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Efficient Transductive Online Learning via
Randomized Rounding

Nicolò Cesa-Bianchi and Ohad Shamir

Abstract Most traditional online learning algorithms are based on variants of mirror
descent or follow-the-leader. In this paper, we present an online algorithm based on
a completely different approach, tailored for transductive settings, which combines
“random playout” and randomized rounding of loss subgradients. As an applica-
tion of our approach, we present the first computationally efficient online algorithm
for collaborative filtering with trace-norm constrained matrices. As a second appli-
cation, we solve an open question linking batch learning andtransductive online
learning.

1 Introduction

Online learning algorithms, which have received much attention in recent years,
enjoy an attractive combination of computational efficiency, lack of distributional
assumptions, and strong theoretical guarantees. Informally speaking, online learn-
ing is framed as a sequential game between alearner, who provides predictions,
and an all-powerfuladversary, who chooses the outcomes on which the learner’s
predictions are tested. The learner’s goal is to attain low regret —that is, low excess
loss— with respect to a comparison class of experts or predictors (see Sec. 2 for a
more precise statement). Using standard online-to-batch techniques (e.g. [9]), one
can convert online learning methods into simple and effective batch learning algo-
rithms in a stochastic setting, where training and test examples are sampled from a
distribution.
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In this work, we focus on transductive online learning, where the predictions of
the experts/predictors can all be computed in advance. For example, consider the
case where a sequence of unlabeled instances{xt} are given, and the learner needs
to predict the corresponding labels{yt} which are sequentially chosen and revealed
by the adversary. Thus, for a given fixed predictorh, we can already compute its
predictions{h(xt)} beforehand. This is a natural online analogue of the transductive
learning framework introduced by Vapnik in a statistical batch setting [27], where
the test instances on which one needs to predict are known in advance.

Despite the effectiveness of online learning methods, it isprobably fair to say
that at their core, most of them are based on the same small setof fundamental
techniques, in particular mirror descent and regularized follow-the-leader (see for
instance [15, 23]). In this work we revisit, and significantly extend, an algorithm
which uses a completely different approach. This algorithm, known as theMinimax
Forecaster, was introduced in [10, 12] for the setting of prediction with static ex-
perts. The Forecaster computes minimax predictions in the case of a fixed horizon,
binary outcomes, and absolute loss. Although the original version is computation-
ally expensive, it can easily be made efficient through randomization.

We extend the analysis of [10] to the case of non-binary outcomes, unknown
horizons, and arbitrary convex and Lipschitz loss functions. The new algorithm is
based on a combination of “random playout” and randomized rounding, which as-
signs random binary labels to future unseen instances, in a way depending on the
loss subgradients. Our resultingRandomized Rounding (R2) Forecasterhas a pa-
rameter trading off regret performance and computational complexity, and runs in
polynomial time. The idea of “random playout”, in the context of online learning,
has also been used in [3, 17], but we apply this idea in a different way.

Interestingly, our work, which focuses on online learning,has close links to meth-
ods and concepts from statistical learning, and thus can be seen as bridging between
the two fields. For example, theR2 Forecaster uses empirical risk minimization —a
standard statistical learning method— as a subroutine. Moreover, the regret of the
R2 Forecaster is determined by the Rademacher complexity of the comparison class,
which is a measure of the generalization performance of the class in a statistical set-
ting. The connection between online learnability and Rademacher complexity has
also been explored in [1, 2]. Recently, [20] provided a significant generalization of
these ideas, implying new algorithms and extending in a sense the work presented
here.

As an application of our results, we describe how theR2 Forecaster can be used
to design the first efficient online learning algorithm for collaborative filtering with
trace-norm constrained matrices. While this is a well-known setting, a straightfor-
ward application of standard online learning approaches, such as mirror descent,
appear to give only trivial performance guarantees. Moreover, our regret bound
matches the best known sample complexity bound in the batch distribution-free set-
ting [24].

As a different application, we consider general reductionsbetween batch learn-
ing and transductive online learning. The relationship between these two settings
was analyzed in [17], in the context of binary prediction with respect to classes of
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bounded VC dimension. Their main result was that efficient learning in a statistical
setting implies efficient learning in the transductive online setting, but at an inferior
rate ofT3/4 (whereT is the number of rounds). The main open question posed by
that paper is whether a better rate can be obtained. Using theR2 Forecaster, we im-
prove on those results, and provide an efficient algorithm with the optimal

√
T rate,

for a wide class of losses. This shows that efficient batch learning not only implies
efficient transductive online learning (the main thesis of [17]), but also that the same
rates can be obtained, and for possibly non-binary prediction problems as well.

We emphasize that theR2 Forecaster requires computing many empirical risk
minimizers (ERM’s) at each round, which might be prohibitive in practice. Thus,
while it does run in polynomial time whenever an ERM can be efficiently computed,
we make no claim that it is a practical algorithm. Nevertheless, it seems to be a
useful tool in showing thatefficientonline learnability is possible in various settings,
often working in cases where more standard techniques appear to fail. Moreover,
we hope the techniques we employ might prove useful in deriving practical online
algorithms in other contexts.

2 The Minimax Forecaster

We start by formally introducing our online learning setting, known as prediction
with expert advice (see [11]). The game is played between a forecaster and an ad-
versary, and is specified by an outcome spaceY , a prediction spaceP, a nonneg-
ative loss functionℓ : P ×Y → R, which measures the discrepancy between the
forecaster’s prediction and the outcome, and an expert class F . Here we focus on
classesF of static experts, whose prediction at each roundt do not depend on the
outcome in previous rounds. Therefore, we think of eachf ∈ F simply as a se-
quencef = ( f1, f2, . . .) where eachft ∈ P. At each stept = 1,2, . . . of the game,
the forecaster outputs a predictionpt ∈P and simultaneously the adversary reveals
an outcomeyt ∈ Y . The forecaster’s goal is to predict the outcome sequence al-
most as well as the best expert in the classF , irrespective of the outcome sequence
y = (y1,y2, . . . ). The performance of a forecasting strategyA is measured by the
worst-case regret

VT(A,F ) = sup
y∈Y T

(
T

∑
t=1

ℓ(pt ,yt)− inf
f∈F

T

∑
t=1

ℓ( ft ,yt)

)
(1)

viewed as a function of the horizon (number of rounds)T.
Consider now the special case where the horizonT is fixed and known in ad-

vance, the outcome space isY = {−1,+1}, the prediction space isP = [−1,+1],
and the loss is the absolute lossℓ(p,y) = |p− y|. To simplify notation, letL(f,y) =
∑T

t=1 | ft − yt |. We will denote the regret in this special case asV abs
T (A,F ).

The Minimax Forecaster —which is based on work presented in [10] and [12],
see also [11] for an exposition— is derived by an explicit analysis of the mini-
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max regret infAV abs
T (A,F ), where the infimum is over all forecastersA producing

at roundt a predictionpt as a function ofp1,y1, . . . pt−1,yt−1. For general online
learning problems, the analysis of this quantity is intractable. However, for the spe-
cific setting we focus on (absolute loss and binary outcomes), one can get both an
explicit expression for the minimax regret, as well as an explicit algorithm, pro-
vided inff∈F ∑T

t=1ℓ( ft ,yt) can be efficiently computed for any sequencey1, . . . ,yT .
This procedure is akin to performing empirical risk minimization (ERM) in statis-
tical learning. A full development of the analysis is out of scope, but is outlined
in Sec. 6. In a nutshell, the idea is to begin by calculating the optimal prediction
in the last roundT, and then work backwards, calculating the optimal prediction
at roundT −1, T −2 etc. Remarkably, the value of infAV abs

T (A,F ) is exactlythe
Rademacher complexityRT(F ) of the classF , which is known to play a crucial
role in understanding the sample complexity in statisticallearning [5]. In this paper,
we define it as:

RT(F ) = E

[
sup
f∈F

T

∑
t=1

σt ft

]
(2)

whereσ1, . . . ,σT are i.i.d. Rademacher random variables, taking values−1,+1 with
equal probability. WhenRT(F )= o(T), we get a minimax regret infAV abs

T (A,F )=
o(T) which implies a vanishing per-round regret.

In terms of an explicit algorithm, the optimal predictionpt at roundt is given by
a complicated-looking recursive expression, involving exponentially many terms.
Indeed, for general online learning problems, this is the most one seems able to
hope for. However, an apparently little-known fact is that when one deals with a
classF of fixed binary sequences as discussed above, then one can write the optimal
predictionpt in a much simpler way. LettingY1, . . . ,YT be i.i.d. Rademacher random
variables, the optimal prediction at roundt can be written as

pt = E

[
inf
f∈F

L(f,y1 · · ·yt−1 (−1)Yt+1 · · ·YT)− inf
f∈F

L(f,y1 · · ·yt−11Yt+1 · · ·YT)

]
.

(3)
In words, the prediction is simply the expected difference between the minimal cu-
mulative loss overF , when the adversary plays−1 at roundt and random values
afterwards, and the minimal cumulative loss overF , when the adversary plays+1
at roundt, and the same random values afterwards. Again, we refer the reader to
Sec. 6 for how this is derived. We denote this optimal strategy (for absolute loss and
binary outcomes) as the Minimax Forecaster (MF).

Algorithm 1 Minimax Forecaster (MF)
for t = 1 to T do

Predictpt as defined in (3)
Receive outcomeyt and suffer loss|pt −yt |

end for

The relevant guarantee forMF is summarized in the following theorem.
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Theorem 1.For any classF ⊆ [−1,+1]T of static experts, the regret of the Mini-
max Forecaster (Algorithm 1) satisfiesV abs

T (MF,F ) = RT(F ).

The Minimax Forecaster described above is not computationally efficient, as the
computation ofpt requires averaging over exponentially many ERM’s. However, by
a martingale argument, it is not hard to show that it is in factsufficient to compute
only two ERM’s per round.

Algorithm 2 Minimax Forecaster with efficient implementation (MF*)
for t = 1 to T do

For i = t +1, . . . ,T, letYi be a Rademacher random variable
Let pt := inff∈F L(f,y1 . . .yt−1(−1)Yt+1 . . .YT )− inff∈F L(f,y1 . . .yt−11Yt+1 . . .YT )
Predictpt , receive outcomeyt and suffer loss|pt −yt |

end for

Theorem 2.For any classF ⊆ [−1,+1]T of static experts, the regret of the ran-
domized forecasting strategyMF* (Algorithm 2) satisfies

V
abs

T (MF* ,F )≤ RT(F )+
√

2T ln(1/δ )

with probability at least1− δ . Moreover, if the predictionsp = (p1, . . . , pT) are
computed reusing the random values Y1, . . . ,YT computed at the first iteration of the
algorithm, rather than drawing fresh values at each iteration, then it holds that

E

[
L(p,y)− inf

f∈F
L(f,y)

]
≤ RT(F ) for all y ∈ {−1,+1}T.

Proof (Proof sketch).To prove the second statement, note that
∣∣E[pt ]− yt

∣∣ =
E
[
|pt −yt |

]
for any fixedyt ∈ {−1,+1}andpt bounded in[−1,+1], and use Thm. 1.

To prove the first statement, note that|pt − yt |−
∣∣Ept [pt ]− yt

∣∣ for t = 1, . . . ,T is a
martingale difference sequence with respect top1, . . . , pT , and apply Azuma’s in-
equality. ⊓⊔

The second statement in the theorem bounds the regret only inexpectation and is
thus weaker than the first one. On the other hand, it might havealgorithmic benefits.
Indeed, if we reuse the same values forY1, . . . ,YT , then the computation of the infima
over f in MF* are with respect to an outcome sequence which changes only at one
point in each round. Depending on the specific learning problem, it might be easier
to re-compute the infimum after changing a single point in theoutcome sequence,
as opposed to computing the infimum over a different outcome sequence in each
round.
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3 The R2 Forecaster

The Minimax Forecaster presented above is very specific to the absolute loss
ℓ( f ,y) = | f − y| and for binary outcomesY = {−1,+1}, which limits its appli-
cability. We note that extending the forecaster to other losses or different outcome
spaces is not trivial: indeed, the recursive unwinding of the minimax regret term,
leading to an explicit expression and an explicit algorithm, does not work as-is for
other cases. Nevertheless, we will now show how one can deal with general (convex,
Lipschitz) loss functions and outcomes belonging to any real interval [−b,b].

The algorithm we propose essentially uses the Minimax Forecaster as a subrou-
tine, by feeding it with a carefully chosen sequence of binary valueszt , and using
predictionsft which are scaled to lie in the interval[−1,+1]. The values ofzt are
based on a randomized rounding of values in[−1,+1], which depend in turn on the
loss subgradient. Thus, we denote the algorithm as the Randomized Rounding (R2)
Forecaster.

To describe the algorithm, we introduce some notation. For any scalarf ∈ [−b,b],
define f̃ = f/b to be the scaled versions off into the range[−1,+1]. For vectors
f, define f̃ = (1/b)f. Also, we let∂pt ℓ(pt ,yt) denote any subgradient of the loss
functionℓ with respect to the predictionpt . As before, we defineL(̃f,y) =∑T

t=1 | f̃t −
yt |. The pseudocode of theR2 Forecaster is presented as Algorithm 3 below, and its
regret guarantee is summarized in Thm. 3.

Algorithm 3 TheR2 Forecaster
Input: Upper boundb on | ft|, |yt | for all t = 1, . . . ,T and f ∈ F ; upper boundρ on
supp,y∈[−b,b]

∣∣∂pℓ(p,y)
∣∣; precision parameterη ≥ 1

T .
for t = 1 to T do

pt := 0
for j = 1 toη T do

For i = t, . . .,T, letYi be a Rademacher random variable

Draw ∆ := inf
f∈F

L
(

f̃,z1 . . .zt−1(−1)Yt+1 . . .YT

)
− inf

f∈F
L
(

f̃,z1 . . .zt−11Yt+1 . . .YT

)

Let pt := pt +
b

η T ∆
end for
Predictpt

Receive outcomeyt and suffer lossℓ(pt ,yt)
Let rt := 1

2

(
1− 1

ρ ∂pt ℓ(pt ,yt)
)
∈ [0,1]

Let zt := 1 with probabilityrt , andzt :=−1 with probability 1− rt

end for

Theorem 3.Supposeℓ is convex andρ-Lipschitz in its first argument. For anyF ⊆
[−b,b]T , with probability at least1−δ the regret of the R2 Forecaster (Algorithm 3)
satisfies

VT(R
2,F )≤ ρ RT(F )+ρ b

(√
1
η
+2

)√
2T ln

(
2T
δ

)
(4)
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Proof. Let Y(t) denote the set of Bernoulli random variables chosen at roundt. Let
Ezt denote expectation with respect tozt , conditioned onz1,Y(1), . . . ,zt−1,Y(t −1)
as well asY(t). LetEY(t) denote the expectation with respect to the random drawing
of Y(t), conditioned onz1,Y(1), . . . ,zt−1,Y(t −1).

We will need two simple observations. First, by convexity ofthe loss function,
we have that for anypt , ft ,yt , ℓ(pt ,yt)− ℓ( ft ,yt)≤ (pt − ft )∂pt ℓ(pt ,yt). Second, by
definition ofrt andzt , we have that for any fixedpt , ft ,

1
ρb

(pt − ft)∂pt ℓ(pt ,yt) =
1
b
(pt − ft)(1−2rt)

=
1
b

rt( ft − pt)+
1
b
(1− rt)(pt − ft)

= rt( f̃t − p̃t)+ (1− rt)(p̃t − f̃t)

= rt

(
(1− p̃t)−

(
1− f̃t

))
+(1− rt)

(
(p̃t +1)−

(
f̃t +1

))

= Ezt

[
|p̃t − zt |−

∣∣∣ f̃t − zt

∣∣∣
]
.

The last transition uses the fact thatp̃t , f̃t ∈ [−1,+1]. By these two observations, we
have

T

∑
t=1

(ℓ(pt ,yt)− ℓ( ft ,yt))≤
T

∑
t=1

(pt − ft)∂pt ℓ(pt ,yt) = ρ b
T

∑
t=1

Ezt

[
|p̃t − zt |−

∣∣∣ f̃t − zt

∣∣∣
]
.

(5)

Now, note that|p̃t − zt | − | f̃t − zt | −Ezt

[
|p̃t − zt | − | f̃t − zt |

]
for t = 1, . . . ,T is a

martingale difference sequence: for any values ofz1,Y(1), . . . ,zt−1,Y(t − 1),Y(t)
(which fixesp̃t ), the conditional expectation of this expression overzt is zero. Using
Azuma’s inequality, we can upper bound (5) with probabilityat least 1− δ/2 by

ρ b
T

∑
t=1

(
|p̃t − zt |− | f̃t − zt |

)
+ρ b

√
8T ln(2/δ ). (6)

The next step is to relate (6) toρ b∑T
t=1

(∣∣EY(t)[p̃t ]− zt
∣∣− | f̃t − zt |

)
. It might be

tempting to appeal to Azuma’s inequality again. Unfortunately, there is no martin-
gale difference sequence here, sincezt is itself a random variable whose distribution
is influenced byY(t). Thus, we need to turn to coarser methods. (6) can be upper
bounded by

ρ b
T

∑
t=1

(∣∣EY(t)[p̃t ]− zt
∣∣−| f̃t − zt |

)
+ρ b

T

∑
t=1

∣∣p̃t −EY(t)[p̃t ]
∣∣+ρ b

√
8T ln(2/δ ).

(7)
Recall that p̃t is an average overηT i.i.d. random variables, with expectation
EY(t)[p̃t ]. By Hoeffding’s inequality, this implies that for anyt = 1, . . . ,T, with prob-
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ability at least 1−δ/2T over the choice ofY(t),
∣∣p̃t −EY(t)[p̃t ]

∣∣≤
√

2ln(2T/δ )
/
(ηT).

By a union bound, it follows that with probability at least 1− δ/2 over the choice
of Y(1), . . . ,Y(T),

T

∑
t=1

∣∣p̃t −EY(t)[p̃t ]
∣∣≤
√

2T ln(2T/δ )
η

.

Combining this with (7), we get that with probability at least 1− δ ,

ρ b
T

∑
t=1

(∣∣EY(t)[p̃t ]− zt
∣∣−| f̃t − zt |

)
+ρ b

√
2T ln(2T/δ )

η
+ρ b

√
8T ln(2/δ ) . (8)

Finally, by definition ofp̃t = pt/b, we have thatEY(t)[p̃t ] equals

EY(t)

[
inf
f∈F

L
(

f̃,z1 . . .zt−1 (−1)Yt+1 . . .YT

)
− inf

f∈F
L
(

f̃,z1 . . .zt−1 1Yt+1 . . .YT

)]
.

This is exactly the Minimax Forecaster’s prediction at round t, with respect to the
sequence of outcomesz1, . . . ,zt−1 ∈ {−1,+1}, and the class̃F :=

{̃
f : f ∈ F

}
⊆

[−1,1]T . Therefore, using Thm. 1, we can upper bound (8) by

ρ bRT(F̃ )+ρ b

√
2T ln(2T/δ )

η
+ρ b

√
8T ln(2/δ ) .

By definition ofF̃ and Rademacher complexity, it is straightforward to verifythat
RT(F̃ ) = 1

bRT(F ). Using that to rewrite the bound, and slightly simplifying for
readability, the result stated in the theorem follows. ⊓⊔

The computed predictionpt is an empirical approximation to

bEYt+1,...,YT

[
inf
f∈F

L
(

f̃,z1 . . .zt−1 0Yt+1 . . .YT

)
− inf

f∈F
L
(

f̃,z1 · · ·zt−1 1Yt+1 · · ·YT

)]

by repeatedly drawing independent values toYt+1, . . . ,YT and averaging. The accu-
racy of the approximation is reflected in the precision parameterη . A larger value of
η improves the regret bound, but also increases the runtime ofthe algorithm. Thus,
η provides a trade-off between the computational complexityof the algorithm and
its regret guarantee. We note that even whenη is taken to be a constant fraction,
the resulting algorithm still runs in polynomial timeO(T2c), wherec is the time to
compute a single ERM. In subsequent results pertaining to this Forecaster, we will
assume thatη is taken to be a constant fraction.

The R2 forecaster, as presented so far, assumes that the horizonT is known in
advance. We now turn to describe how it can be readily extended to the case where it
is unknown. The standard generic method to achieve this is known as the “doubling”
trick (see [11]), and is based on guessing the value ofT (initially T = 1), and running
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the algorithm with this guess. If the game did not end afterT rounds, the guess is
doubled and the algorithm is restarted with this new value. If the actual horizonT
equals 20+ 21 + 22 + . . .+ 2r for some integerr, then it is easy to show that our
algorithm enjoys the same regret bound as before, plus a moderate multiplicative
factor1. The only case we need to worry about is whenT is not of this form, i.e.,
that the game ends in the middle of the algorithm’s run. In that case, it is enough
to ensure that the algorithm’s regret bound, designed for horizon T, also bounds
the regret after a smaller numbert < T of rounds. This can be shown to hold quite
generically, given a very mild assumption on the loss function:

Lemma 1. Consider a (possibly randomized) forecaster A for a classF whose re-
gret after T steps satisfiesVT(A,F ) ≤ G with probability at least1− δ > 1

2. Fur-
thermore, suppose the loss function is such thatinf

p′∈P

sup
y∈Y

inf
p∈P

(
ℓ(p,y)− ℓ(p′,y)

)
≥ 0.

Then
max

t=1,...,T
Vt(A,F )≤ G with probability at least1− δ .

Note that for the assumption on the loss to hold, a simple sufficient condition is that
P = Y andℓ(p,y)≥ ℓ(y,y) for all p,y∈ P.

Proof. The proof assumes that the infimum and supremum of certain functions over
Y ,F are attainable. If not, the proof can be easily adapted by finding attainable
values which areε-close to the infimum or supremum, and then takingε → 0.

For the purpose of contradiction, suppose there exists a strategy for the adversary
and a roundr ≤ T such that at the end of roundr, the forecaster suffers a regret
G′ > G with probability larger thanδ . Consider the following modified strategy for
the adversary: the adversary plays according to the aforementioned strategy until
roundr. It then computes

f ∗ = argmin
f∈F

r

∑
t=1

ℓ( ft ,yt) .

At all subsequent roundst = r +1, r +2, . . . ,T, the adversary chooses

y∗t = argmax
y∈Y

inf
p∈P

(
ℓ(p,y)− ℓ( f ∗t ,y)

)
.

By the assumption on the loss function,

ℓ(pt ,y
∗
t )−ℓ( f ∗t ,y

∗
t )≥ inf

p∈P

(
ℓ(p,y∗t )−ℓ( f ∗t ,y

∗
t )
)
= sup

y∈Y

inf
p∈P

(
ℓ(p,y)−ℓ( f ∗t ,y)

)
≥ 0 .

Thus, the regret over allT rounds, with respect tof ∗, is

1 Specifically, we divide the rounds intor consecutive epochs, such that epochi consists of 2i

rounds, and use Thm. 3 with confidenceδ ′ = δ/2i+1, and a union bound, to get a regret bound of
O(R2i (F )+

√
(i + log(1/δ ))2i) over any epochi. In the typical case whereRT(F ) = O(

√
T),

summing overi = 1, . . . , r where r = log2(T + 1) − 1 yields a total regret bound of order
O(
√

log(T/δ )T). Up to log factors, this is the same bound as ifT were known in advance.
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r

∑
t=1

(
ℓ(pt ,yt)−ℓ( f ∗t ,yt)

)
+

T

∑
t=r+1

(
ℓ(pt ,y

∗
t )−ℓ( f ∗t ,y

∗
t )
)
≥

r

∑
t=1

ℓ(pt ,yt)− inf
f∈F

r

∑
t=1

ℓ( ft ,yt)

which is at leastG′ with probability larger thanδ . On the other hand, we know that
the learner’s regret is at most mostG with probability at least 1− δ . Thus we have
a contradiction and the proof is concluded. ⊓⊔

We end this section with a remark that plays an important rolein what follows.

Remark 1.The predictions of our forecasting strategies do not dependon the order-
ing of the predictions of the experts inF . In other words, all the results proven so
far also hold in a setting where the elements ofF are functionsf : {1, . . . ,T}→P,
and the adversary has control on the permutationπ1, . . . ,πT of {1, . . . ,T} that is used
to define the predictionf (πt) of expert f at timet.2 Also, Thm. 1 implies that the
value ofV abs

T (F ) remains unchanged irrespective of the permutation chosen by the
adversary.

4 Application 1: Transductive Online Learning

The first application we consider is a rather straightforward one, in the context of
transductive online learning [6]. In this model, we have an arbitrary sequence of
labeled examples(x1,y1), . . . ,(xT ,yT), where only the set{x1, . . . ,xT} of unlabeled
instances is known to the learner in advance. At each roundt, the learner must
provide a predictionpt for the label ofyt . The true labelyt is then revealed, and
the learner incurs a lossℓ(pt ,yt). The learner’s goal is to minimize the transductive
online regret∑T

t=1

(
ℓ(pt ,yt)− inf f∈F ℓ( f (xt),yt )

)
with respect to a fixed class of

predictorsF of the form{x 7→ f (x)}.
The work [17] considers the binary classification case with zero-one loss. Their

main result is that if a classF of binary functions has bounded VC dimension
d, and there exists an efficient algorithm to perform empirical risk minimization,
then one can construct an efficient randomized algorithm fortransductive online
learning, whose regret is at mostO(T3/4

√
d ln(T)) in expectation. The significance

of this result is that efficient batch learning (via empirical risk minimization) implies
efficient learning in the transductive online setting. Thisis an important result, as
online learning can be computationally harder than batch learning - see, e.g., [8] for
an example in the context of Boolean learning.

A major open question posed by [17] was whether one can achieve the opti-
mal rateO(

√
dT), matching the rate of a batch learning algorithm in the statistical

setting. Using theR2 Forecaster, we can easily achieve the above result, as well
as similar results in a strictly more general setting. This shows that efficient batch
learning not only implies efficient transductive online learning (the main thesis of

2 Formally, at each stept: (1) the adversary chooses and reveals the next elementπt of the permu-
tation; (2) the forecaster choosespt ∈ P and simultaneously the adversary choosesyt ∈ Y .
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[17]), but also that the same rates can be obtained, and for possibly non-binary pre-
diction problems as well.

Theorem 4.Suppose we have a computationally efficient algorithm for empirical
risk minimization (with respect to the zero-one loss) over aclassF of {0,1}-valued
functions with VC dimension d. Then, in the transductive online model, the efficient
randomized forecasterMF* achieves an expected regret ofO(

√
dT) with respect to

the zero-one loss.
Moreover, for an arbitrary classF of [−b,b]-valued functions with Rademacher
complexityRT(F ), and any convexρ-Lipschitz loss function, if there exists a com-
putationally efficient algorithm for empirical risk minimization, then the R2 Fore-
caster is computationally efficient and achieves, in the transductive online model, a
regret ofρRT(F )+O(ρb

√
T ln(T/δ )) with probability at least1− δ .

Proof. Since the set{x1, . . . ,xT} of unlabeled examples is known, we reduce the on-
line transductive model to prediction with expert advice inthe setting of Remark 1.
This is done by mapping each functionf ∈ F to a function f : {1, . . . ,T} → P

by t 7→ f (xt), which is equivalent to an expert in the setting of Remarks 1.When
F maps to{0,1}, and we care about the zero-one loss, we can use the fore-
casterMF* to compute randomized predictions and apply Thm. 2 to boundthe
expected transductive online regret withRT(F ). For a class with VC dimension
d, RT(F ) ≤ O(

√
dT) for some constantc > 0, using Dudley’s chaining method

[13], and this concludes the proof of the first part of the theorem. The second part is
an immediate corollary of Thm. 3. ⊓⊔
We close this section by contrasting our results for online transductive learning with
those of [7] about standard online learning. IfF contains{0,1}-valued functions,
then the optimal regret bound for online learning is order of

√
d′T, whered′ is

the Littlestone dimension ofF . Since the Littlestone dimension of a class is never
smaller than its VC dimension, we conclude that online learning is a harder setting
than online transductive learning.

5 Application 2: Online Collaborative Filtering

We now turn to discuss the application of our results in the context of collaborative
filtering with trace-norm constrained matrices, presenting the first computationally
efficient online algorithms for this problem.

In collaborative filtering, the learning problem is to predict entries of an unknown
m×n matrix based on a subset of its observed entries. A common approach is norm
regularization, where we seek a low-norm matrix which matches the observed en-
tries as best as possible. The norm is often taken to be the trace-norm [4, 21, 25],
although other norms have also been considered, such as the max-norm [19] and the
weighted trace-norm [14, 22].

Previous theoretical treatments of this problem assumed a stochastic setting,
where the observed entries are picked according to some underlying distribution
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(e.g., [24, 26]). However, even when the guarantees are distribution-free, assuming
a fixed distribution fails to capture important aspects of collaborative filtering in
practice, such as non-stationarity [18]. Thus, an online adversarial setting, where no
distributional assumptions whatsoever are required, seems to be particularly well-
suited to this problem domain.

In an online setting, at each roundt the adversary reveals an index pair(it , jt )
and secretely chooses a valueyt for the corresponding matrix entry. After that, the
learner selects a predictionpt for that entry. Thenyt is revealed and the learner suf-
fers a lossℓ(pt ,yt). Hence, the goal of a learner is to minimize the regret with respect
to a fixed classW of prediction matrices,∑T

t=1 ℓ(pt ,yt)− infW∈W ∑T
t=1 ℓ

(
Wit , jt ,yt

)
.

Following reality, we will assume that the adversary picks adifferent entry in each
round. When the learner’s performance is measured by the regret after allT = mn
entries have been predicted, the online collaborative filtering setting reduces to pre-
diction with expert advice as discussed in Remark 1.

As mentioned previously,W is often taken to be a convex class of matrices with
bounded trace-norm. Many convex learning problems, such aslinear and kernel-
based predictors, as well as matrix-based predictors, can be learned efficiently both
in a stochastic and an online setting, using mirror descent or regularized follow-
the-leader methods. However, for reasonable choices ofW , a straightforward ap-
plication of these techniques leads to algorithms with trivial bounds. In particular,
in the case ofW consisting ofm×n matrices with trace-norm at mostr, standard
online regret bounds would scale likeO

(
r
√

T
)
. Since for this norm one typically

hasr = O
(√

mn
)
, we get a per-round regret guarantee ofO(

√
mn/T). This is a

trivial bound, since it becomes “meaningful” (smaller thana constant) only after all
T = mnentries have been predicted. In this section, we show how to obtain a com-
putationally efficient algorithm for this problem, using the R2 Forecaster. We note
that following our work, other efficient algorithms were proposed in [16, 20].

Consider first the transductive online setting, where the set of indices to be pre-
dicted is known in advance, and the adversary may only choosethe order and values
of the entries. It is readily seen that theR2 Forecaster can be applied in this set-
ting, using any convex classW of fixed matrices with bounded entries to compete
against, and any convex Lipschitz loss function. To do so, welet {ik, jk}T

k=1 be the
set of entries, and run theR2 Forecaster with respect toF = {t 7→Wit , jt : W ∈W },
which corresponds to a class of experts as discussed in Remark 1.

What is perhaps more surprising is that theR2 Forecaster can also be applied
in a non-transductivesetting, where the indices to be predicted are not known in
advance. Moreover, the Forecaster doesn’t need to know the horizonT in advance.
The key idea to achieve this is to utilize the non-asymptoticnature of the learning
problem —namely, that the game is played over a finitem×n matrix, so the time
horizon is necessarily bounded.

The algorithm we propose is very simple: we apply theR2 Forecaster as if we
are in a setting with time horizonT = mn, which is played overall entries of the
m×n matrix. By Remark 1, theR2 Forecaster does not need to know the order in
which thesem× n entries are going to be revealed. WheneverW is convex andℓ
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is a convex function, we can find an ERM in polynomial time by solving a convex
problem. Hence, we can implement theR2 Forecaster efficiently.

Using Lemma 1, the following theorem exemplifies how we can obtain a regret
guarantee for our algorithm, in the case ofW consisting of the convex set of matri-
ces with bounded trace-norm and bounded entries. For the sake of clarity, we will
considern×n square matrices.

Theorem 5.Letℓ be a loss function which satisfies the conditions of Lemma 1. Also,
letW consist of n×n matrices with trace-norm at most r=O(n) and entries at most
b= O(1), suppose we apply the R2 Forecaster over time horizon n2 and all entries
of the matrix. Then with probability at least1− δ , after T rounds, the algorithm
achieves an average per-round regret of at most

O

(
n3/2+n

√
ln(n/δ )

T

)
uniformly over T= 1, . . . ,n2.

Proof. In our setting, where the adversary chooses a different entry at each round,
[24, Theorem 6] implies that for the classW ′ of all matrices with trace-norm at most
r = O(n), it holds thatRT(W

′)/T ≤ O(n3/2/T). Therefore,Rn2(W ′) ≤ O(n3/2).
SinceW ⊆W ′, we get by definition of the Rademacher complexity thatRn2(W ) =

O(n3/2) as well. By Thm. 3, the regret aftern2 rounds isO(n3/2+n
√

ln(n/δ )) with
probability at least 1− δ . Applying Lemma 1, we get that the cumulative regret at
the end of any roundT = 1, . . . ,n2 is at mostO(n3/2+n

√
ln(n/δ )), as required. ⊓⊔

This bound becomes non-trivial aftern3/2 entries are revealed, which is still a van-
ishing proportion of alln2 entries. While the regret might seem unusual compared
to standard regret bounds (which usually have rates of 1/

√
T for general losses), it

is a natural outcome of the non-asymptotic nature of our setting, whereT can never
be larger thann2. In fact, this is the same rate one would obtain in a batch setting,
where the entries are drawn from an arbitrary distribution.

As mentioned in the introduction, other online learning algorithms for this prob-
lem have been published since this work appeared [16, 20], using other techniques
and assumptions.

6 Appendix: Derivation of the Minimax Forecaster

In this appendix, we outline how the Minimax Forecaster is derived, as well as its
associated guarantees. This outline closely follows the exposition in [11, Chapter
8], to which we refer the reader for some of the technical derivations.

First, we note that the Minimax Forecaster as presented in [11] actually refers to
a slightly different setup than ours, where the outcome space isY = {0,1} and the
prediction space isP = [0,1], rather thanY = {−1,+1} andP = [−1,+1]. We
will first derive the forecaster for the first setting, and then show how to convert it to
the second setting.
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Our goal is to find a predictor which minimizes the worst-caseregret,

max
y∈{0,1}T

(
L(p,y)− inf

f∈F
L(f,y)

)

wherep = (p1, . . . , pT) is the prediction sequence.
For convenience, in the following we sometimes use the notation yt to denote

a vector in{0,1}t . The idea of the derivation is to work backwards, starting with
computing the optimal prediction at the last roundT, then deriving the optimal
prediction at roundT −1 and so on. In the last roundT, the firstT −1 outcomes
yT−1 have been revealed, and we want to find the optimal predictionpT . Since our
goal is to minimize worst-case regret with respect to the absolute loss, we just need
to computepT which minimizes

L(pT−1,yT−1)+max
{

pT − inf
f∈F

L(f,yT−10) , (1− pT)− inf
f∈F

L(f,yT−11)
}
.

In our setting, it is not hard to show that
∣∣inff∈F L(f,yt−10)− inff∈F L(f,yt−11)

∣∣≤ 1
(see [11, Lemma 8.1]). Using this, we can compute the optimalpT to be

pT =
1
2

(
AT(yT−11)−AT(yT−10)+1

)
(9)

whereAT(yT) =− inff∈F L(f,yT).
Having determinedpT , we can continue to the previous predictionpT−1. This is

equivalent to minimizing

L(pT−2,yT−2)+max
{

pT−1+AT−1(yT−20) , (1− pT−1)+AT−1(yT−21)
}

where

AT−1(yT−1) = min
pT∈[0,1]

max

{
pT − inf

f∈F
L(f,yT−10) , (1− pT)− inf

f∈F
L(f,yT−11)

}
.

(10)
Note that by plugging in the value ofpT from (9), we also get the following equiv-
alent formulation forAT−1(yT−1):

AT−1(yT−1) =
1
2

(
AT(yT−10)+AT(yT−11)+1

)
.

Again, it is possible to show that the optimal value ofpT−1 is

pT−1 =
1
2

(
AT−1(yT−21)−AT(yT−20)+1

)
.

Repeating this procedure, one can show that at any roundt, the minimax optimal
prediction is

pt =
1
2

(
At(yt−11)−At(yt−10)+1

)
(11)
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whereAt is defined recursively asAT(yT) =− inff∈F L(f,yT) and, for allt,

At−1(yt−1) =
1
2

(
At(yt−10)+At(yt−11)+1

)
. (12)

At first glance, computingpt from (11) might seem tricky, since it requires comput-
ing At(yt) whose recursive expansion in (12) involves exponentially many terms.
Luckily, the recursive expansion has a simple structure, and it is not hard to show
that

At(yt) =
T − t

2
− 1

2T ∑
y∈{0,1}T

(
inf
f∈F

L(f,ytYT−t)

)
=

T − t
2

−E

[
inf
f∈F

L(f,ytYT−t)
]

(13)
whereYT−t is a sequence ofT − t i.i.d. Bernoulli random variables, which take val-
ues in{0,1} with equal probability. Plugging this into the formula for the minimax
prediction in (11), we get that3

pt =
1
2

(
E

[
inf
f∈F

L(f,yt−10YT−t)− inf
f∈F

L(f,yt−11YT−t)

]
+1

)
. (14)

This prediction rule constitutes the Minimax Forecaster aspresented in [11].
After deriving the algorithm, we turn to analyze its regret performance. To do

so, we just need to note thatA0 equals the worst-case regret —see the recursive
definition at (10). Using the alternative explicit definition in (13), we get that the
worst-case regret equals

T
2
−E

[
inf
f∈F

T

∑
t=1

| ft −Yt |
]
= E

[
sup
f∈F

T

∑
t=1

(
1
2
−| ft −Yt |

)]
= E

[
sup
f∈F

T

∑
t=1

(
ft −

1
2

)
σt

]

whereσt are i.i.d. Rademacher random variables (taking values of−1 and+1 with
equal probability). Recalling the definition of Rademachercomplexity, (2), we get
that the regret is bounded by the Rademacher complexity of the shifted class, which
is obtained fromF by taking everyf ∈ F and replacing every coordinateft by
ft −1/2.

Finally, it remains to show how to convert the forecaster andanalysis above to
the setting discussed in this paper, where the outcomes are in {−1,+1} rather than
{0,1} and the predictions are in[−1,+1] rather than[0,1]. To do so, consider a
learning problem in this new setting, with some classF . For any vectory, definẽy
to be the shifted vector(y+1)/2, where1= (1, . . . ,1) is the all-ones vector. Also,
defineF̃ to be the shifted class̃F = {(f + 1)/2 : f ∈ F}. It is easily seen that
L(f,y) = 2L(̃f, ỹ) for any f,y. As a result, if we look at the predictionpt given by
our forecaster in (3), theñpt = (pt +1)/2 is the minimax optimal prediction given
by (14) with respect to the class̃F and the outcomes̃yT . So our analysis above
applies, and we get that

3 This fact appears in an implicit form in [10] —see also [11, Exercise 8.4].
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max
y∈{−1,+1}T

(
L(p,y)− inf

f∈F
L(f,y)

)
= max

ỹ∈[0,1]T
2

(
L(p̃, ỹ)− inf

f̃∈F̃

L(̃f, ỹ)
)

= 2E

[
sup
f̃∈F̃

T

∑
t=1

(
f̃t −

1
2

)
σt

]
= E

[
sup
f∈F

T

∑
t=1

σt ft

]

which is exactly the Rademacher complexity of the classF .
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