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Abstract. Recent studies have shown that a significant number of mo-
bile applications, often handling sensitive data such as bank accounts
and login credentials, suffers from SSL vulnerabilities. Most of the time,
these vulnerabilities are due to improper use of the SSL protocol (in
particular, in its handshake phase), resulting in applications exposed to
man-in-the-middle attacks. In this paper, we present MITHYS, a sys-
tem able to: (i) detect applications vulnerable to man-in-the-middle at-
tacks, and (ii) protect them against these attacks. We demonstrate the
feasibility of our proposal by means of a prototype implementation in
Android, named MITHYSApp. A thorough set of experiments assesses
the validity of our solution in detecting and protecting mobile appli-
cations from man-in-the-middle attacks, without introducing significant
overheads. Finally, MITHYSApp does not require any special permis-
sions nor OS modifications, as it operates at the application level. These
features make MITHYSApp immediately deployable on a large user base.

1 Introduction

The spread of mobile smartphones have led web service providers to pay atten-
tion to how the users could benefit from their services, while users are on the
move. To this end, two main approaches have been adopted. At first, providers
chose to offer a mobile-shaped version of their web service, which the users could
access through a mobile web browser (acting as a “thin” client). As an alter-
native, providers started to offer their services by means of native applications
for each specific mobile platform (also called “fat client” approach). This second
approach rapidly became the most popular (interested readers can refer to [7]
for a thorough comparison between the two approaches). Indeed, as the num-
ber of daily activated devices grows at a relentless rate, so does the number of
applications which are downloaded and available to a huge end-user base.

An application that relies on a web service requires an active Internet con-
nection. To gain this connection, a mobile device is typically equipped with two
types of network interfaces: a 3G/4G module and a Wi-Fi module. The Wi-
Fi module gives the user the opportunity of connecting a device to a wireless
network created through a wireless access point. The Wi-Fi connection became
more and more important, as many companies started offering free Internet ac-
cess points, as an additional service for their customers. We can also find this
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scenario in many public infrastructures, such as libraries and universities. Unfor-
tunately, this increasing popularity of free access points has led to new malicious
attacks, based on the Man-In-The-Middle principle (from now, MITM attack).
The rogue access point attack is a typical example of how dangerous the use of
a free public access point might be [17]. As a consequence, protecting the com-
munication in these open environments is crucial to keep user data private. This
means that a mobile device must establish a secure connection with the remote
server offering the needed web service. In a desktop environment, this connec-
tion lies between the web browser and the remote server. On the other hand, a
mobile application is directly responsible of establishing the secure connection
with the remote server, without relying on a web browser.

Technically speaking, the most common way of establishing a secure connec-
tion is by using Secure Sockets Layer (SSL) [1] and Transport Layer Security
(TLS) [18], two cryptographic protocols that grant endpoint authentication and
network data confidentiality over a TCP connection. These protocols were also
designed to prevent malicious MITM attacks against two communicating enti-
ties. The problem is that, as recently pointed out [10], a significant number of
mobile applications often do not perform the required steps to ensure a secure
communication between the communicating parties. The flowing data between
the application and the server, which is supposedly private, can be intercepted by
a malicious third party by performing a MITM attack. This is a known problem
that affects a huge number of mobile applications, mainly due to the respective
developers that underestimate the importance of a proper use of the SSL/TLS
protocols. Even if the problem has been raised more than one year ago, our re-
cent test revealed that several applications (including widely used ones, such as
PayPal and Facebook) are still vulnerable.

Example 1. Let us assume a scenario where an attacker performs a rogue ac-
cess point attack, with Starbucks’ free Wi-Fi service as a target. The original
Starbucks’ access point (AP from now on) name is “Starbucks”, while the at-
tacker’s AP name is “Starbucks Free”. Let us suppose Alice visits Starbucks and
notices the free Wi-Fi opportunity. She sees two open access points on her An-
droid smartphone, so she chooses a random one, the attacker’s “Starbucks Free”
in this case. Alice wants to check her PayPal account, therefore she opens the
PayPal Android application, which she had used before. Since the PayPal appli-
cation suffer from the above SSL usage problem, the attacker is able to intercept
Alice’s PayPal account data, including her personal login information. What is
more, she is not aware that she is a victim of a MITM attack.

Again, given the huge number of vulnerable applications, the “wait-and-
hope” approach is not appropriate, since it exposes the users to malicious MITM
attacks until the developers release a security update. Instead, there is the need
for an application-independent solution that: (i) detects the vulnerable appli-
cations; (ii) warns the user about the potential leak of sensitive data; and (iii)
eventually compensates the lack of security by performing the adequate checks.
Such a solution would not only secure the application-web server communica-



tion, it would also act as a security tool for mobile developers — who want to
test the security level of their applications against SSL-based MITM attacks.

Contribution. In this paper we present MITHYS (Mind The Hand You Shake),
a platform independent system architecture that:

– Detects mobile applications vulnerable to SSL-based MITM attacks, autom-
atizing the detection of vulnerabilities pointed out in [10],[11])

– Protects mobile applications (especially, vulnerable ones) from SSL-based
MITM attacks, by taking care of SSL certificate validation

– Gives the user full control on the vulnerable applications’ behavior (e.g. the
application can be blocked if vulnerable)

The MITHYS architecture is, to the best of our knowledge, the first solution
that tackles the vulnerability of mobile applications to SSL-based MITM attacks
[10],[11]. A fully-working, end-user-ready implementation of MITHYS, namely
MITHYSApp, has been developed for the Android mobile platform, which rep-
resents one of the most flexible and popular mobile OS at the time being.

Being implemented at the application level, MITHYSApp does not require
mobile OS alterations nor special permissions (i.e., root access). MITHYSApp
just relies on a single manual configuration performed by the user. According to
the selected configuration, MITHYSApp can operate in three modes:

– Automatic - detection of vulnerable applications and protection for all the
installed applications, without requiring any user interaction;

– Selective - detection of vulnerable applications is automatic, but the user
can decide whether to allow their execution or not;

– Manual - the user can manually select which applications must be analysed
and which must be protected.

Finally, a set of experiments show the feasibility of our solution. In partic-
ular, we show that the current (non-optimized) version of MITHYSApp does
not introduce a significant delay in network communication nor in the ordinary
applications/OS behavior, while it effectively protects users from MITM attacks
that can steal personal and sensible information.

Roadmap. Section 2 discusses related work. Section 3 introduces the details of
the security problem we solve. Section 4 presents MITHYS, our solution for
protecting mobile applications vulnerable to MITM attacks. Section 5 focuses
on the implemetation of MITHYSApp. Section 6 evaluates our solution in terms
of effectiveness and network delay. Finally, Section 7 concludes the paper.

2 Related Work

Today’s smartphones are capable of handling different types of personal data,
which most of the times can be considered sensible. As a result, smartphones



security is becoming more and more a key topic in the security research commu-
nity, generating a lot of studies about dangerous threats and possible solutions
(as shown by the proceedings of recent top conferences on security, such as ES-
ORICS, POLICY and CCS). Considering only the Android case and to mention
only a few papers, Davi et al. [9] presented an analysis of the privilege escalation
attacks, together with some possible approaches to the problem [5], [6]. Becher
et al. [3] gave a more general security overview about the mobile smartphones
environment, whereas Shabtai et al. [16] focused more deeply in an Android se-
curity assessment. Other works focused on the direction of extending Android
security features: e.g. considering Context-based access control [8] and enforcing
different modes of uses based on security profiles [15]. To mention all the papers
aiming at securing Android is out of the scope of this paper. What we consider
instead important to point out is that, although this increasing research effort,
a significant work has still to be done in order to secure smartphone platforms.
This is proved by the huge vulnerability recently discovered regarding the use of
the SSL cryptographic protocol.

Various misuses of the SSL protocol are spread both in the desktop environ-
ment and in the mobile environment, exposing private data (potentially sensible)
to malicious attacks. In particular, Georgiev et al. [11] analysed the SSL usage
across various environments, only to find out that this protocol’s implementation
is “completely broken in many security-critical applications and libraries”. Mean-
while, Fahl et al. [10] analysed the SSL usage on 13,500 Android applications,
and found out that a large percentage of them suffer from SSL vulnerabilities,
which expose them to dangerous man-in-the-middle attacks. To add it up, some
of these applications (such as PayPal and Facebook) are very popular, covering
up to 185 million users. Both studies just gave some advices to developers, but
did not mention any solution to the SSL usage problem.

SSL misuse vulnerabilities have been also considered in the literature. For
example, the work in [4] shows an approach to detect SSL-based man-in-the-
middle-attacks. However, this approach is designed for desktop web browsers, so
it is not suitable for the setting of mobile applications that we are considering in
this work. Furthermore, a simple MITM attack towards the third-party server
proposed in [4] completely invalidates their protection mechanism. This problem
is also acknowledged by the authors in their work.

Despite the size of the problem, the SSL usage vulnerability problem for
mobile applications is still out there, threatening millions of users and their
private data. We will focus on this problem in the next Section.

3 The Problem: Validating SSL Certificates

Nowadays Internet browsers, electronic mail clients, instant messaging clients,
and nearly every entity that needs a secure communication to a remote service
are using SSL and TLS, two standard cryptographic protocols that perform
network data encryption and endpoint authentication over a TCP connection.
An SSL secure communication begins with an operation called handshake, in



which the server is authenticated by the client (and viceversa, eventually). After
that, these two entities agree on a common cryptographic material, used to begin
the encrypted communication. This flow can be roughly summarised as follows
(we are not considering the client authentication steps, which are optional):

1. The client contacts the server, and they exchange some preliminary param-
eters, among which the certificates (the client’s certificate is optional, there-
fore often missing); the exchanged parameters are called context of a SSL
session.

2. The client authenticates the server by using the information obtained in
the previous step, especially the server’s certificate; for a secure session to
be established, the server must be successfully authenticated by the client
(either implicitly or explicitely).

3. The client, thanks to the previous information exchange, creates a pre-master
secret, encrypted with the server’s public key obtained from the server’s
certificate, and sends it to the server.

4. The server decrypts the message and uses the pre-master secret to compute
the master secret while the client does the same.

5. Using the master secret, both the client and the server generate the so called
session keys, that will be used to communicate securely.

6. The communication starts as the client sends the first encrypted message.

There is a slight problem on the second point of the above flow. The client
must authenticate the server in order to be sure that it is communicating with
the right server and not with, for instance, a malicious one which is faking its
identity (a typical MITM situation). This is mostly done by thoroughly checking
the server’s SSL certificate fields (e.g., expiration date, issuer, signature).

Example 2. Continuing the scenario described in Example 1, let us suppose
Alice is using PayPal’s Android application (PayPalApp), which needs to com-
municate with PayPal’s remote server (PayPalServer). However, the attacker
(MITM) is able to intercept the ingoing and outgoing traffic of PayPalApp. The
following steps are performed as part of the SSL handshaking process:

1. PayPalApp queries PayPalServer for its X.509 certificate (which contains
PayPalServers’s public key).

2. MITM intercepts PayPalApp’s request and asks PayPalServer for its cer-
tificate pretending she is PayPalApp; PayPalServer sends its certificate to
MITM.

3. MITM now generates a fake X.509 certificate containing MITM’s public key
instead of the PayPalServer’s one; MITM also makes this fake certificate
look like PayPalServer’s one, then sending it back to PayPalApp.

4. Depending on how strict are PayPalApp’s checks against MITM’s certificate,
PayPalApp will eventually think that she’s talking to PayPalServer.

5. At this point, MITM can intercept the plain text of every message (i.e.,
MITM can easily decrypt the messages) PayPalApp sends to PayPalServer
and viceversa, but she is undetected.



In Example 2, PayPalApp performs very poor checks against MITM’s cer-
tificate (e.g., it might not check the issuer name of the certificate, therefore not
recognizing a MITM attack). As a result, Alice is not able to detect that the
communication with PayPalServer is not secure at all, allowing MITM to inter-
cept all the available data. It is important to stress that this is not just a toy
example, we have actually developed a demo implementing this specific attack.

It is clear by now that the key point of this procedure consists in validating
the server’s certificate in a proper way. Since many mobile applications do not
perform this step correctly, exposing the end-user to dangerous MITM attacks,
our solution focuses on solving this specific problem.

4 MITHYS: Mind The Hand You Shake

In this section, we present MITHYS (Mind The Hand You Shake), a system
designed to detect potentially MITM-vulnerable applications, and to compensate
the lack of security by protecting applications from MITM attacks. To the best
of our knowledge, MITHYS represents the first solution that tackles the MITM
vulnerability of mobile applications by taking on the security checks required
to establish a proper secure connection. For space limitation, we omit details
on MITHYS user interface and configuration. Instead, we focus on the core
of MITHYS and we describe it from a system point of view, focusing on its
architecture, its implementation (Section 5) and its evaluation (Section 6).

The main idea behind MITHYS is to act as a friendly MITM on the mobile
device. Every time a “new” application (an application which has not been
tested yet) requests a resource via the HTTP over the SSL protocol (from now
on, HTTPS requests), the MITHYS system tries to act as a man-in-the-middle,
forging a fake ad-hoc SSL certificate for the application. If the application is
not vulnerable, it will immediately block the communication; otherwise (the
application is vulnerable), the communication will proceed normally, as if there is
no third party between the application and the remote server. In both scenarios,
MITHYS is able to protect the application from potentially malicious MITM
attacks by performing additional checks on the SSL connection (Section 4.3).

An high-level overview of the MITHYS architecture is shown in Figure 1. At
a macroscopic level, there are two main components, highlighted in the figure
by thicker borders. The first one is called MITHYS Proxy, a proxy-based mobile
application that runs on the mobile device. The second one is called MITHYS
WebServer, a remote web server hosted and reachable through the Internet.

We now describe the two key components of MITHYS: MITHYS WebServer
(Section 4.1) and MITHYS Proxy (Section 4.2). Then, in Section 4.3 we describe
how the overall system works.

4.1 MITHYS WebServer

This component acts as a trusted party for the solution. It features only one
servlet, whose purpose is to retrieve the SSL certificates chain (typically in the



Fig. 1. The MITHYS high-level architecture

X.509 standard) of the URL passed as an argument; then, it serializes the chain in
a proper way and returns it as a result. This servlet is only reachable via HTTPS,
meaning that it has a SSL certificate associated to it. This is a key point of the
whole architecture. This SSL certificate is self-signed, i.e. generated from the root
certificate of our private Certification Authority (i.e., MITHYS CA). Since we
have access to the original certificate, we can use its information to add an extra
layer of security against MITM attacks, as we discuss in Section 4.2. Finally, we
underline that we do not consider this component as a possible target for attacks,
mainly because (i) it can be hosted on highly secure cloud services (e.g., Google
Compute Engine) and (ii) it is easier to protect this single component rather
than protecting millions of user devices with an highly variable set of installed
applications. However, in order to prevent Denial-of-Service (DoS) attacks, we
recommend the redundancy approach, by means of a MITHYS WebServer pool.

4.2 MITHYS Proxy

This represents the main component of the architecture. Its main purpose is
to receive all the HTTPS requests coming from the applications installed on
the mobile device, and to pass the information back and forth between the
application and its associated web server. It can also strengthen the applications’
security by performing additional checks (as detailed later in this section) on the
SSL connection. In order to fulfill its tasks, it features two independent modules
(see Figure 1): Security PenTester and Security Enforcer.

Security PenTester. This module is the component which represents the actual
MITM. It impersonates the original remote server by forging a fake SSL cer-
tificate for the mobile application. It also contacts the original remote server,
pretending to be the application itself. If Security PenTester is able to establish
a secure connection with the application (that is to say, the application accepts
the fake SSL certificate), it acknowledges that the application is vulnerable. Oth-
erwise, we can only have some degree of confidence that the application is not
vulnerable, while it could be actually vulnerable in other circumstances. This
module runs continuously, so every application is basically tested every time it



Fig. 2. The MITHYS Security Enforcer interaction scheme.

issues an HTTPS request. Since we want “PenProof” applications (i.e., appli-
cations that are not vulnerable to the PenTester) to be excluded from further
security tests, an effective approach consists in adding them to a whitelist: every
application on that list avoids the Security PenTester module, but may still be
strengthened by the Security Enforcer module.

We want to point out that the use of a whitelist is actually mandatory. A
PenProof application that receives a fake SSL certificate for an HTTPS request
will terminate the connection immediately, therefore not working correctly. As a
consequence, the MITHYS system needs to be aware of the already (successfully)
tested applications, so that we do not hinder their normal operations.

Security Enforcer. This module performs additional checks on the SSL connec-
tion to the remote server in place of the mobile application. More specifically,
given the HTTPS request issued by AppX (an installed application), this module
performs the following operations (illustrated in Figure 2):

– Issues an HTTPS request to the MITHYS WebServer, in order to retrieve
the SSL certificates chain associated to the URL of the application’s HTTPS
request (Step 1 in the figure);

– Retrieves the SSL certificates chain associated to the URL of the HTTPS
request (Step 2 in the figure);

– Compares the two certificates chains. Each certificate of one chain is com-
pared to the respective certificate of the other chain. This is done by checking
if the signatures of the two certificates correspond.

If the certificates contained in the two chains do not match, it means that
a MITM attack might be in place. On the other hand, if the two chains have
a 1:1 match, we can be sure that no SSL-based MITM attack is being held at
that time. This assumption is based on the fact that the HTTPS request to the
MITHYS WebServer is MITM-proof. To achieve such requirement, since the SSL
certificate of our MITHYS WebServer is known a priori, we can store it on a
keystore and embed it in our MITHYS Proxy mobile application. So, when the
HTTPS request to the MITHYS WebServer is issued, the obtained SSL certifi-
cate is matched against our keystore: any failure will invalidate the certificates



chains comparison, indicating an ongoing MITM attack of some kind. It is worth
pointing out that an application which has passed the Security PenTester’s con-
trols might still be monitored by the Security Enforcer (e.g., as an extra security
measure for the user). What is more, Security Enforcer only sends to MITHYS
WebServer the URL of the original HTTPS request, without transmitting any
sensitive information of the user.

4.3 MITHYS Workflow

In order to better understand how the overall MITHYS system works, Figure 3
shows a simplified workflow of a generic scenario where the mobile application
AppX issues an HTTPS request (e.g., to https://www.appx.com/api/login). The
request is intercepted by our MITHYS Proxy, that checks whether the appli-
cation has ever been whitelisted. If not, Security PenTester tries to act as a
MITM and determines if AppX is aware of a third entity between AppX’s re-
mote server and itself. If the application is aware of the MITM, it is whitelisted:
each subsequent HTTPS request coming from that application will be executed
as is, without any interception. Otherwise, Security Enforcer is activated in or-
der to prevent any malicious MITM attacks. Again, note that even a whitelisted
application might take advantage of the latter module, if specified by the user.

Example 3. Back to our running example, let us consider Example 2 to show
the workflow of MITHYS with PayPal’s Android application. The key assump-
tion is that Alice is using a MITHYS implementation on her smartphone. Alice
starts the PayPalApp, which in turn issues HTTPS requests to the PayPalServer.
These requests are intercepted by MITHYS’ Security PenTester (PenTester from
now on). PenTester retrieves the list of whitelisted applications to check if Pay-
PalApp is among those. The whitelist is initially empty, so PenTester acts as a
SSL MITM and forges a fake SSL certificate. PayPalApp, as we show in Sec-
tion 6.1, is vulnerable to this attack, so it accepts the certificate. Now that Pen-
Tester has acknowledged that PayPalApp is vulnerable, it reports this informa-
tion to the MITHYS’ Security Enforcer module (Enforcer from now on). En-
forcer must now protect PayPalApp from actual MITM attacks by performing
the steps described in Section 4.2. What is more, Enforcer will protect all the
future PayPalApp’s HTTPS requests.

Example 4. We reconsider Example 3, but we assume that this time Alice
wants to use the Twitter application, which is not vulnerable to SSL MITM
attacks (Section 6.1). Again, Alice is using a MITHYS implementation. Alice
starts TwitterApp, PenTester intercepts the HTTPS requests to TwitterServer
and tries to act as a SSL MITM for TwitterApp. The latter is not vulnerable,
so it will reject the fake SSL certificate and abort the current operation. Now
PenTester knows that the application is secure, so it adds TwitterApp as a new
whitelist entry. TwitterApp can operate without the Enforce protection, but the
user might want to be protected anyway. If this is the case, Enforcer will protect
all the future TwitterApp’s HTTPS requests. Otherwise, it will simply forward
the HTTPS requests/responses between TwitterApp and TwitterServer.



Fig. 3. Workflow of the MITHYS architecture with the AppX mobile application.

5 Implementation of MITHYS: MITHYSApp

This section discusses our implementation of MITHYS, namely the MITHYSApp
Android application which acts as the MITHYS Proxy component. The MITHYS
WebServer consists in a Micro Instance of Amazon’s Elastic Compute CloudWeb
Services (AWS EC2) [2]: a continuously running Apache Tomcat instance serves
an HTTPS-only Java servlet called GetSSLCertificate.

5.1 The MITHYSApp WebServer

MITHYSApp WebServer implements the MITHYS WebServer component. It is
hosted on Amazon Elastic Compute Cloud (Amazon EC2) [2] as part of the Ama-
zon Web Services. A Micro Instance of the EC2 cloud, which we can consider as
a proper Virtual Private Server (VPS), runs the Apache Tomcat web server and
servlet container. There is only one servlet, called GetSSLCertificateServlet



that takes in input two arguments: the first one is the target URL, the second
one is the HTTP method that should be used to invoke that URL. This servlet
simply issues an HTTPS request to the target URL (accordingly to the HTTP
method) and retrieves the SSL certificates chain associated to that URL. The
Base64 serialization of the chain is returned as a JSON-formatted result. Please
note that this servlet is only available via HTTPS, and it uses an SSL certificate
generated from our MITHYS Certification Authority (MITHYS CA) in order to
prevent MITM attacks against our MITHYSApp application.

5.2 The MITHYSApp Android Application

MITHYSApp is an Android app that implements the MITHYS Proxy compo-
nent. It relies on the open source Android library SandroProxyLib3, which is
based in turn on the OWASP WebScarab project, that offers a working-out-of-
the-box proxy for Android. What is more, it behaves as the MITHYS Security
PenTester by default due to the fact that, every time it receives a new HTTPS
request, it acts as a MITM and forges ad-hoc fake certificates. These certificates
are generated from the MITHYS CA, and their hostname matches the hostname
of the target server, looking similar to the original ones. From now on we will
use also the term “proxy” to refer to the proxy part of this library. While not
requiring any special permission or OS modifications, MITHYSApp requires the
installation of the MITHYS CA certificate and the setup of the proxy address
for the current Wi-Fi connection. MITHYS guides the user in both these steps,
both performed only once at installation time.

Security PenTester. We had to modify and to extend the SandroProxyLib li-
brary in order to implement the above component correctly. First of all, given an
intercepted HTTPS request, we need to know which application generated it: in
terms of Java objects, we only have a Socket instance that represents the connec-
tion between the application and the proxy, of which we only know the port. But,
since Android is a Linux-based OS, we can read the content of the /proc/net/tcp
(or /proc/net/tcp6 if an IPv6 address is available) file that maps all the active
sockets to their Unix processes: in this way we know which port is being used,
so we can obtain the UID of the process which is using that port. This infor-
mation, together with the PackageManager.getPackagesForUid(uid) method
provided by Android, offers us the possibility of knowing which application is-
sued the HTTPS request given just the port of its Socket object. To the best
of our knowledge, this is the only technique available at the time being, so we
created a small and useful Android library4 which eases this process for the
developer. Another modification to the proxy library consisted in introducing
the whitelisting mechanism, so that each time an installed application refuses to
establish a secure connection with the proxy (that is, the SSL handshake phase
between our proxy and the application cannot be completed) it communicates

3 https://github.com/SandroB/sandrop/tree/master/projects/SandroProxyLib
4 https://github.com/dextorer/AndroidTCPSourceApp

https://github.com/SandroB/sandrop/tree/master/projects/SandroProxyLib
https://github.com/dextorer/AndroidTCPSourceApp


the non-vulnerable application to MITHYSApp. To do so, an AppDescriptor

object containing package name, application version and requested URL is cre-
ated and sent to the running instance of MITHYSApp. The latter receives the
AppDescriptor object and inserts its values on a local SQLite database. This
database must be encrypted in order to prevent manual tampering, so we used
a custom Android library called SQLCipher5 to provide “transparent 256-bit
AES encryption of database files”. In addition, for each new HTTPS request
the proxy checks if the application who issued it has been whitelisted before, by
querying the SQLite database: if so, no interception is made and the proxy sim-
ply passes the data back and forth between the whitelisted application and the
remote server. In addition, in order to prevent alterations to the local MITHYS
keystore, we invoke a JNI-compiled library that checks the current Java package
name and the keystore size. Thanks to this approach, any attempt to (i) replace
the native library, to (ii) modify the Java code of MITHYSApp or even to (iii)
replace the keystore will lead to a non working application.

Security Enforcer. In order to implement the Security Enforcer module, we had
to extend the SandroProxyLib library so that, every time a vulnerable applica-
tion issues an HTTPS request, the proxy performs the following steps:

1. Retrieves the SSL certificates chain associated to the URL of the HTTPS
request.

2. Issues an HTTPS request to the MITHYSApp WebServer, in order to re-
trieve the SSL certificates chain associated to the URL of the application’s
HTTPS request.

3. Compares the two certificates chains, as described in Section 4.2.

If no MITM attack is in place, the comparison will succeed and the HTTPS
request will be issued without further ado. If a MITM attack is in place, the
HTTPS request issued towards the MITHYSApp WebServer will simply fail (as
we explained in Section 4.2). A smarter attacker might decide not to intercept
the HTTPS requests addressed to our MITHYSApp WebServer: but this won’t
prevent our Security Enforcer module from detecting a MITM attack, since the
two certificates chains are still compared one against the other.

6 System Evaluation

In this section, we present a set of tests that assess the performance impact of
the MITHYS approach and determine its ability to successfully detect vulnerable
applications. More specifically, we want to show that, althoughMITHYS requires
additional HTTPS requests in order to protect the mobile device from MITM
attacks, the user is not dramatically affected by this overhead. First, we will
analyse the effectiveness of MITHYSApp’s vulnerability detection in Section 6.1.
Then, in order to determine the additional overhead, we will discuss our test
method in Section 6.2 and the results in Section 6.3.
5 https://guardianproject.info/code/sqlcipher/

https://guardianproject.info/code/sqlcipher/


6.1 Vulnerability Detection

In their analysis, Fahl et al. [10] manually audited some of the most popular
Android applications, in order to test their vulnerability to SSL-based MITM
attacks. We manually tested the same set of applications (that, in the meantime,
could have been updated, fixing this MITM vulnerability) against MITHYSApp,
therefore evaluating the capability and the accuracy of detecting vulnerable ap-
plications. We show our results in Table 1. The results show that MITHYSApp
is able to successfully detect vulnerable applications (according to Fahl et al.’s
findings). MITHYSApp is also consistent with the results in [10] in detecting
Twitter and Voxie Walkie Talkie as non vulnerable.

Application Test result

Amazon MP3 ×

Chrome ×

Dolphin Browser HD ×

Dropbox ×

Ebay ×

Expedia Bookings ×

Facebook Messenger ×

Facebook ×

Foursquare ×

GMail ×

Application Test result

Google Play Store ×

Google+ ×

Hotmail ×

Instagram ×

OfficeSuite Pro 6 ×

PayPal ×

Twitter X

Voxie Walkie Talkie X

Yahoo! Messenger ×

Yahoo! Mail ×

Table 1. MITHYSApp results in detecting apps safe from SSL-based MITM attacks.
(X) indicates that the app is safe; (×) means that the app is vulnerable.

6.2 Experimental Setting

We have tested MITHYSApp with three of the most popular Android applica-
tions. These application belong to different categories of Google’s Play Store, and
represent three different important aspects that a typical mobile user is interested
to: social networking, finance checking, cloud storage access. In particular, the
applications we considered are: Facebook6 (social networking service), PayPal7

(global e-commerce business allowing online payments and money transfers), and
Dropbox8 (web-based file hosting service).

In our tests we considered two operations common to all the applications
listed above: login and logout. These operations are very network-intensive, hence
representing a perfect test scenario for MITHYSApp. As main tool for testing,
we used monkeyrunner [13]. This tool allows interacting (e.g., pressing buttons,
typing text) with an Android device by writing a simple Python script and
running it via Android Debug Bridge (adb9). We wrote three scripts, one for
each considered application. Each script basically performs these operations:

6 https://play.google.com/store/apps/details?id=com.facebook.katana
7 https://play.google.com/store/apps/details?id=com.paypal.android.

p2pmobile
8 https://play.google.com/store/apps/details?id=com.dropbox.android
9 http://developer.android.com/tools/help/adb.html

https://play.google.com/store/apps/details?id=com.facebook.katana
https://play.google.com/store/apps/details?id=com.paypal.android.p2pmobile
https://play.google.com/store/apps/details?id=com.paypal.android.p2pmobile
https://play.google.com/store/apps/details?id=com.dropbox.android
http://developer.android.com/tools/help/adb.html


1. Connects to the Android device;
2. Opens the Android logcat in a subprocess (more on this later);
3. Starts the application’s login activity;
4. Enters the credentials for a valid account;
5. Presses the login button and saves the current time on a variable called

LoginStartTime;
6. Monitors the logcat in order to see when the main activity of the application

is displayed - as soon as this happens, it saves the current time on the
LoginEndTime variable;

7. Calculates the login time as (LoginEndTime - LoginStartTime);
8. Executes a number of actions in order to start the logout procedure; as soon

as the logout button is pressed, it saves the current time on LogoutStartTime;
9. Monitors the logcat in order to see when the login activity of the appli-

cation is displayed - as soon as this happens, it saves the current time on
LogoutEndTime;

10. Calculates the logout time as (LogoutEndTime - LogoutStartTime);
11. Prints the two results.

We want to focus for a moment on the use of the logcat [12]. This tool
allows the developer to collect and view the log messages, both coming from
the Android OS and from the installed applications. We used specific logcat

messages to determine the end of each operation (login and logout). Every time
that the system displays a particular activity of the application (i.e., the main
activity after the login, the login activity after the logout), we are sure that the
considered operation has ended. This approach leads to reliable and repeatable
tests, whereas it does not pollute the tests results at all.

6.3 Network Overhead

The results of our experiments are reported in Figure 4. In particular, Figure 4(a)
and Figure 4(b) represent the overhead for the login and logout operation, re-
spectively. We can observe that the average delay added by using MITHYSApp
is approximately five seconds. Since this value is almost constant for each of
the considered situations, the delay is more likely to be noticed by the user for
shorter operations. The two figures show a higher delay in using MITHYSApp
for both the login and the logout operations. This overhead is not suprising
though, becuase MITHYSApp needs to issue additional network requests in or-
der to protect mobile applications from MITM attacks. If we consider Facebook,
the introduced delay for the login operation is about 55%, whereas for the logout
operation it is about 33%.

There is an important point here we want to stress. While the current version
of MITHYSApp is a fully-working implementation, we need to consider that it
has not yet been optimised, both in terms of certificate caching and in terms of
network performances. As a consequence, the values that emerged from the tests
can be considered as an upper bound for the additional delay, which in some
situations may be indeed noticeable by the user. We believe that, by properly
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Fig. 4. MITHYS: time overhead for representative applications.

optimising our implementation, we can reduce the five seconds average delay
to a value of three or even two seconds. Another aspect that we have to take
into account is that MITHYSApp is able to prevent MITM attacks that usually
are performed nearby free Internet access points. Therefore, the user should take
advantage of it while she is connected to a wireless access point, whereas it could
be deactivated in other less attack-prone circumstances.

7 Conclusion

In this paper we have addressed a SSL vulnerability that has been recently
shown affecting a base of many millions of users of mobile devices. To solve
this problem, we have proposed MITHYS, a system for mobile devices which is
able to protect mobile applications from SSL vulnerabilities. The architecture
of MITHYS is light and feasible for several mobile platforms. To support this
claim, we implemented MITHYSApp, i.e., MITHYS for Android. In particu-
lar, we implemented MITHYSApp at the application level, thus facilitating the
spread of our solution and its installation on Android-powered mobile devices.
We decided to focus on the Android platform mostly due to its popularity and
flexibility. However, we have reasons to believe that mobile applications for Ap-
ple devices (e.g., iPhone, iPad) are just as vulnerable as the ones available for
Android. For example, Thampi [19] was able to perform an SSL-based MITM
attack to analyse the Path iOS application, discovering an illegitimate upload of
the user’s contacts to Path’s servers. As a consequence, Path released a security
update to its application, acknowledging the problem [14].

The results of our experiments showed that MITHYSApp has a limited over-
head that even if noticeable, we believe being accepted by users when effectively
protecting them from man-in-the-middle attacks aiming at stealing personal and
sensible information. MITHYSApp represents a first (though fully working) im-
plementation of the MITHYS system. Therefore, its performances can be vastly
improved by adding advanced caching mechanisms. While the delay introduced



by using MITHYSApp is still acceptable, we estimate that it can be further
reduced by at least two seconds.
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