeled Using PIOA

To illustrate how our framework can be used to model enforcement scenarios we will
consider a running example of a file server S, illustrated in Fig. 2a.

Clients (C1 through Cn in the figure) can request to open or close a particular file.
The server responds to the requests by returning a file descriptor or an acknowledgment
that the file was closed successfully. Given a security policy P stating that at most one
client at a time can access a particular file, a monitor is interposed between the clients
and the server to enforce P (Fig. 2b). The monitor has the ability to deny access to a
file requested by a client.

We now show how to model the running example using PIOA. Each client Ci re-
quests to open a file x through an openi(x) output action. Once the client receives a
file descriptor through an fd i(x) input action, it requests to close the file through an
closei(x) action. When it receives an acknowledgment that the file was closed, it stops
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Fig. 2: Diagrams of interposing a monitor between clients and server

requesting access to the file. If, however, the client is denied access to the file, it prob-
abilistically chooses between requesting the file again and permanently discontinuing
requesting the file.

0

2

1

3

fdi(x)

acki(x), denyi(x)denyi(x)

openi(x) openi(x)

closei(x) closei(x)

Fig. 3: Client PIOA state transi-
tion diagram

A state diagram of Ci is shown in Fig. 3.6

The ellipse represents the communication interface
of the automaton and the circles the automaton’s
states. Inputs are depicted as arrows entering the au-
tomaton, and we only show the effect of the action,
i.e., the automaton’s end state. Each output action
is depicted with two arrows: (1) a straight arrows
between states, to depict the precondition and effect
on states; and (2) a dashed arrow to show that action
becomes visible outside the automaton. The server
S implements a stack of size one: it replies with a
file descriptor or an acknowledgment of closing a file for the latest request. This means
that if a scheduler allows two requests to arrive before the server is given a chance to
reply, then the first request is ignored and the last request is served.

To further illustrate some of the capabilities of our framework we introduce two
example types of monitor:

– MDENY always denies access to a file that is already open;
– MPROB uses probabilistic information about future requests to make decisions.

More precisely, a client i is always granted a request to open a file that is available.
Otherwise, if the file is unavailable, i.e., a client j has already opened it, the monitor
checks whether (1) after force-closing the file for j, j will ask to re-open the file
with probability less than 0.5; and (2) after denying access to i, i will re-ask with
probability greater than 0.5. If both hold, the monitor gives access to i; otherwise it
denies access.

6 Pseudocode and additional state diagrams for clients and the server can be found in our tech-
nical report [20].
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Signature: Input: openi(x),closei(x),
fdMi

(x), ackMi
(x),

where x is a filename
Output: openMi

(x), closeMi
(x),

fdi(x), acki(x), denyi(x),
where x is a filename

States: p: list (of triples) of requests
from clients to monitor

q: list (of triples) of responses
from monitor to clients

r: list (of pairs) of active
connections

Start States: p = q = r = nil
Transitions: openi(x)

Effect: p := p@[〈op, i, x〉]
closei(x)

Effect: p := p@[〈cl, i, x〉]
fdMi

(x)
Effect: q := q@[〈fd,Mi, x〉]

ackMi
(x)

Effect: q := q@[〈ack ,Mi, x〉]
openMi

(x)
Precondition: p = 〈op, i, x〉 :: p′

∧ 6 ∃〈x, j〉 ∈ r, j 6= i
Effect: p := p′

r := r@[〈x, i〉]
closeMi

(x)
Precondition: p = 〈cl, i, x〉 :: p′

Effect: p := p′

r := r\[〈x, i〉]
fdi(x)

Precondition: q = 〈fd,Mi, x〉 :: q′

Effect: q := q′

acki(x)
Precondition: q = 〈ack ,Mi, x〉 :: q′

Effect: q := q′

denyi(x)
Precondition: p = 〈op, i, x〉 :: p′

∧∃〈x, j〉 ∈ r, j 6= i
Effect: p := p′

Fig. 4: MDENY PIOA definition

The pseudocode7 for MDENY is depicted in Fig. 4. The pseudocode for MPROB

is similar and can be found in our technical report [20], along with additional details
about the structure of the monitors.

Let us now consider the composed systemΠ = C1×. . .×Cn×M×S. The states of
the composed system will be n+ 2− tuples of the form qΠ = 〈qC1

, . . . , qCn
, qM , qS〉.

An example execution for MDENY is: eMDENY
= qΠ0

open1(x) qΠ1
openM1

(x) qΠ2

fdM1
(x) qΠ3 fd1(x) qΠ4 open2(x) qΠ5 deny2(x) qΠ6 open2(x) qΠ7 deny2(x) qΠ8 .

The trace of eMDENY is: tMDENY = trace(eMDENY ) = open1(x) openM1
(x) fdM1

(x)
fd1(x) open2(x) deny2(x) open2(x) deny2(x).

In tMDENY
client C1 asks to open file x and is given access, after which client C2

asks to open the same file and is denied access by the monitor.

Let us consider the scheduler σ that schedules transitions based on the following

high-level pattern:
(

[C1, . . . , Cn]; M∗; S; M∗
)∞

. This pattern says that σ chooses
equiprobably one of the clients to execute some transition, and then, deterministically,
the monitor gets a chance to execute as many actions as it needs, then the server re-
sponds with one transition, and finally the monitor gets again the chance to do as much
work as it needs. This pattern repeats finitely or infinitely many times.

Let us assume that σ chooses each client to take a turn with probability P (Ci) = 1
n .

Then the probability of eMDENY is given by the measure εσ,q̄ on the cone of exe-
cutions that have eMDENY

as prefix, i.e., εσ,q̄(CeMDENY
). It is easy to calculate that

εσ,q̄(CeMDENY
) = 0.1

n2 . Similarly, we can calculate the probabilities of tMDENY (more
details can be found in our technical report [20]).

7 We use the precondition pseudocode style that is typical in I/O automata papers (e.g., [3, 4]).
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3 Probabilistic Cost of Automata

In this section we develop the framework to reason about the cost of an automaton P.
A cost function assigns a real number to every trace over a signature S, i.e., every

possible sequence of external actions of S. More formally, a cost function is a signed
measure cost on the σ−field FPT

generated by cones of traces, i.e., cost : FPT
→

[−∞,∞], where PT are the traces of an automaton P with signature S that generates
all possible traces of its signature. Remember that a cone Ct of a finite trace t is the
set of traces that have t as prefix. Thus, there is a one-to-one correspondence between
traces and the cones they infer. Although traces are the subject of our analysis, cones
are their (sound) mathematical representation.

We calculate the expected cost of a trace, called probabilistic cost, by multiplying
the probability of the trace with its cost. More formally, given a scheduler σ and a cost
function cost, the probabilistic cost of a cone of a trace Ct is defined as pcostσ(Ct) =(
εσ,q̄(trace

−1)(Ct)
)
cost(Ct).

Probabilistic costs of traces can be used to assign expected costs to automata: the
probabilistic (i.e., expected) cost of an automaton is the set of probabilistic costs of its
traces. However, it is often useful for the cost to be a single value, rather than a set. For
example, we might want to build a monitor that does not allow a system to overheat,
i.e., it never goes above a threshold temperature. In this case the cost of an automaton
(e.g., the composition of the monitor automaton with the system automaton) could be
the maximal cost of all traces. Similarly, we might want to build a monitor that “cools
down” a system, i.e., lowers a system’s temperature below a threshold, infinitely often.
Here we could assign the cost of an automaton to be the minimal cost that appears
infinitely often in its (infinite) set of traces, and check whether that value is smaller than
the threshold. It is clear that it can be beneficial to abstract the function that maps sets
of probabilistic costs of traces to single numbers. We formalize this as follows.

Given a scheduler σ and a cost function cost, the probabilistic cost of a PIOA P is
defined as pcostFσ(P ) = Ft∈traces(P )(pcostσ(Ct)). Note that the definition is parametric
in the function F. As an example, consider the infinite set v = {v0, v1, . . .}, where
each vi is the probabilistic cost of some trace of P (ranging over a finite set of possible
costs); then, F could be (following definitions of Chatterjee et al. [6]): (1) Sup(v) =
sup{vn | n ≥ 0}, or (2) LimInf(v) = liminf n→∞vn = limn→∞inf{vi | i ≥ n}. Sup
chooses the maximal number that appears in v (e.g., the maximal temperature that a
system can reach). LimInf chooses the minimal number that appears infinitely often in
v (e.g., the temperature that the system goes down to infinitely often).

If costσ(Ct) ≥ 0 for some trace t , then we call cost(Ct) the value of t . If cost(Ct) ≤
0, then the absolute value of costσ(Ct) is the cost of t . We define similarly the proba-
bilistic value and cost of a trace t and a PIOA P .

Note that cost carries value/cost information. For example, if we were to assign
values to actions r1 and r2, e.g., 2 and 5 respectively, then cost can assign different
values to their interleavings that might not clearly relate to the values of the actions,
e.g., cost(r1; r2) = 0 and cost(r2; r1) = 20.

In our technical report we show how one can define the cost of a system given cost
functions for its components [20]: such an approach can be used to embed the frame-
work of Drabik et al. [10] in ours, showing that our framework is at least as expressive.
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4 Cost Security Policy Enforcement

In this section we define security policies and what it means for a monitor to enforce a
security policy on a system.

Cost security policies. A monitorM is a PIOA. A monitor mediates the communication
between system components Si which are also PIOA. Thus, the the output actions of
each Si are inputs to the monitor, and the monitor has corresponding outputs that it
forwards to the other components. More formally, given an index set I and a set of
components {Si}, i ∈ I , we assume that acts(Si) ∩ acts(Sj) = ∅, for all i, j ∈ I ,
i 6= j. Our goal is to model and reason about the external behavior of the monitored
system. Thus, we also assume that internal(Si) = ∅, for all i ∈ I . Since the system
components Si are compatible, we will refer to their composition Πi∈ISi as system S.
A monitored system is the PIOA that results from composing M with S.8

The cost function defined in §3 describes the impact of a monitor on a system. A
cost function is not necessarily bound to a specific security policy, which allows for the
analysis of the same monitor against different policies. In practice, a monitor’s purpose
is to ensure that some policy is respected by the monitored system. In the running
example, the monitor’s role is to ensure that a file is not simultaneously open by two
clients. Furthermore, since each deny action comes with a cost, it is desirable for the
cost of monitoring to be limited. This motivates the need to define a cost security policy.

Given a (monitored) system P , a cost security policy over sig(P ) is a cost function,
i.e., a signed measure Pol on the σ−field FPT

generated by cones of traces that range
over sig(P ), i.e., Pol : FPT

→ [−∞,∞]. When we talk about the signature, actions,
etc. of Pol, we refer to the signature, actions, etc. of P . Cost security policies associate
a cost with each trace. For instance, if a trace t corresponds to a particular enforcement
interaction between a monitor and a client, then Pol(Ct) = 10 could describe that such
enforcement (i.e., t) is allowed only if its cost is less than 10. Our definition of policies
extends that of security properties [22]: security properties are predicates, i.e., binary
functions, on sets of traces, whereas we focus on policies that are functions whose range
is the real numbers (as opposed to {0, 1}). We leave the investigation of enforcement
for securities policies defined as sets of sets of traces (e.g., [22, 8, 19]) for future work.

Given a cost security policy Pol and a scheduler σ the probabilistic cost security
policy pPolσ under σ is defined as pPolσ(Ct) =

(
εσ,q̄(trace

−1)(Ct)
)
Pol(Ct).

Cost security policy enforcement. Given a scheduler σ, a cost function cost, a policy
Pol, a monitor M , and a system S (compatible with M ), we say that M n−enforces≤
(resp., n−enforces≥) Pol on S under σ and cost if and only if the probabilistic cost of
the monitored system differs by at most n from the probabilistic cost that the policy
assigns to the traces of the monitored system, i.e.,:(

pcostFσ(M × S)
)
−
(
Ft∈traces(M×S)pPolσ(Ct)

)
≤ n (resp., ≥ n), i.e.,(

Ft∈traces(M×S)pcostσ(Ct)
)
−
(
Ft∈traces(M×S)pPolσ(Ct)

)
≤ n (resp., ≥ n).

8 By assumption, M and S are compatible. In scenarios where this is not the case, one can use
renaming to make the automata compatible [19, 3, 4].
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We say that a monitor M enforces≤ (resp., enforces≥) a security policy P on a
system S under a scheduler σ and a cost function cost if and only if M 0−enforces≤
(resp., 0−enforces≥) P on S under σ.

The definition of enforcement says that a monitor M enforces a policy Pol on a
system S if the probabilistic cost of the monitored system under some scheduler σ and
cost function cost is less (resp. greater) than or equal to the cost that the policy assigns
to the behaviors that the monitored system can exhibit. We define enforcement using
two comparison operators because different scenarios might assign different semantics
to the meaning of enforcement: One might use a monitor to maximize the value of
a monitored system with respect to some base value, e.g., in our running example, we
may want to give access to as many unique clients as possible since the server is making
extra money by delivering advertisements to them; thus, the monitor has motive to give
priority to every new request for accessing a file. In other cases, one might use a monitor
to minimize the cost of the monitored system with respect to some allowed cost, e.g., we
might want to minimize the state that the monitor and the server keep to provide access
to files, in which case caching might be cost-prohibitive. Without loss of generality in
this paper we focus on ≤; similar results hold for ≥.

Enforcement is defined with respect to a global function F. F transforms the costs
of all traces of a monitored system to a single value. As described in §3, this value could
represent the maximum value of all traces, their average, sum, etc. Thus, F can model
situations where an individual trace might have cost that is cost-prohibited by the policy
(e.g., overheating temporarily), but the monitored system as a whole is still within the
acceptable range (i.e., before and after the overheating the system cools down enough).

In the previous instantiation of our running example, there might exist some trace
t where cost(t) > Pol(t) > −∞, typically when a client keeps asking for a file that
is denied. Although this would intuitively mean that the cost security policy is not re-
spected for that particular trace, it might be the case that M enforces Pol, as long as Pol
is globally respected, which could happen, e.g., if the probability of t is small enough.
This illustrates a strength of our framework: we can allow for some local deviations, as
long as they do not impact the global properties, i.e., overall expected behavior, of the
system. If we wish to constrain each traces, we can define local enforcement, which re-
quires that the cost of each trace of the monitored system is below (or above) a certain
threshold, as opposed to enforcement which requires that the value of some function
computed over all traces of the monitored system is below (or above) a certain thresh-
old. Note that local enforcement can be expressed through a function F that universally
quantifies the cost difference from the threshold over all traces of the monitored system.
Local enforcement could be useful, for example, to ensure that a system never overheats
even momentarily, whereas enforcement would be useful if we want to have probabilis-
tic guarantees of the system; e.g., we accept a 0.001% probability that the system will
become unavailable due to overheating.

A question a security designer might have to face is whether it is possible, given
a boolean security policy that describes what should not happen and a cost policy that
describes the maximal/minimal allowed cost, to build a monitor that satisfies both. This
problem can help illuminate a common cost/security tradeoff: the more secure a mech-
anism is, the more costly it usually is.
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There is a close relationship between boolean security policies (e.g., [22]) and cost
security policies: given a boolean security policy there exists a cost security policy
such that if the cost security policy is n−enforceable then the boolean security policy is
enforceable as well (and vice versa). Specifically, given a boolean security policy P , we
write PolP for the function such that pPolP (Ct) = 0 if P (t) holds, and−∞ otherwise.
Given a predicate P , if we instantiate function F with the function that returns the
least element of a set and function cost with the function that maps every (trace) cone
to 0, and if M 0−enforces≤ PolP , then any trace belongs to P . In other words, our
framework is a generalization of the traditional enforcement model.

In the other direction, since cost security policies are more expressive than boolean
security policies, we need to pick a bound that will serve as a threshold to classify traces
as acceptable or not. Given a probabilistic cost security policy pPol, a cost function cost,
a scheduler σ and a bound n ∈ R, we say that a trace t satisfies Polcost,n,σ , and write
Polcost,n,σ(t) if and only if pPol(Ct) ≥ pcostσ(Ct)− n.

Expressing cost security policies as boolean security policies allows one to embed
in our framework a notion of sound enforcement [17]: a monitor is a sound enforcer for
a system S and security policy P if the behavior of the monitored system obeys P . As
described above, one encodes P in our framework as PolP , which returns−∞ if a trace
violates P and 0 otherwise. Sound enforcement can be expressed as 0−enforcement≤
using a global function FP that assigns −∞ to the cost of the automaton composi-
tion that represents the monitored system if some trace has cost −∞, and 0 otherwise.
Specifically, if a monitor soundly enforces P on a system, all its traces will belong to
P and PolP will map them all to 0, which when applied to FP , will result in a global
cost of 0. If the monitor is not sound, then the global cost will be −∞. Thus, a monitor
soundly enforces a boolean security policy P if and only if the monitor 0−enforces≤
the cost security policy PolP under FP and cost( ) = 0.

A notion of transparency is often used to define practically useful policy enforce-
ment (e.g., [17]). Due to space constraints, we discuss this in our technical report [20].

5 Cost Comparison

Given a system S, a function F, a scheduler σ and a monitor M , pcostFσ(M) and
pcostFσ(M×S) are values in [−∞,∞], and as such provide a way to compare monitors.

To meaningfully compare monitors, we need to fix the variables on which the cost
of a monitor depends, i.e., functions F and cost, and the scheduler σ. Difficulties arise
when trying to fix a scheduler for two different monitors (and thus monitored systems),
even if they are defined over the same signature. States of the monitors, and thus their
executions, will be syntactically different and we cannot directly define a single sched-
uler for both. Moreover, since schedulers assign probabilities to specific PIOA and their
transitions, one scheduler cannot be defined for two different monitors.

To overcome this difficulty we rely on the abstract schedulers introduced in §2.3.
Namely, to compare two monitored systems we use a single abstract scheduler which
we then refine into schedulers for each monitored system.9

9 An abstract scheduler τ also provides a meaningful way to compare monitors with different
signatures: calculate the union S of the signatures of the two monitors and (1) use a τ with
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Abstract schedulers allow us to “fairly” compare two monitors, but additional con-
straints are needed to eliminate impractical corner cases. To this end we introduce fair
abstract schedulers. An abstract scheduler τ over the signature of a class of monitored
targetsM× S is fair (w.r.t. comparing monitors) if and only if (1) the monitors get a
chance to respond to targets’ actions infinitely often (i.e., the monitors are not starved),
and (2) for every trace t of a monitored target, every extension t′ of t by a monitor’s
actions, i.e., t′ = t; a with a ∈ extern(M), is assigned the same probability by τ .

Constraint (1) ensures that a fair abstract scheduler will not starve the monitor, i.e.,
the monitor will always eventually be given a chance to enforce the policy. Constraint
(2) ensures that the abstract scheduler is not biased towards a specific monitoring strat-
egy. For example, an unfair scheduler could assign zero probability to arbitrary monitor-
ing actions (e.g., the scheduler “stops” insertion monitors [16]) and non-zero probability
to monitors that output “valid” target actions verbatim (i.e., the scheduler allows sup-
pression monitors [16]). Such a scheduler would be unlikely to be helpful in perform-
ing a realistic comparison of the costs of enforcement of an insertion and a suppression
monitor. There might be scenarios where such schedulers are appropriate10, but in this
paper we pursue only the equiprobable scenario.

Given a system S, a function F, a function pcost, two monitors M1 and M2 with
sig(M1) = sig(M2), an abstract scheduler τ over sig(M1×S), and two schedulers σ1

(forM1×S) and σ2 (forM2×S) derivable from τ , we say thatM2 is less costly than a
monitor M1 and write M2 ≤M1, if and only if pcostFσ2

(M2×S) ≤ pcostFσ1
(M1×S).

Note that in the particular case where pcostFσ corresponds to the expected cost of all the
traces in M ×S, the ordering relation≤ roughly corresponds to the notion of “globally
more-efficient” of [10]. A monitor M is cost optimal for a system S if and only if for
all monitors M ′ with sig(M) = sig(M ′), M ≤M ′.

The next theorem formalizes the intuition that a monitor that exploits knowledge
about the scheduler and the cost function should be more cost efficient than monitors
that do not. The theorem shows that such knowledge can be exploited to build a cost
optimal monitor. Note that in the theorem the cost function and scheduler are universally
quantified, i.e., the monitor is cost optimal for any abstract scheduler and cost function.

Theorem 1. Given an abstract scheduler τ and a function F that is monotone11 and
continuous (i.e., it preserves limits), there is a cost-optimal monitor that optimizes its
transitions based on a scheduler σ (derived from τ ) and cost function cost12.

Thm. 1 provides a generic description of the conditions sufficient for constructing a
cost-optimal monitor. In the constructive proof of Thm. 1 we build a monitor that keeps

signature S, and (2) extend each monitor’s signature to S. This is useful when comparing
monitors of different capabilities, e.g., a truncation and an insertion monitor [16], where the
insertion monitor might exhibit additional actions, e.g., logging.

10 This is a similar situation with having various definitions for fairness [15].
11 Given two sets of real numbers X,Y ∈ 2R we write X v Y if and only ∀x ∈ X : ∃y ∈
Y : x ≤ y. We write x v y for {x} v {y}, i.e., x v y ⇔ x ≤ y. We say that a function
f : 2R → R that is monotone if and only if it is monotone under the orderingv, i.e., ifX v Y
then f(X) v f(Y ).

12 Proofs can be found in our technical report [20].
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at its state the past execution, and at each state the next transition taken by the monitor
minimizes the expected cost of the trace using σ and cost in its calculation.

Running example. Typically, when a monitor modifies the behavior of the system some
cost is incurred (e.g., the usability of the system decreases, computational resources are
consumed). For instance, in the running example, one way monitors can modify the
behavior of the system is by denying an access to a client. If we assume that each deny
action incurs a cost of 1, then we can define a function costD that associates with each
trace the cost n, where n is the number of denies that appear in the trace.

Moreover, let us assume that (1) F is Sup, and (2) the abstract scheduler τ fol-
lows the pattern

(
[C1, . . . , Cn]; M∗; S; M∗

)∞
as described in §2.4. Assuming we

have two clients C1 and C2, our monitored system is Π = C1 × C2 × M × S. If
M is MDENY , then we refine τ to the scheduler σMDENY ; dually, the scheduler for
MPROB will be σMPROB . The probabilistic cost of the monitored system with MDENY

is supt∈traces(ΠMDENY
) (pcostσMDENY

(Ct)), and similarly for MPROB .
We first observe that with such a cost function, the maximal (i.e., best) reachable

cost is 0, meaning that no deny action is returned. It follows that the cost-optimal mon-
itor never denies any action, and, clearly, this monitor does not generally respect the
requirement that at most one client at a time should have access to a particular file.

Second, we observe that if we assume that C1 and C2 ask for a file after a denied
request with probability p1 and p2 respectively, with p1 < p2, then C1 is less likely to
ask again for a file which has been denied. In this case, it is better to deny an access to
C1 rather than to C2, in order to limit the number of deny actions. Hence, with such a
system, we have MPROB ≤MDENY .

Finally, observe that the last result is sound only under the assumption that sched-
ulers σMDENY

and σMPROB
are compatible with τ . If that was not the case, then σMDENY

could starve C2 (or σMPROB
could starve C1). This would give MDENY an unfair ad-

vantage over MPROB , and we would have as a result that MDENY ≤ MPROB . Such
unfair comparisons are ruled out by requiring schedulers to be compatible.

6 Related Work

The first model of run-time monitors, security automata, was based on Büchi Au-
tomata [22]. Security automata observe individual executions of an untrusted appli-
cation and halt the application if the execution is about to become invalid. Since then,
several similar models have extended or refined the class of enforceable policies based
on the enforcement and computational powers of monitors (e.g., [12, 14, 11]).

Recent work has revised these models or adopted alternate ones to more conve-
niently reason about applications, the interaction between applications and monitors,
and enforcement in distributed systems. This includes Martinelli and Matteucci’s model
of run-time monitors based on CCS [21], Gay et al.’s service automata based on CSP
for enforcing security requirements in distributed systems [13], Basin et al.’s language,
based on CSP and Object-Z (OZ), for specifying security automata [1], and Mallios et
al.’s I/O automata-based model for reasoning about incomplete mediation and knowl-
edge the monitor might have about the target [19]. Although these models are richer and

14



orthogonal revisions to security automata and related computational and operational
extensions, they maintain the same view of (enforceable) security policies: binary pred-
icates over sets of executions. In this paper we take a richer view assigning costs and
probabilities to traces and define cost-security policies and cost-enforcement, which, as
shown in §4, is a strict extension of binary-based security policies and enforcement.

Drábik et al. introduce the notion of calculating the cost of an enforcement mecha-
nism [10], based on a relatively simple enforcement model that does not include in-
put/output actions or a detailed calculation of the execution probabilities. To some
extent, the notion of cost security policy defines a threshold characterizing the maxi-
mal/minimal cost reachable, while taking the probability of reaching this threshold into
account. Such a notion of threshold is also used by Cheng et al., where accesses are
associated with a level of risk, and decisions are made according to some predefined
risk thresholds, without detailing how such policies can be enforced at runtime [7]. In
the context of runtime enforcement, Bielova and Massacci propose to apply a distance
metrics to capture the similarity between traces [2], and we could consider the cost
required to obtain one trace from another as a distance metrics.

An important aspect of this work is to consider that a property might not be lo-
cally respected, i.e., for a particular execution, as long as the property holds globally.
This possibility is also considered by Drabik et al., who quantify the tradeoff correct-
ness/transparency for non-safety boolean properties [9]. Caravagna et al. introduce the
notion of lazy controllers, which use a probabilistic modeling of the system in order to
minimize the number of times when a system must be controlled, without considering
input/output interactions between the target and the environment as we do [5].

7 Conclusion

We have introduced a formal framework based on probabilistic I/O automata to model
and reason about interactive run-time monitors. In our framework we can formally rea-
son about probabilistic knowledge monitors have about their environment and combine
it with cost information to minimize the overall cost of the monitored system. We have
used this framework to (1) calculate expected costs of monitors (§3), (2) define cost se-
curity policies and cost enforcement, richer notions of traditional definitions of security
policies and enforcement [22] (§4), and (3) order monitors according to their expected
cost and show how to build an optimal one (§5).
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