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On the Consistency of the Bootstrap Approach
for Support Vector Machines and Related
Kernel Based Methods

Andreas Christmann and Robert Hable

Abstract It is shown that bootstrap approximations of support vectormachines
(SVMs) based on a general convex and smooth loss function andon a general ker-
nel are consistent. This result is useful to approximate theunknown finite sample
distribution of SVMs by the bootstrap approach.

1 Introduction

Support vector machines and related kernel based methods can be considered as
a hot topic in machine learning because they have good statistical and numerical
properties under weak assumptions and have demonstrated their often good gener-
alization properties in many applications, see e.g. [14, 15], [10], and [12]. To our
best knowledge, the original SVM approach by [1] was derived from the gener-
alized portrait algorithm invented earlier by [16]. Throughout the paper, the term
SVM will be used in the broad sense, i.e. for a general convex loss function and a
general kernel.

SVMs based on many standard kernels as for example the Gaussian RBF kernel
are nonparametric methods. The finite sample distribution of many nonparamet-
ric methods is unfortunately unknown because the distribution P from which the
data were generated is usually completely unknown and because there are often
only asymptotical results describing the consistency or the rate of convergence of
such methods known so far. Furthermore, there is in generalno uniform rate of
convergence for such nonparametric methods due to the famous no-free-lunch theo-
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rem, see [5] and [6]. Informally speaking, the no-free-lunch theorem states that, for
sufficiently malign distributions, the average risk of any statistical (classification)
method may tend arbitrarily slowly to zero. Theses facts aretrue for SVMs. SVMs
are known to be universally consistent and fast rates of convergence are known for
broadsubsetsof all probability distributions. The asymptotic normality of SVMs
was shown recently by [8] under certain conditions.

Here, we apply a different approach to SVMs, namely Efron’s bootstrap. The
goal of this paper is to show that bootstrap approximations of SVMs which are
based on a general convex and smooth loss function and a general smooth kernel are
consistent under mild assumptions; more precisely, convergence in outer probability
is shown. This result is useful to draw statistical decisions based on SVMs, e.g.
confidence intervals, tolerance intervals and so on.

We mention that both the sequence of SVMs and the sequence of their cor-
responding risks are qualitatively robust under mild assumptions, see [2]. Hence,
Efron’s bootstap approach turns out to be quite successful for SVMs from several
aspects.

The rest of the paper has the following structure. Section 2 gives a brief introduc-
tion into SVMs. Section 3 gives the result. The last section contains the proof and
related results.

2 Support Vector Machines

Current statistical applications are characterized by a wealth of large and high-
dimensional data sets. In classification and in regression problems there is a variable
of main interest, often called “output values” or “response”, and a number of poten-
tial explanatory variables, which are often called “input values”. These input values
are used to model the observed output values or to predict future output values. The
observations consist ofn pairs(x1,y1), . . . , (xn,yn), which will be assumed to be
independent realizations of a random pair(X,Y). We are interested in minimizing
the risk or to obtain a functionf : X → Y such thatf (x) is a good predictor for
the responsey, if X = x is observed. The prediction should be made in an automatic
way. We refer to this process of determining a prediction method as “statistical ma-
chine learning”, see e.g. [14, 15, 10, 3, 11]. Here, by “good predictor” we mean that
f minimizes the expected loss, i.e. the risk,

RL,P( f ) = EP [L(X,Y, f (X))] ,

where P denotes the unknown joint distribution of the randompair (X,Y) and
L : X × Y ×R → [0,+∞) is a fixed loss function. As a simple example, the
least squares lossL(X,Y, f (X)) = (Y− f (X))2 yields the optimal predictorf (x) =
EP(Y|X = x), x∈ X . Because P is unknown, we can neither compute nor minimize
the riskRL,P( f ) directly.
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Support vector machines, see [16], [1], [14, 15], provide a highly versatile frame-
work to perform statistical machine learning in a wide variety of setups. The mini-
mization of regularized empirical risks over reproducing kernel Hilbert spaces was
already considered e.g. by [9]. Given a kernelk : X ×X → R we consider pre-
dictors f ∈ H, whereH denotes the corresponding reproducing kernel Hilbert space
of functions fromX to R. The spaceH includes, for example, all functions of
the form f (x) = ∑m

j=1 α j k(x,x j ) wherex j are arbitrary elements inX andα j ∈R,
1 ≤ j ≤ m. To avoid overfitting, a support vector machinefL,P,λ is defined as the
solution of a regularized risk minimization problem. More precisely,

fL,P,λ = arg inf
f∈H

EPL(X,Y, f (X)) + λ ‖ f‖2
H , (1)

whereλ ∈ (0,∞) is the regularization parameter. For a sampleD = ((x1,y1), . . . ,
(xn,yn)) the corresponding estimated function is given by

fL,Dn,λ = arg inf
f∈H

1
n

n

∑
i=1

L(xi ,yi , f (xi)) + λ ‖ f‖2
H , (2)

where Dn denotes the empirical distribution based onD (see (3) below). Note that
the optimization problem (2) corresponds to (1) when using Dn instead of P.

Efficient algorithms to computêfn := fL,Dn,λ exist for a number of different loss
functions. However, there are often good reasons to consider other convex loss func-
tions, e.g. the hinge lossL(X,Y, f (X)) = max{1−Y · f (X),0} for binary classifi-
cation purposes or theε-insensive lossL(X,Y, f (X)) = max{0, |Y− f (X)|− ε} for
regression purposes, whereε > 0. As these loss functions are not differentiable, the
logistic loss functionsL(X,Y, f (X)) = ln(1+exp(−Y · f (X))) andL(X,Y, f (X)) =
− ln(4eY− f (X)/(1+eY− f (X))2) and Huber-type loss functions are also used in prac-
tice. These loss functions can be considered as smoothed versions of the previous
two loss functions.

An important component of statistical analyses concerns quantifying and incor-
porating uncertainty (e.g. sampling variability) in the reported estimates. For ex-
ample, one may want to include confidence bounds along the individual predicted
values f̂n(xi) obtained from (2). Unfortunately, the sampling distribution of the es-
timated functionf̂n is unknown. Recently, [8] derived the asymptotic distribution of
SVMs under some mild conditions. Asymptotic confidence intervals based on those
general results are always symmetric.

Here, we are interested in approximating the finite sample distribution of SVMs
by Efron’s bootstrap approach, because confidence intervals based on the bootstrap
approach can be asymmetric. The bootstrap [7] provides an alternative way to esti-
mate the sampling distribution of a wide variety of estimators. To fix ideas, consider
a functionalS: M →W , whereM is a set of probability measures andW denotes a
metric space. Many estimators can be included in this framework. Simple examples
include the sample mean (with functionalS(P) =

∫
Z dP) and M-estimators (with

functional defined implicitly as the solution to the equationEPΨ(Z,S(P)) = 0). Let
B(Z ) be the Borelσ -algebra onZ = X ×Y and denote the set of all Borel
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probability measures on(Z ,B(Z )) by M1(Z ,B(Z )). Then, it follows that (1)
defines an operator

S: M1(Z ,B(Z ))→ H, S(P) = fL,P,λ ,

i.e. the support vector machine. Moreover, the estimator in(2) satisfies

fL,Dn,λ = S(Dn)

where

Dn =
1
n

n

∑
i=1

δ(xi ,yi) (3)

is the empirical distribution based on the sampleD = ((x1,y1), . . . ,(xn,yn)) and
δ(xi ,yi) denotes the Dirac measure at the point(xi ,yi).

More generally, letZi = (Xi ,Yi), i = 1, . . . ,n, be independent and identically dis-
tributed (i.i.d.) random variables with distribution P, and let

Sn(Z1, . . . ,Zn) = S(Pn)

be the corresponding estimator, where

Pn =
1
n

n

∑
i=1

δZi .

Denote the distribution ofS(Pn) by Ln(S;P) = L(S(Pn)). If P was known to us,
we could estimate this sampling distribution by drawing a large number of random
samples from P and evaluating our estimator on them. The basic idea of Efron’s
bootstrap approach is to replace the unknown distribution Pby an estimatêP. Here
we will consider the natural non-parametric estimator given by the sample empiri-
cal distribution Pn. In other words, we estimate the distribution of our estimator of
interest by its sampling distribution when the data are generated by Pn. In symbols,
the bootstrap proposes to use

L̂n(S;P) = Ln(S;Pn).

Since this distribution is generally unknown, in practice one uses Monte Carlo sim-
ulation to estimate it by repeatedly evaluating the estimator on samples drawn from
Dn. Note that drawing a sample from Dn means thatn observations are drawnwith
replacementfrom the originaln observations(x1,y1), . . . , (xn,yn).

3 Consistency of Bootstrap SVMs

In this section it will be shown under appropriate assumptions that the weak con-
sistency of bootstrap estimators carries over to the Hadamard-differentiable SVM
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functional in the sense that the sequence of “conditional random laws” (given
(X1,Y1),(X2,Y2), . . .) of

√
n( fL,P̂n,λ − fL,Pn,λ ) is asymptotically consistent in proba-

bility for estimating the laws of the random elements
√

n( fL,Pn,λ − fL,P,λ ). In other
words, ifn is large, the ”random distribution”

L (
√

n( fL,P̂n,λ − fL,Pn,λ )) (4)

based on bootstrapping an SVM can be considered as a valid approximation of the
unknown finite sample distribution

L (
√

n( fL,Pn,λ − fL,P,λ )). (5)

Assumption 1 Let X ⊂ R
d be closed and bounded and letY ⊂ R be closed.

Assume that k: X ×X → R is the restriction of an m-times continuously dif-
ferentiable kernel̃k : Rd ×R

d → R such that m> d/2 and k 6= 0. Let H be the
RKHS of k and letP be a probability distribution on(X ×Y ,B(X ×Y )). Let
L : X ×Y ×R→ [0,∞) be a convex,P-square-integrable Nemitski loss function of
order p∈ [1,∞) such that the partial derivatives

L′(x,y, t) :=
∂L
∂ t

(x,y, t) and L′′(x,y, t) :=
∂ 2L
∂ 2t

(x,y, t)

exist for every(x,y, t) ∈ X ×Y ×R. Assume that the maps

(x,y, t) 7→ L′(x,y, t) and (x,y, t) 7→ L′′(x,y, t)

are continuous. Furthermore, assume that for every a∈ (0,∞), there is a b′a ∈ L2(P)
and a constant b′′a ∈ [0,∞) such that, for every(x,y) ∈ X ×Y ,

sup
t∈[−a,a]

|L′(x,y, t)| ≤ b′a(x,y) and sup
t∈[−a,a]

|L′′(x,y, t)| ≤ b′′ . (6)

The conditions on the kernelk in Assumption1 are satisfied for many common
kernels, e.g., Gaussian RBF kernel, exponential kernel, polynomial kernel, and lin-
ear kernel, but also Wendland kernelskd,ℓ based on certain univariate polynomials
pd,ℓ of degree⌊d/2⌋+3ℓ+1 for ℓ ∈N such thatℓ > d/4, see [17].

The conditions on the loss functionL in Assumption1 are satisfied, e.g., for the
logistic loss for classification or for regression, howeverthe popular non-smooth
loss functions hinge,ε-insensitive, and pinball are not covered. However, [8, Re-
mark 3.5] described an analytical method to approximate such non-smooth loss
functions up to an arbitrarily good precisionε > 0 by a convex P-square integrable
Nemitski loss function of orderp∈ [1,∞).

We can now state our result on the consistency of the bootstrap approach for
SVMs.
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Theorem 2. Let Assumption1 be satisfied. Letλ ∈ (0,∞). Then

sup
h∈BL1(H)

∣∣EMh
(√

n( fL,P̂n,λ − fL,Pn,λ )
)
−Eh(S′P(G))

∣∣→ 0, (7)

EMh
(√

n( fL,P̂n,λ − fL,Pn,λ )
)∗−EMh

(√
n( fL,P̂n,λ− fL,Pn,λ )

)
∗ → 0, (8)

converge in outer probability, whereG is a tight Borel-measurable Gaussian pro-
cess, S′P is a continuous linear operator with

S′P(Q) =−K−1
P

(
EQ

(
L′(X,Y, fL,P,λ (X))Φ(X)

))
, Q∈ M1(X ×Y ) (9)

and
KP : H → H, f 7→ 2λ f +EP

(
L′′(X,Y, fL,P,λ (X)) f (X)Φ(X)

)
(10)

is a continuous linear operator which is invertible.

For details onKP, S′P, andG we refer to Lemma1, Theorem6, and Lemma2.

4 Proofs

4.1 Tools for the proof of Theorem 2

We will need two general results on bootstrap methods provenin [13] and adopt
their notation, see [13, Chapters 3.6 and 3.9]. LetPn be the empirical measure of an
i.i.d. sampleZ1, . . .Zn from a probability distribution P. Theempirical processis the
signed measure

Gn =
√

n(Pn−P).

Given the sample values, letẐ1, . . . , Ẑn be an i.i.d. sample from̂Pn. Thebootstrap
empirical distributionis the empirical measurêPn := n−1 ∑n

i=1 δẐi
, and thebootstrap

empirical processis

Ĝn =
√

n(P̂n−Pn) =
1√
n

n

∑
i=1

(Mni −1)δZi ,

whereMni is the number of times thatZi is “redrawn” from the original sample
Z1, . . .Zn, M := (Mn1, . . . ,Mnn) is stochastically independent ofZ1, . . . ,Zn and multi-
nomially distributed with parametersn and probabilities1n, . . . ,

1
n. If outer expecta-

tions are computed, stochastic independence is understoodin terms of a product
probability space. LetZ1,Z2, . . . be the coordinate projections on the first∞ coor-
dinates of the product space(Z ∞,B(Z ),P∞)× (Z̃ ,C ,Q) and let the multinomial
vectorsM depend on the last factor only, see [13, p. 345f].

The following theorem shows (conditional) weak convergence for the empirical
bootstrap, where the symbol denotes the weak convergence of finite measures.
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We will need only the equivalence between(i) and(iii ) from this theorem and list
part(ii) only for the sake of completeness.

Theorem 3 ([13, Thm. 3.6.2, p. 347]). Let F be a class of measurable functions
with finite envelope function. DefineYn := n−1/2∑n

i=1(MNn,i −1)(δZi −P). The fol-
lowing statements are equivalent:

(i) F is Donsker andP∗‖ f −Pf‖2
F

< ∞;

(ii) suph∈BL1

∣∣EM,Nh(Ŷn)−Eh(G)
∣∣ converges outer almost surely to zero and the

sequenceEM,Nh(Ŷn)
∗ −EM,Nh(Ŷn)∗ converges almost surely to zero for every

h∈ BL1.

(iii) suph∈BL1

∣∣EMh(Ĝn)−Eh(G)
∣∣ converges outer almost surely to zero and the se-

quenceEMh(Ĝn)
∗ −EMh(Ĝn)∗ converges almost surely to zero for every h∈

BL1.

Here the asterisks denote the measurable cover functions with respect to M, N, and
Z1,Z2, . . . jointly.

Consider sequences of random elementsPn = Pn(Zn) andP̂n = P̂n(Zn,Mn) in a
normed spaceD such that the sequence

√
n(Pn−P) converges unconditionally and

the sequence
√

n(P̂n−Pn) converges conditionally onZn in distribution to a tight
random elementG. A precise formulation of the second assumption is

sup
h∈BL1(D)

∣∣EMh(
√

n(P̂n−Pn))−Eh(G)
∣∣→ 0, (11)

EMh
(√

n(P̂n−Pn)
)∗−EMh

(√
n(P̂n−Pn)

)
∗ → 0, (12)

in outer probability, withh ranging over the bounded Lipschitz functions, see [13,
p. 378, Formula (3.9.9)]. The next theorem shows that under appropriate assump-
tions, weak consistency of the bootstrap estimators carries over to any Hadamard-
differentiable functional in the sense that the sequence of“conditional random laws”
(givenZ1,Z2, . . .) of

√
n(φ(P̂n)−φ(Pn)) is asymptotically consistent in probability

for estimating the laws of the random elements
√

n(φ(Pn)−φ(P)), see [13, p.378].

Theorem 4 ([13, Thm. 3.9.11, p. 378]). (Delta-method for bootstrap in probability)
Let D andE be normed spaces. Letφ : Dφ ⊂ D → E be Hadamard-differentiable
at P tangentially to a subspaceD0. LetPn and P̂n be maps as indicated previously
with values inDφ such thatGn :=

√
n(Pn−P) G and that (11)-(12) holds in outer

probability, whereG is separable and takes its values inD0. Then

sup
h∈BL1(E)

∣∣EMh
(√

n(φ(P̂n)−φ(Pn))
)
−Eh(φ ′

P(G))
∣∣→ 0, (13)

EMh
(√

n(φ(P̂n)−φ(Pn))
)∗−EMh

(√
n(φ(P̂n)−φ(Pn))

)
∗ → 0, (14)

holds in outer probability.
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As was pointed out by [13, p. 378], consistency in probability appears to be sufficient
for (many) statistical purposes and the theorem above showsthis is retained under
Hadamard differentiability at the single distribution P.

We now list some results from [8], which will also be essential for the proof of
Theorem2.

Theorem 5 ([8, Theorem 3.1]). Let Assumption1 be satisfied. Then, for every regu-
larizing parameterλ0 ∈ (0,∞), there is a tight, Borel-measurable Gaussian process
H : Ω → H, ω →H(ω), such that

√
n
(

fL,Dn,λDn
− fL,P,λ0

)
 H in H (15)

for every Borel-measurable sequence of random regularization parametersλDn

with
√

n
(
λDn −λ0

)
→ 0 in probability. The Gaussian processH is zero-mean; i.e.,

E〈 f ,H〉H = 0 for every f∈ H.

Lemma 1 ([8, Lemma A.5]). For every F∈ BS defined later in (25),

KF : H → H, f 7→ 2λ0 f +
∫

L′′(x,y, fL,ι(F ),λ0
(x)) f (x)Φ(x)dι(F )(x,y) (16)

is a continuous linear operator which is invertible.

Theorem 6 ([8, Theorem A.8]). For every F0 ∈ BS which fulfills F0(b) < EP(b)+
λ0, the map S: BS→ H, F 7→ fι(F), is Hadamard-differentiable in F0 tangentially to
the closed linear span B0 = cl(lin(BS)). The derivative in F0 is a continuous linear
operator S′F0

: B0 → H such that

S′F0
(G) =−K−1

F0

(
Eι(G)(L

′(X,Y, fL,ι(F0),λ0
(X))Φ(X))

)
, ∀G∈ lin(BS). (17)

Lemma 2 ([8, Lemma A.9]). For every data set Dn = ((x1,y1), . . . , (xn,yn)) ∈
(X ×Y )n, letFDn denote the element ofℓ∞(G ) which corresponds to the empirical
measurePn := PDn. That is,FDn(g) =

∫
gdPn = n−1 ∑n

i=1g(xi ,yi) for every g∈ G .
Then √

n
(
FDn − ι−1(P)

)
 G in ℓ∞(G ), (18)

whereG : Ω → ℓ∞(G ) is a tight Borel-measurable Gaussian process such that
G(ω) ∈ B0 for everyω ∈ Ω .

4.2 Proof of Theorem 2

The proof relies on the application of Theorem4. Hence, we have to show the fol-
lowing steps:

1. The empirical processGn =
√

n(Pn−P) weakly converges to a separable Gaus-
sian processG.
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2. SVMs are based on a mapφ which is Hadamard differentiable at P tangentially
to some appropriate subspace.

3. The assumptions (11)-(12) of Theorem4 are satisfied. For this purpose we will
use Theorem3. Actually, we will show that part(i) of Theorem3 is satisfied
which gives the equivalence to part(iii) , from which we conclude that (11)-(12)
hold true. For the proof that part(i) of Theorem3 is satisfied, i.e., that a suitable
setF is a P-Donsker class and that P∗‖ f −Pf‖2

F
< ∞, we use several facts

recently shown by [8].

4. We put all parts together and apply Theorem4.

Step 1. To apply Theorem4, we first have to specify the considered spacesD,
E, Dφ , D0 and the mapφ . As in [8] we use the following notations. BecauseL is
a P-square-integrable Nemitski loss function of orderp∈ [1,∞), there is a function
b∈ L2(P) such that

|L(x,y, t)| ≤ b(x,y)+ |t|p , (x,y, t) ∈ X ×Y ×R. (19)

Let

c0 :=
√

λ−1
0 EP(b)+1, (20)

Define
G := G1∪G2∪G3 , (21)

where
G1 := {g : X ×Y →R : ∃z∈R

d+1 such thatg= I(−∞,z]} (22)

is the set of all indicator functionsI(−∞,z],

G2 :=

{
g : X ×Y →R

∣∣∣∣
∃ f0 ∈ H,∃ f ∈ H such that‖ f0‖H ≤ c0,
‖ f‖H ≤ 1,g(x,y) = L′(x,y, f0(x)) f (x) ∀(x,y)

}
, (23)

and
G3 := {b}. (24)

Now let ℓ∞(G ) be the set of all bounded functionsF : G → R with norm‖F‖∞ =
supg∈G |F(g)|. Define

BS :=



F : G →R

∣∣∣∣∣∣

∃µ 6= 0 a finite measure onX ×Y such that
F(g) =

∫
gdµ ∀g∈ G ,

b∈ L2(µ),b′a ∈ L2(µ) ∀a∈ (0,∞)



 (25)

and
B0 := cl(lin(BS)) (26)

the closed linear span ofBS in ℓ∞(G ). That is,BS is a subset ofℓ∞(G ) whose ele-
ments correspond to finite measures. Hence probability measures are covered as spe-
cial cases. The elements ofBS can be interpreted as some kind of generalized distri-
butions functions, becauseG1 ⊂ G . The assumptions onL and P imply thatG →R,
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g 7→ ∫
gdP is a well-defined element ofBS. For everyF ∈ BS, let ι(F) denote the

corresponding finite measure on(X ×Y ,B(X ×Y )) such thatF(g) =
∫

gdµ
for all g∈ G . Note that the mapι is well-defined, because by definition ofBS, ι(F)
uniquely exists for everyF ∈ BS.

With these notations, we will apply Theorem4 for

D := ℓ∞(G ), E := H (= RKHS of the kernelk),
Dφ := BS, D0 := B0 := cl(lin(BS)),
λ0 ∈ (0,∞),
φ := S, S: BS→ H, F 7→ fι(F) := fL,ι(F),λ0

:=
arginff∈H

∫
L(x,y, f (x))dι(F )(x,y)+λ0‖ f‖2

H .

(27)

At first glance this definition ofSseems to be somewhat technical. However, this
will allow us to use a functional delta method for bootstrap estimators of SVMs with
regularization parameterλ = λ0 ∈ (0,∞).

Lemma2 guarantees that the empirical processGn :=
√

n(Pn−P) weakly con-
verges to a tight Borel-measurable Gaussian process.

Since aσ -compact set in a metric space is separable, separability ofa random
variable is slightly weaker than tightness, see [13, p. 17]. Therefore,G in our Theo-
rem2 is indeed separable.

Step 2. Theorem6 showed that the mapS indeed satisfies the necessary
Hadamard-differentiability in the point P := ι−1(F).

Step 3.We know thatG is a P-Donsker class, see Lemma2. Hence, an immediate
consequence from [13, Theorem 3.6.1, p. 347] is, that

sup
h∈BL1

|EMh(Ĝn)−Eh(G)| (28)

converges in outer probability to zero andĜn is asymptotically measurable.
However, we will prove a somewhat stronger result, namely thatG is a P-Donsker

class and P∗‖g−Pg‖2
G
< ∞, which is part(i) of Theorem3, and then part(iii) of

Theorem3 yields, that the term in (28) converges even outer almost surely to zero
and the sequence

EMh(Ĝn)
∗−EMh(Ĝn)∗ (29)

converges almost surely to zero for everyh∈ BL1.
BecauseG is a P-Donsker class, it remains to show that P∗‖g−Pg‖2

G
< ∞. Due

to
P∗‖g−Pg‖2

G :=
∫
(sup
g∈G

|g−EP(g)|)2dP∗ (30)

andG = G1∪G2∪G3, we obtain the inequality
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P∗‖g−Pg‖2
G ≤ P∗ sup

g∈G

(
g2+2|g| ·P|g|+(P|g|)2)

≤ P∗ sup
g∈G

g2+2P∗ sup
g∈G

(|g| ·P|g|)+ sup
g∈G

(P|g|)2

≤
3

∑
j=1

(
P∗ sup

g∈G j

g2+2P∗ sup
g∈G j

(|g| ·P|g|)+ sup
g∈G j

(P|g|)2
)
. (31)

We will show that each of the three summands on the right hand side of the last
inequality is finite. Ifg∈ G1, theng equals the indicator functionI(−∞,z] for somez∈
R

d+1. Hence,‖g‖∞ = 1 and the summand forj = 1 is finite. If g∈ G3, theng= b∈
L2(P) becauseL is by assumption a P-square-integrable Nemitski loss function of
orderp∈ [1,∞). Hence the summand forj = 3 is finite, too. Let us now consider the
case thatg∈ G2. By definition ofG2, for everyg∈ G2 there existf , f0 ∈ H such that
‖ f0‖H ≤ c0, ‖ f‖H ≤ 1, andg = L′

f0
f , where we used the notation

(
L′

f0
f
)
(x,y) :=

L′(x,y, f0(x)) f (x) for all (x,y)∈X ×Y . Using‖ f‖∞ ≤‖k‖∞ ‖ f‖H for every f ∈H,
we obtain

‖ f0‖H ≤ c0 ⇒ ‖ f0‖∞ ≤ c0‖k‖∞ and ‖ f‖H ≤ 1 ⇒ ‖ f‖∞ ≤ ‖k‖∞ . (32)

Define the constanta := c0‖k‖∞ with c0 given by (20). Hence, for all(x,y) ∈ X ×
Y ,

sup
f0∈H;‖ f0‖H≤c0

|L′(x,y, f0(x))|2 ≤ sup
f0∈H;‖ f0‖∞≤a

sup
t∈[−a,+a]

|L′(x,y, t)|2

(6)
≤ sup

f0∈H;‖ f0‖∞≤a
(b′a(x,y))

2 . (33)

Hence we get

P∗ sup
g∈G2

g2

=
∫

sup
g∈G2;‖ f0‖H≤c0,‖ f‖H≤1,g=L′f0

f
|L′(x,y, f0(x)) f (x)|2 dP∗(x,y)

≤
∫

sup
f0∈H;‖ f0‖H≤c0

|L′(x,y, f0(x))|2 sup
f∈H;‖ f‖H≤1

| f (x)|2 dP∗(x,y)

(33),(32)
≤ ‖k‖2

∞

∫
(b′a)

2dP∗ = ‖k‖2
∞

∫
(b′a)

2dP< ∞ ,

becauseb′a ∈ L2(P) and‖k‖∞ < ∞ by Assumption1. With the same arguments we
obtain, for everyg∈ G2,
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P|g| ≤
∫

sup
g∈G2

|g|dP∗

≤
∫

sup
f0∈H;‖ f0‖H≤c0

|L′(x,y, f0(x))| sup
f∈H;‖ f‖H≤1

| f (x)|dP∗(x,y)

(33),(32)
≤

∫
b′a(x,y)‖k‖∞ dP∗(x,y)

≤ ‖k‖∞

∫
b′adP< ∞ ,

becauseb′a ∈ L2(P) and‖k‖∞ < ∞ by Assumption1. Hence,

P∗ sup
g∈G2

(|g|P|g|)≤ ‖k‖∞

∫
b′adP

∫
sup
g∈G2

|g|dP∗ ≤ ‖k‖2
∞
(∫

b′adP
)2

< ∞.

Therefore, the sum on the right hand side in (31) is finite and thus the assump-
tion P∗‖g− Pg‖2

G
< ∞ is satisfied. This yields by part(iii) of Theorem3 that

suph∈BL1

∣∣EMh(Ĝn)−Eh(G)
∣∣ converges outer almost surely to zero and the se-

quence
EMh(Ĝn)

∗−EMh(Ĝn)∗ (34)

converges almost surely to zero for everyh ∈ BL1, where the asterisks denote the
measurable cover functions with respect toM andZ1,Z2, . . . jointly.

Step 4. Due to Step 3, the assumption (11) of Theorem4 is satisfied. We now
show that additionally (12) is satisfied, i.e., that the term in (34) converges to zero
in outer probability. In general, one cannot conclude that almost sure convergence
implies convergence in outer probability, see [13, p. 52]. We know that the term in
(34) converges almost surely to zero for everyh∈ BL1, where the asterisks denote
themeasurablecover functions with respect toM and(X1,Y1),(X2,Y2), . . . jointly.
Hence, for everyh∈ BL1, the cover functions to be considered in (34) are measur-
able. Additionally, the multinomially distributed randomvariableM is stochastically
independent of(X1,Y1), . . . ,(Xn,Yn) in the bootstrap, where independence is under-
stood in terms of a product probability space, see [13, p. 346] for details. There-
fore, an application of the Fubini-Tonelli theorem, see e.g., [4, p. 174, Thm. 2.4.10],
yields that the inner integralEMh

(√
n(P̂n−Pn)

)∗−EMh
(√

n(P̂n−Pn)
)
∗ considered

by Fubini-Tonelli ismeasurablefor everyn∈N and everyh∈ BL1. Recall that al-
most sure convergence of measurable functions implies convergence in probability
which is equivalent with convergence in outer probability for measurable functions.
Hence we have convergence in outer probability in (34). Therefore, all assumptions
of Theorem4 are satisfied and the assertion of our theorem follows. �
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