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Efficient Transductive Online Learning via
Randomized Rounding

Nicold Cesa-Bianchi and Ohad Shamir

Abstract Most traditional online learning algorithms are based amaves of mirror
descent or follow-the-leader. In this paper, we presentdin®algorithm based on
a completely different approach, tailored for transdwesettings, which combines
“random playout” and randomized rounding of loss subgnagieAs an applica-
tion of our approach, we present the first computationafigieht online algorithm
for collaborative filtering with trace-norm constrainedtni@es. As a second appli-
cation, we solve an open question linking batch learning taalsductive online
learning.

1 Introduction

Online learning algorithms, which have received much &tenin recent years,
enjoy an attractive combination of computational efficigriack of distributional

assumptions, and strong theoretical guarantees. Inforistaking, online learn-
ing is framed as a sequential game betwedeaaner, who provides predictions,

and an all-powerfubdversary who chooses the outcomes on which the learner’s

predictions are tested. The learner’s goal is to attain kyvet —that is, low excess
loss— with respect to a comparison class of experts or pi@adi¢see Set] 2 for a
more precise statement). Using standard online-to-batdimiques (e.gl ]9]), one
can convert online learning methods into simple and effediatch learning algo-
rithms in a stochastic setting, where training and test gtesnare sampled from a
distribution.
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In this work, we focus on transductive online learning, vehttre predictions of
the experts/predictors can all be computed in advance. ¥angle, consider the
case where a sequence of unlabeled instaficésare given, and the learner needs
to predict the corresponding labdlg } which are sequentially chosen and revealed
by the adversary. Thus, for a given fixed predidtpwe can already compute its
predictions{h(x )} beforehand. This is a natural online analogue of the tractaau
learning framework introduced by Vapnik in a statisticatdhesetting [[27], where
the test instances on which one needs to predict are knowdvamae.

Despite the effectiveness of online learning methods, jrabably fair to say
that at their core, most of them are based on the same smaif $ebdamental
techniques, in particular mirror descent and regularizdidw-the-leader (see for
instance[[15,23]). In this work we revisit, and significangixtend, an algorithm
which uses a completely different approach. This algorjtkmown as théviinimax
Forecastey was introduced in[10, 12] for the setting of predictioniwitatic ex-
perts. The Forecaster computes minimax predictions indke of a fixed horizon,
binary outcomes, and absolute loss. Although the origieadion is computation-
ally expensive, it can easily be made efficient through ramdation.

We extend the analysis df [110] to the case of non-binary ouesy unknown
horizons, and arbitrary convex and Lipschitz loss funciorhe new algorithm is
based on a combination of “random playout” and randomizeddog, which as-
signs random binary labels to future unseen instances, iayadepending on the
loss subgradients. Our resultilRpndomized Rounding {RForecasterhas a pa-
rameter trading off regret performance and computatiooaipexity, and runs in
polynomial time. The idea of “random playout”, in the corttek online learning,
has also been used in [3./17], but we apply this idea in a diffeway.

Interestingly, our work, which focuses on online learnimgs close links to meth-
ods and concepts from statistical learning, and thus cardreas bridging between
the two fields. For example, tHR# Forecaster uses empirical risk minimization —a
standard statistical learning method— as a subroutineedar, the regret of the
R? Forecaster is determined by the Rademacher complexitgafdmparison class,
which is a measure of the generalization performance ofltes én a statistical set-
ting. The connection between online learnability and Raatgmr complexity has
also been explored in]I] 2]. Recently, [20] provided a digant generalization of
these ideas, implying new algorithms and extending in aesdémswork presented
here.

As an application of our results, we describe howR&d-orecaster can be used
to design the first efficient online learning algorithm fotlaborative filtering with
trace-norm constrained matrices. While this is a well-kn@etting, a straightfor-
ward application of standard online learning approachash €s mirror descent,
appear to give only trivial performance guarantees. Mogeoour regret bound
matches the best known sample complexity bound in the bastfibdition-free set-
ting [24].

As a different application, we consider general reductiogisveen batch learn-
ing and transductive online learning. The relationshipveen these two settings
was analyzed in[17], in the context of binary predictionhwigéspect to classes of
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bounded VC dimension. Their main result was that efficieatrieng in a statistical
setting implies efficient learning in the transductive palsetting, but at an inferior
rate of T34 (whereT is the number of rounds). The main open question posed by
that paper is whether a better rate can be obtained. Usirg’tRerecaster, we im-
prove on those results, and provide an efficient algorithth thie optimak/T rate,

for a wide class of losses. This shows that efficient batcinleg not only implies
efficient transductive online learning (the main thesiglaf]], but also that the same
rates can be obtained, and for possibly non-binary predigiroblems as well.

We emphasize that the® Forecaster requires computing many empirical risk
minimizers (ERM’s) at each round, which might be prohik@tin practice. Thus,
while it does run in polynomial time whenever an ERM can beiffitly computed,
we make no claim that it is a practical algorithm. Neverthglét seems to be a
useful tool in showing thatfficientonline learnability is possible in various settings,
often working in cases where more standard techniques appéail. Moreover,
we hope the techniques we employ might prove useful in degipractical online
algorithms in other contexts.

2 The Minimax Forecaster

We start by formally introducing our online learning segtilknown as prediction
with expert advice (se€ [11]). The game is played betweenmexéster and an ad-
versary, and is specified by an outcome sp@Ge prediction space”, a nonneg-
ative loss functior? ;: & x % — R, which measures the discrepancy between the
forecaster’s prediction and the outcome, and an expers cilasHere we focus on
classes# of static expertswhose prediction at each rouhdo not depend on the
outcome in previous rounds. Therefore, we think of eheh.# simply as a se-
quencef = (f1, f2,...) where eachf; € &2. At each stepg = 1,2,... of the game,
the forecaster outputs a predictipne &2 and simultaneously the adversary reveals
an outcomey; € #. The forecaster’'s goal is to predict the outcome sequence al
most as well as the best expert in the cléssirrespective of the outcome sequence
y = (Y1,¥2,...). The performance of a forecasting strateyys measured by the
worst-case regret

T T
¥ (AF) = sup (t;e<n,yt>—fig;t;e(ft,yt>> ®

yeaT

viewed as a function of the horizon (humber of rountls)

Consider now the special case where the horizas fixed and known in ad-
vance, the outcome space#s= {—1,+1}, the prediction space i¢” = [-1,+1],
and the loss is the absolute log®,y) = |p —y|. To simplify notation, leL(f,y) =
S_1|ft — yt|. We will denote the regret in this special case/g@8A, 7).

The Minimax Forecaster —which is based on work presentedGh dnd [12],
see also[[11] for an exposition— is derived by an explicitlgsia of the mini-



4 Nicold Cesa-Bianchi and Ohad Shamir

max regret ink “I/TabS(A,%‘), where the infimum is over all forecastekgroducing
at roundt a predictionp; as a function ofpy,y1,... pt_1,Yt_1. For general online
learning problems, the analysis of this quantity is intaate. However, for the spe-
cific setting we focus on (absolute loss and binary outconwes can get both an
explicit expression for the minimax regret, as well as anliekplgorithm, pro-
vided infc » th:lé(ft,yt) can be efficiently computed for any sequemge..,yr.
This procedure is akin to performing empirical risk miniation (ERM) in statis-
tical learning. A full development of the analysis is out ebpe, but is outlined
in Sec[®. In a nutshell, the idea is to begin by calculatiregdptimal prediction
in the last roundr, and then work backwards, calculating the optimal prediicti
at roundT — 1, T — 2 etc. Remarkably, the value of gi#s?°YA,.7) is exactlythe
Rademacher complexit¥r (%) of the class%, which is known to play a crucial
role in understanding the sample complexity in statisiieatning [5]. In this paper,
we define it as: ;
Zr(7)=E lsup Gt ft] 2)
feZ{=

whereay, ..., or are i.i.d. Rademacher random variables, taking vak(es+1 with
equal probability. Whes#r (.7) = o(T), we get a minimax regretinf/;2°Y A, .7 ) =
o(T) which implies a vanishing per-round regret.

In terms of an explicit algorithm, the optimal predictipnat rounct is given by
a complicated-looking recursive expression, involving@xentially many terms.
Indeed, for general online learning problems, this is thesinome seems able to
hope for. However, an apparently little-known fact is thdtem one deals with a
class% of fixed binary sequences as discussed above, then one ¢artheroptimal
predictionp; in a much simpler way. Lettiny, ..., Yr bei.i.d. Rademacher random
variables, the optimal prediction at roundan be written as

Pt = E | inf L(f,yl- Y1 (—1)Yt+1- . -YT) — inf L(f,yl- . -yt,11%+1- . -YT) .
fe 7 fe7

®3)
In words, the prediction is simply the expected differeneameen the minimal cu-
mulative loss over#, when the adversary playsl at roundt and random values
afterwards, and the minimal cumulative loss owérwhen the adversary playsl
at roundt, and the same random values afterwards. Again, we referetiuer to
Sec[® for how this is derived. We denote this optimal stiatéay absolute loss and
binary outcomes) as the Minimax Forecaster)

Algorithm 1 Minimax Forecastem{F)
fort=1toT do
Predictp as defined in({3)
Receive outcoms and suffer los$p; — vi|
end for

The relevant guarantee foF is summarized in the following theorem.
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Theorem 1.For any classZ C [-1,+1]" of static experts, the regret of the Mini-
max Forecaster (Algorithil 1) satisfig§°YMF, 7) = %1 (F).

The Minimax Forecaster described above is not computdtjoeficient, as the
computation ofp; requires averaging over exponentially many ERM’s. Howgver
a martingale argument, it is not hard to show that it is in fadficient to compute
only two ERM’s per round.

Algorithm 2 Minimax Forecaster with efficient implementatianr*)
fort=1toT do
Fori=t+1,...,T, letY; be a Rademacher random variable
Letp :=infiez L(fy1.. . Yt1 (=) Yeq1...¥r) —infrez L(fy1. . Y1 1Yi1. .. Y7)
Predictpy, receive outcomg and suffer los$p; — yi|
end for

Theorem 2.For any class# C [—1,+1]" of static experts, the regret of the ran-
domized forecasting strategyr* (Algorithm[2) satisfies

VRS MEr | F) < Fr (F) +/2TIn(1/9)

with probability at leastl — 8. Moreover, if the predictiong = (p,...,pr) are
computed reusing the random valugs.Y., Yy computed at the first iteration of the
algorithm, rather than drawing fresh values at each itevatithen it holds that

E|L(p,y) = inf L(f.y)| < %1(7F) forally € {—1,+1}".

Proof (Proof sketch).To prove the second statement, note tham] —yt\ =
E[|p. —w|] for any fixedy; € {—1,+1} andp; bounded if—1,+1], and use Thni]1.
To prove the first statement, note thpt— yt| — [Ep [p] —w| fort=1,.... Tisa
martingale difference sequence with respecpio.., pr, and apply Azuma’s in-
equality. a

The second statement in the theorem bounds the regret oekpiectation and is

thus weaker than the first one. On the other hand, it might Alarithmic benefits.

Indeed, if we reuse the same values¥qr.. ., Y, then the computation of the infima
overf in MF* are with respect to an outcome sequence which changes bolyea

point in each round. Depending on the specific learning gmblit might be easier

to re-compute the infimum after changing a single point indhzome sequence,
as opposed to computing the infimum over a different outcomggiance in each
round.
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3 The R? Forecaster

The Minimax Forecaster presented above is very specific ¢oattsolute loss
((f,y) = |f —y| and for binary outcome®” = {—1,+1}, which limits its appli-
cability. We note that extending the forecaster to othesdsor different outcome
spaces is not trivial: indeed, the recursive unwinding @f thinimax regret term,
leading to an explicit expression and an explicit algoritldimes not work as-is for
other cases. Nevertheless, we will now show how one can déeadjeneral (convex,
Lipschitz) loss functions and outcomes belonging to anyirgarval [—b, b].

The algorithm we propose essentially uses the Minimax Fstec as a subrou-
tine, by feeding it with a carefully chosen sequence of hinaluesz, and using
predictionsf; which are scaled to lie in the intervgt1,+1]. The values of are
based on a randomized rounding of valuegid, +1], which depend in turn on the
loss subgradient. Thus, we denote the algorithm as the Raimed RoundingR?)
Forecaster.

To describe the algorithm, we introduce some notation. Rpsaalarf € [—b, b,
definef = f /b to be the scaled versions éfinto the rangeé—1, +1]. For vectors
f, definef = (1/b)f. Also, we letdp (P, yt) denote any subgradient of the loss
function/ with respect to the prediction. As before, we definE(?,y) = EtT:l | fi—
yt|. The pseudocode of tH®? Forecaster is presented as Algorithim 3 below, and its
regret guarantee is summarized in Thin. 3.

Algorithm 3 TheR? Forecaster
Input: Upper boundb on |f|,|y;| for all t = 1,..., T and f € #; upper boundp on

SUR,ye(-b| Fpf(P,Y)|; precision parametey > 1.
fort=1toT do
pt:=0
for j=1tonTdo
Fori =t,...,T, letY; be a Rademacher random variable

Draw A ::flerl;l_ (f,zl...z(_l(—l)\(l+1...YT) _flerl;l_ (f,zl...z[_ll\([+1...YT)

Letp = p+ 754
end for
Predictpy
Receive outcoms and suffer losg(px, yt)
Letry:i=3(1— 2p (P, Y1) € [0,1]
Let z := 1 with probabilityr;, andz := —1 with probability 1—r;
end for

Theorem 3. Supposé is convex ang-Lipschitz in its first argument. For ang C
[—b,b]T, with probability at leasfL — & the regret of the RForecaster (Algorithrfil3)

satisfies
“//T(Rz,ﬁ)gp%T(ﬁ)erb(\/%—FZ) 2TIn (%T) (4)
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Proof. LetY(t) denote the set of Bernoulli random variables chosen at rouret
E, denote expectation with respectzoconditioned orey,Y(1),...,z_1,Y(t —1)
as well asy (t). LetEy ;) denote the expectation with respect to the random drawing
of Y(t), conditioned orgy, Y (1),...,7z_1,Y(t —1).

We will need two simple observations. First, by convexitytiod loss function,
we have that for anyy, fe,vt, £(pe,¥t) — €(fe, %) < (Pt — ft) Op 4( P, V). Second, by
definition ofr; andz, we have that for any fixeg, fi,

1

S5 W (Py) = B (121

1 1
- Brt(ft - pt)+ B(l—rt)(pt — ft)
= ne(fe—p)+ @—r)(p— f)
=r(@-p-(1-%))+@-r) ((m+1)-(f+1))
= Bz [|5t—2t|—‘ﬁ—2tu .
The last transition uses the fact tfﬁa;ﬁ € [-1,+1]. By these two observations, we

have

T

tzlw;)uyt)—f(ft,yt))si(pt—ft>amé(p[,yt>=pbtizaa 12| |fi-a]] -
©)

Now, note thapy — z| — |t —z| —Ex[|p —z| — [ —z|] fort =1,....Tis a
martingale difference sequence: for any valuez0¥(1),...,z_1,Y(t —1),Y(t)

(which fixespy), the conditional expectation of this expression ayés zero. Using
Azuma'’s inequality, we can upper bouiid (5) with probabiityeast - 5/2 by

T ~
pb Z(|ﬁ—zt|—|ft—zt|)+pb\/8Tln<2/6>. (6)
t=

The next step is to relat€l(6) toby_; (|Ey[Pt] —z| — |ft —z|). It might be
tempting to appeal to Azuma’s inequality again. Unfortehgtthere is no martin-
gale difference sequence here, sinds itself a random variable whose distribution

is influenced byy (t). Thus, we need to turn to coarser methofs. (6) can be upper
bounded by

T _ T
pb Zl(’EY(t)[ﬁt]_zt‘ _|ft_zt|) +pb Zl\ﬁt —Ey(y[R]| +pby/8TIn(2/5).
- : ™

Recall thatp; is an average ovenT i.i.d. random variables, with expectation
Evt)[t]. By Hoeffding’s inequality, this implies that for aty=1,..., T, with prob-



8 Nicold Cesa-Bianchi and Ohad Shamir

ability at least - §/2T over the choice of (t), | B — Ey( [R]| < 1/2In(2T/3)/(nT).

By a union bound, it follows that with probability at least-15/2 over the choice
of Y(1),...,Y(T),

il ~ 2T In(2T/d)

Zl|ﬁt_EY(t)[pt]| <yt

t= n

Combining this with[[¥), we get that with probability at I€ds- d,

T ~
pr(\Ewt)[m—zt|—|ft—zt|)+pb,/w+pb\/8ﬂn(2/6>. (®)
t=

Finally, by definition ofpx = pt/b, we have thaEy ) [pt] equals

Ey(t) |:fi€I'tI;L (?,21...Z¢,1(—1)Yt+1...YT) —fier];L (Af, ... %1 1Yt+1...YT)] .

This is exactly the Minimax Forecaster’s prediction at rdtinwith respect to the
sequence of outcomes, ..., z_1 € {—1,4+1}, and the class? := {f:f € F} C
[~1,1]7. Therefore, using Thri] 1, we can upper bourd (8) by

pb%r(F)+pb erpb\/STln(Z/é) .

By definition of.Z and Rademacher complexity, it is straightforward to veifiigt
Hr(F) = %%T(ﬁ). Using that to rewrite the bound, and slightly simplifyiray f
readability, the result stated in the theorem follows. a

The computed predictiop, is an empirical approximation to

by repeatedly drawing independent valuesitq, ..., Yr and averaging. The accu-
racy of the approximation is reflected in the precision pat@m. A larger value of
n improves the regret bound, but also increases the runtinteeatlgorithm. Thus,
n provides a trade-off between the computational complefityre algorithm and
its regret guarantee. We note that even wheis taken to be a constant fraction,
the resulting algorithm still runs in polynomial tin#(T2c), wherec is the time to
compute a single ERM. In subsequent results pertainingiscibrecaster, we will
assume tha is taken to be a constant fraction.

The R? forecaster, as presented so far, assumes that the hdrimknown in
advance. We now turn to describe how it can be readily exttuitne case where it
is unknown. The standard generic method to achieve thisowkras the “doubling”
trick (seel[11]), and is based on guessing the valte(@fitially T = 1), and running
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the algorithm with this guess. If the game did not end aftepunds, the guess is
doubled and the algorithm is restarted with this new valfithd actual horizom
equals &+ 21+ 22+ ...+ 2" for some integer, then it is easy to show that our
algorithm enjoys the same regret bound as before, plus a naedeultiplicative
factofl. The only case we need to worry about is whers not of this form, i.e.,
that the game ends in the middle of the algorithm’s run. Int tase, it is enough
to ensure that the algorithm’s regret bound, designed fozbo T, also bounds
the regret after a smaller numbier: T of rounds. This can be shown to hold quite
generically, given a very mild assumption on the loss fuorcti

Lemma 1. Consider a (possibly randomized) forecaster A for a cléssvhose re-
gret after T steps satisfiesr (A,.%) < G with probability at leastl — 6 > % Fur-

thermore, suppose the loss function is such tht sup inf ( (py)—£4(p.y)) >0
PED yeyy PES

Then

max KA F) <G with probability at leastl — 9.

Note that for the assumption on the loss to hold, a simplecseiffi condition is that
P =% andl(p,y) > {(y,y) forall p,y € £.

Proof. The proof assumes that the infimum and supremum of certaatifuns over
%, F are attainable. If not, the proof can be easily adapted byriindttainable
values which are-close to the infimum or supremum, and then takéng O.

For the purpose of contradiction, suppose there existaitegty for the adversary
and a round < T such that at the end of round the forecaster suffers a regret
G’ > G with probability larger thad. Consider the following modified strategy for
the adversary: the adversary plays according to the aforéomed strategy until
roundr. It then computes

“=argminy £(fi, %)
feF t21 o

At all subsequentrounds=r+1,r+2,...,T, the adversary chooses

vi _argmaxplnf (t(py) —(f5,y)) -

yew

By the assumption on the loss function,

(0P Y) —£(f %) = inf f (0P ¥0) —£(f, %)) = sup inf (¢(p,y)—£(f{,y)) =0

yew PEZ

Thus, the regret over all rounds, with respect tb*, is

1 Specifically, we divide the rounds intoconsecutive epochs, such that epoatonsists of 2

rounds, and use Thill 3 with confidente= 6/2'*1, and a union bound, to get a regret bound of
O(%5(F)++/(i+1og(1/6)) 2') over any epocli. In the typical case whet#r (F) = 6(V/T),

summing overi = 1,...,r wherer = log,(T + 1) — 1 yields a total regret bound of order
O (4/log(T/d)T). Up to Iog factors, this is the same bound &§ ifvere known in advance.
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r T r r
t;(g(ptayt)_é(ft*vyt)) +t:;l(£(ptvyt*)_é(ft*7yt*)) Ztgg(phyt)_ fIQ;tgg(ftvyt)

which is at leasG’ with probability larger thad. On the other hand, we know that
the learner’s regret is at most md@stwith probability at least + 6. Thus we have
a contradiction and the proof is concluded. a

We end this section with a remark that plays an importantirolehat follows.

Remark 1 The predictions of our forecasting strategies do not deperttie order-
ing of the predictions of the experts i#i. In other words, all the results proven so
far also hold in a setting where the elementsiofre functiond : {1,.... T} — &,
and the adversary has control on the permutation ., 77 of {1,..., T } thatis used
to define the predictiorfi(75) of expertf at timetH Also, Thm[2 implies that the
value of“l/TabS(ﬂ«‘) remains unchanged irrespective of the permutation chogémeb
adversary.

4 Application 1: Transductive Online Learning

The first application we consider is a rather straightfodvame, in the context of
transductive online learnin@[6]. In this model, we have dpiteary sequence of
labeled example&«q, 1), . ., (Xr,yr), where only the sefx;, ..., xr} of unlabeled
instances is known to the learner in advance. At each rauiite learner must
provide a predictiorp; for the label ofy;. The true labely is then revealed, and
the learner incurs a log$pt, vt ). The learner’s goal is to minimize the transductive
online regretthzl(é(pt,yt) —infrez £(f (%), %)) with respect to a fixed class of
predictorsZ of the form{x+— f(x)}.

The work [17] considers the binary classification case witozone loss. Their
main result is that if a class# of binary functions has bounded VC dimension
d, and there exists an efficient algorithm to perform empiritsk minimization,
then one can construct an efficient randomized algorithrtriorsductive online
learning, whose regret is at magtT%/4,/dIn(T)) in expectation. The significance
of this result is that efficient batch learning (via empitigsk minimization) implies
efficient learning in the transductive online setting. Tisi@n important result, as
online learning can be computationally harder than bataimiag - see, e.g!.[8] for
an example in the context of Boolean learning.

A major open question posed by [17] was whether one can ezhiey opti-
mal rate¢’(1/dT), matching the rate of a batch learning algorithm in the stiatl
setting. Using theéR? Forecaster, we can easily achieve the above result, as well
as similar results in a strictly more general setting. Thisves that efficient batch
learning not only implies efficient transductive onlinerl@ag (the main thesis of

2 Formally, at each step (1) the adversary chooses and reveals the next elemefithe permu-
tation; (2) the forecaster choospse & and simultaneously the adversary chooges %'.
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[L7]), but also that the same rates can be obtained, and &silgp non-binary pre-
diction problems as well.

Theorem 4. Suppose we have a computationally efficient algorithm fqpigcal
risk minimization (with respect to the zero-one loss) ovelaas.% of {0, 1}-valued
functions with VC dimension d. Then, in the transductivénenhodel, the efficient
randomized forecastewr* achieves an expected regret@f./dT) with respect to
the zero-one loss.

Moreover, for an arbitrary class# of [—b,b]-valued functions with Rademacher
complexityZt (%), and any convep-Lipschitz loss function, if there exists a com-
putationally efficient algorithm for empirical risk minimation, then the RFore-
caster is computationally efficient and achieves, in thagductive online model, a

regret of p %1 (.F) + €(pb\/T In(T /d)) with probability at leastlL — J.

Proof. Since the sefx,,...,xr} of unlabeled examples is known, we reduce the on-
line transductive model to prediction with expert advicéhia setting of Remailk 1.
This is done by mapping each functidne % to a functionf : {1,..., T} —» &

by t — f(x), which is equivalent to an expert in the setting of Remaike/hen

Z maps to{0,1}, and we care about the zero-one loss, we can use the fore-
casterMF* to compute randomized predictions and apply Thin. 2 to botined
expected transductive online regret witfy (.%). For a class with VC dimension

d, Z1(F) < 0(\/dT) for some constant > 0, using Dudley’s chaining method
[L3], and this concludes the proof of the first part of the them The second partis

an immediate corollary of Thra] 3. a

We close this section by contrasting our results for onliaegductive learning with
those of [7] about standard online learningJi contains{0, 1}-valued functions,
then the optimal regret bound for online learning is order/@f T, whered’ is

the Littlestone dimension of¢. Since the Littlestone dimension of a class is never
smaller than its VC dimension, we conclude that online leayis a harder setting
than online transductive learning.

5 Application 2: Online Collaborative Filtering

We now turn to discuss the application of our results in tha&ext of collaborative
filtering with trace-norm constrained matrices, preseantire first computationally
efficient online algorithms for this problem.

In collaborative filtering, the learning problem is to prefdintries of an unknown
mx n matrix based on a subset of its observed entries. A commaagipis norm
regularization, where we seek a low-norm matrix which mescthe observed en-
tries as best as possible. The norm is often taken to be tbe-trarm [[4[ 211 25],
although other norms have also been considered, such astttaonm [19] and the
weighted trace-normi [14, 22].

Previous theoretical treatments of this problem assumetbchastic setting,
where the observed entries are picked according to somelyimdedistribution
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(e.g., [24]26]). However, even when the guarantees aneldison-free, assuming
a fixed distribution fails to capture important aspects dfatmrative filtering in
practice, such as non-stationar(ty[18]. Thus, an onlineeghrial setting, where no
distributional assumptions whatsoever are required, sa@erbe particularly well-
suited to this problem domain.

In an online setting, at each rounhdhe adversary reveals an index péit ji )
and secretely chooses a valydor the corresponding matrix entry. After that, the
learner selects a predictigmn for that entry. Thery; is revealed and the learner suf-
fersalos€(px,y:). Hence, the goal of a learner is to minimize the regret witipeet
to a fixed class/ of prediction matricesy ", £(pt,yt) — infwer 31 £ (W ji, %t)-
Following reality, we will assume that the adversary picldifeerent entry in each
round. When the learner’s performance is measured by thretrafier allT = mn
entries have been predicted, the online collaborativeifiljesetting reduces to pre-
diction with expert advice as discussed in Renfidrk 1.

As mentioned previously? is often taken to be a convex class of matrices with
bounded trace-norm. Many convex learning problems, sudmear and kernel-
based predictors, as well as matrix-based predictors, edeaned efficiently both
in a stochastic and an online setting, using mirror descemnégularized follow-
the-leader methods. However, for reasonable choicé# pé straightforward ap-
plication of these techniques leads to algorithms withatitaounds. In particular,
in the case of# consisting ofm x n matrices with trace-norm at moststandard
online regret bounds would scale Iil@(r\/f). Since for this norm one typically
hasr = ¢'(/mn), we get a per-round regret guaranteef,/mn/T). This is a
trivial bound, since it becomes “meaningful” (smaller treoonstant) only after all
T = mnentries have been predicted. In this section, we show howttgiroa com-
putationally efficient algorithm for this problem, usingetR? Forecaster. We note
that following our work, other efficient algorithms were pased in[[16]_20].

Consider first the transductive online setting, where th®smdices to be pre-
dicted is known in advance, and the adversary may only chtbhesserder and values
of the entries. It is readily seen that tR8 Forecaster can be applied in this set-
ting, using any convex clasg” of fixed matrices with bounded entries to compete
against, and any convex Lipschitz loss function. To do solevéiy, jk}L1 be the
set of entries, and run ti# Forecaster with respectt8 = {t —W, j, : W e #},
which corresponds to a class of experts as discussed in RBnar

What is perhaps more surprising is that fReForecaster can also be applied
in a non-transductivesetting, where the indices to be predicted are not known in
advance. Moreover, the Forecaster doesn’t need to knowattizoln T in advance.
The key idea to achieve this is to utilize the non-asymptadittire of the learning
problem —namely, that the game is played over a finite n matrix, so the time
horizon is necessarily bounded.

The algorithm we propose is very simple: we apply BfeForecaster as if we
are in a setting with time horizof = mn, which is played oveall entries of the
mx n matrix. By RemarllL, th&® Forecaster does not need to know the order in
which thesem x n entries are going to be revealed. Whene¥éiis convex and’
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is a convex function, we can find an ERM in polynomial time bivsw a convex
problem. Hence, we can implement tReForecaster efficiently.

Using LemmdL, the following theorem exemplifies how we cataioba regret
guarantee for our algorithm, in the case/fconsisting of the convex set of matri-
ces with bounded trace-norm and bounded entries. For tleeafattarity, we will
considem x n square matrices.

Theorem 5. Let/ be a loss function which satisfies the conditions of Lefdmési, A
let 7 consist of ik n matrices with trace-norm at most ¢'(n) and entries at most
b= ¢(1), suppose we apply theRorecaster over time horizor’rand all entries
of the matrix. Then with probability at leagt— o, after T rounds, the algorithm
achieves an average per-round regret of at most

3/2 I b
ﬁ(n +n_|_ n(n/ )> uniformly over T=1,...,n°%

Proof. In our setting, where the adversary chooses a differeny emteach round,
[24, Theorem 6] implies that for the clags’ of all matrices with trace-norm at most

r = o(n), it holds that%r (#"))T < 0(n®?/T). Therefore Z2(#") < 0(n%/?).
Since®” C %', we get by definition of the Rademacher complexity t#gt(#) =
0(n®?) as well. By Thm[3B, the regret aftaf rounds is¢(n®?+n,/In(n/&)) with
probability at least + 8. Applying LemmdlL, we get that the cumulative regret at
the end of any round = 1,...,n?is at mostZ(n%2+n,/In(n/3)), as required. O

This bound becomes non-trivial aftet/2 entries are revealed, which is still a van-
ishing proportion of alh? entries. While the regret might seem unusual compared
to standard regret bounds (which usually have rateg ofTLfor general losses), it
is a natural outcome of the non-asymptotic nature of ouinggtivhereT can never
be larger tham?. In fact, this is the same rate one would obtain in a batclnggtt
where the entries are drawn from an arbitrary distribution.

As mentioned in the introduction, other online learningoaidnms for this prob-
lem have been published since this work appeared [16, 20l wsher techniques
and assumptions.

6 Appendix: Derivation of the Minimax Forecaster

In this appendix, we outline how the Minimax Forecaster isvéel, as well as its
associated guarantees. This outline closely follows thmsition in [11, Chapter
8], to which we refer the reader for some of the technicah@¢ions.

First, we note that the Minimax Forecaster as presentedljddtually refers to
a slightly different setup than ours, where the outcomeej@® = {0,1} and the
prediction space is” = [0,1], rather thar? = {—1,+1} and & = [—1,+1]. We
will first derive the forecaster for the first setting, andrtlshow how to convert it to
the second setting.
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Our goal is to find a predictor which minimizes the worst-caesget,

max (L — inf L(f
ye{O,l}T< (5% Anf. (,y)>

wherep = (ps,..., pr) is the prediction sequence.

For convenience, in the following we sometimes use the otat to denote
a vector in{0,1}'. The idea of the derivation is to work backwards, startinthwi
computing the optimal prediction at the last roufdthen deriving the optimal
prediction at round” — 1 and so on. In the last rounid the firstT — 1 outcomes
y'~1 have been revealed, and we want to find the optimal predigtorsince our
goal is to minimize worst-case regret with respect to thehits loss, we just need
to computepr which minimizes

L(p™Ly™ )+ max{ pr — inf L(f.y™10) . (1~ pr) - inf L(f.y" ')} .

€7

In our setting, it is not hard to show thigfc  L(f,y' ~10) —infre 2 L(f,y' 11)[ <1
(seel[11, Lemma 8.1]). Using this, we can compute the optjpndb be

pr = 3 (Ar(y" 1)~ Ar(y" 0)+1) ©

whereAr(y") = —inficz L(f,y").
Having determinegby, we can continue to the previous predictipn 1. This is
equivalent to minimizing

L™ 2y" %)+ max{ pr1+Ara(y"20), (1-pra) +Ar-a(yT D)

where

T-1 ; ; T-1 ; T-1
Araaly' )= mngfgl]maX{pT nf L(f,y'™"0), (1—pr)— inf L(f,y 1)}-
(10)
Note that by plugging in the value @f from (), we also get the following equiv-
alent formulation forAr _1(y™1):

Araly" ) = 3 (ArlyT10) 4 AryT 1) +1).

Again, it is possible to show that the optimal valuepgf 1 is

1
proa=; (ATfl(nyzl) —Ar(y'?0)+ 1)-

Repeating this procedure, one can show that at any routhé minimax optimal
prediction is

o= (A1) - A 10 +1) (11)
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whereA is defined recursively a&r (y") = —infic# L(f,yT) and, for allt,
1
A1) = 5 (A0 + AT +1). (12)

At first glance, computingy from (I1) might seem tricky, since it requires comput-
ing A(y!) whose recursive expansion in{12) involves exponentialiynynterms.
Luckily, the recursive expansion has a simple structurd,itiis not hard to show
that

AY) = Tt 1 inf L(f,ytYTt)) _ Tt g nt L(f,y'YTY
eF

2 2 ye {%N (feﬁi 2

(13)
whereYTtis a sequence df —t i.i.d. Bernoulli random variables, which take val-
ues in{0, 1} with equal probability. Plugging this into the formula fdretminimax
prediction in [T1), we get tHat

_1 ; t-1ayT—ty _ t—1qy Tt
pt_2<]E [fg;L(f,y oy' f|€r1£iL(1°,y vy i +1). (14)

This prediction rule constitutes the Minimax Forecastgprasented in [11].

After deriving the algorithm, we turn to analyze its regretformance. To do
so, we just need to note thay equals the worst-case regret —see the recursive
definition at [I0). Using the alternative explicit definitiin (I3), we get that the
worst-case regret equals

T inf S ft — Y% s (L ft — Y S f L
__E —v|| =E Z f— —E _z
> flenﬁt;| t— Y il?t: (2 [ t|) fselg’t: < t 2> Ot

whereg; are i.i.d. Rademacher random variables (taking valueslodnd+1 with
equal probability). Recalling the definition of Rademacbemplexity, [2), we get
that the regret is bounded by the Rademacher complexityeddtiffted class, which
is obtained from# by taking everyf € .% and replacing every coordinafe by
fi—1/2.

Finally, it remains to show how to convert the forecaster andlysis above to
the setting discussed in this paper, where the outcomes &reli, +1} rather than
{0,1} and the predictions are ip-1,+1] rather than0,1]. To do so, consider a
learning problem in this new setting, with some cl&&sFor any vectoy, definey
to be the shifted vectaly + 1) /2, wherel = (1,...,1) is the all-ones vector. Also,

define.Z to be the shifted clas& = {(f+1)/2 : f € .Z}. Itis easily seen that
L(f,y) = 2L(f,y) for anyf,y. As a result, if we look at the predictiop given by

our forecaster in{3), thep; = (p; +1)/2 is the minimax optimal prediction given
by (I34) with respect to the clasg and the outcomeg’. So our analysis above

applies, and we get that

3 This fact appears in an implicit form in [IL0] —see alsol[11gEise 8.4].
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max (L) - jni L)) = max2(LGS)- it LE)

ye{-1,41}T fe.7 ye[o,T fe7s

T/7- 1
= 2E |sup (ft—é)at =E
fegt=

which is exactly the Rademacher complexity of the class
Acknowledgements:The first author acknowledges partial support by the PAS-
CAL2 NoE under EC grant FP7-216886.
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sup Utft‘|
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