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On the Consistency of the Bootstrap Approach
for Support Vector Machines and Related
Kernel Based Methods

Andreas Christmann and Robert Hable

Abstract It is shown that bootstrap approximations of support veatachines
(SVMs) based on a general convex and smooth loss functioommamdgeneral ker-
nel are consistent. This result is useful to approximateutilenown finite sample
distribution of SVMs by the bootstrap approach.

1 Introduction

Support vector machines and related kernel based methodsecaonsidered as
a hot topic in machine learning because they have goodtstatiand numerical
properties under weak assumptions and have demonstraiedften good gener-
alization properties in many applications, see €ld, L5], [10], and [L2]. To our
best knowledge, the original SVM approach iy yvas derived from the gener-
alized portrait algorithm invented earlier byq]. Throughout the paper, the term
SVM will be used in the broad sense, i.e. for a general convsx function and a
general kernel.

SVMs based on many standard kernels as for example the @auRBIF kernel
are nonparametric methods. The finite sample distributiomany nonparamet-
ric methods is unfortunately unknown because the disiohu® from which the
data were generated is usually completely unknown and Bectnere are often
only asymptotical results describing the consistency errttte of convergence of
such methods known so far. Furthermore, there is in gemeralniform rate of
convergence for such nonparametric methods due to the nwiree-lunch theo-
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rem, see%] and [6]. Informally speaking, the no-free-lunch theorem stales, tfor
sufficiently malign distributions, the average risk of angtistical (classification)
method may tend arbitrarily slowly to zero. Theses factgare for SVMs. SVMs
are known to be universally consistent and fast rates of@gance are known for
broadsubsetf all probability distributions. The asymptotic normglibf SVMs
was shown recently byg] under certain conditions.

Here, we apply a different approach to SVMs, namely Efromstbtrap. The
goal of this paper is to show that bootstrap approximatidnS\étMs which are
based on a general convex and smooth loss function and aafjemeoth kernel are
consistent under mild assumptions; more precisely, cgavare in outer probability
is shown. This result is useful to draw statistical decisibased on SVMs, e.g.
confidence intervals, tolerance intervals and so on.

We mention that both the sequence of SVMs and the sequendeiofcor-
responding risks are qualitatively robust under mild agstions, see?]. Hence,
Efron’s bootstap approach turns out to be quite successfuB¥Ms from several
aspects.

The rest of the paper has the following structure. Sectioné&sa brief introduc-
tion into SVMs. Section 3 gives the result. The last sectiontains the proof and
related results.

2 Support Vector Machines

Current statistical applications are characterized by altweof large and high-
dimensional data sets. In classification and in regressoni@ms there is a variable
of main interest, often called “output values” or “respdha@d a number of poten-
tial explanatory variables, which are often called “inpalues”. These input values
are used to model the observed output values or to prediggfoutput values. The
observations consist af pairs (x1,y1), - .., (Xn,¥n), which will be assumed to be
independent realizations of a random p@{rY). We are interested in minimizing
the risk or to obtain a functiofi : 2~ — % such thatf (x) is a good predictor for
the responsg, if X = xis observed. The prediction should be made in an automatic
way. We refer to this process of determining a predictionhoétas “statistical ma-
chine learning”, see e.gl4, 15, 10, 3, 11]. Here, by “good predictor” we mean that
f minimizes the expected loss, i.e. the risk,

%L,P(f) =Ep [L (Xva f(X))] )

where P denotes the unknown joint distribution of the randmam (X,Y) and

L: 2 x% xR — [0,4+) is a fixed loss function. As a simple example, the
least squares lodg X, Y, f(X)) = (Y — f(X))? yields the optimal predictof (x) =
Ep(Y|X =x),xe £ . Because P is unknown, we can neither compute nor minimize
the riskZ_p(f) directly.



On the Consistency of the Bootstrap Approach for SVMs 3

Support vector machines, s, [1], [ 14, 15], provide a highly versatile frame-
work to perform statistical machine learning in a wide vrief setups. The mini-
mization of regularized empirical risks over reproducimrgriel Hilbert spaces was
already considered e.g. b9][ Given a kernek : 2° x 2~ — IR we consider pre-
dictorsf € H, whereH denotes the corresponding reproducing kernel Hilbertespac
of functions fromZ” to R. The spaceH includes, for example, all functions of
the formf (x) = 31, ajk(x,xj) wherex; are arbitrary elements i#” andaj € R,

1 < j <m. To avoid overfitting, a support vector machifie, is defined as the
solution of a regularized risk minimization problem. Momegisely,

fLpa = arg inf EeL (X,Y, (X)) + A [ f[}3, (1)

whereA € (0,) is the regularization parameter. For a sample- ((X1,Y1),. .-,
(Xn,¥n)) the corresponding estimated function is given by

12
fuonr = arginf o3 L0xuyi T0x0) + AT, @
i=

where B, denotes the empirical distribution based@risee 8) below). Note that
the optimization problen?) corresponds tolj when using [ instead of P.

Efficient algorithms to computé, := fL b, exist for a number of different loss
functions. However, there are often good reasons to consilder convex loss func-
tions, e.g. the hinge lods(X,Y, f (X)) = max{1-Y - f(X),0} for binary classifi-
cation purposes or theinsensive los& (X, Y, f (X)) = max{0,|Y — f(X)| — &} for
regression purposes, whege- 0. As these loss functions are not differentiable, the
logistic loss functiong (X, Y, f(X)) = In(14+exp(—Y - f(X))) andL(X,Y, f(X)) =
—In(4e~TX) /(14 €'~ 1X))2) and Huber-type loss functions are also used in prac-
tice. These loss functions can be considered as smoothsi@weiof the previous
two loss functions.

An important component of statistical analyses concerastiying and incor-
porating uncertainty (e.g. sampling variability) in thepoeted estimates. For ex-
ample, one may want to include confidence bounds along theidiel predicted
valuesfn(xi) obtained from 2). Unfortunately, the sampling distribution of the es-
timated functionf, is unknown. Recentlyd] derived the asymptotic distribution of
SVMs under some mild conditions. Asymptotic confidencerirdks based on those
general results are always symmetric.

Here, we are interested in approximating the finite sam@gildution of SVMs
by Efron’s bootstrap approach, because confidence intelbaaled on the bootstrap
approach can be asymmetric. The bootsti@pfovides an alternative way to esti-
mate the sampling distribution of a wide variety of estimmatdo fix ideas, consider
afunctionalS: .# — %', where# is a set of probability measures avtdenotes a
metric space. Many estimators can be included in this framnlev&imple examples
include the sample mean (with functiorP) = [ ZdP) and M-estimators (with
functional defined implicitly as the solution to the equafitp¥ (Z,S(P)) = 0). Let
PB(Z) be the Borelo-algebra onZ = 2" x # and denote the set of all Borel
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probability measures of?’, (%)) by .#1(%,%(%)). Then, it follows that {)
defines an operator

S: (2, B(Z)—H,  SP)=fpy,

i.e. the support vector machine. Moreover, the estimat@e)isatisfies

fLona = S(Dn)
where
1 n
Dn =152, (3)

is the empirical distribution based on the sample= ((x1,y1),...,(Xn,Yn)) and
.y denotes the Dirac measure at the poxLy; ).

More generally, leZ; = (X;,Yi), i =1,...,n, be independent and identically dis-
tributed (i.i.d.) random variables with distribution P et

Si(Z1,...,Zn) = S(Pn)

be the corresponding estimator, where

Denote the distribution 08(Py) by Zn(S;P) = .Z(S(Pa)). If P was known to us,
we could estimate this sampling distribution by drawingrgéanumber of random
samples from P and evaluating our estimator on them. The lidea of Efron’s
bootstrap approach is to replace the unknown distributiby Bn estimaté. Here
we will consider the natural non-parametric estimator gilg the sample empiri-
cal distribution R. In other words, we estimate the distribution of our estonaff
interest by its sampling distribution when the data are gged by R. In symbols,
the bootstrap proposes to use

—

(S P) = 4(SPn).

Since this distribution is generally unknown, in practiceeaises Monte Carlo sim-
ulation to estimate it by repeatedly evaluating the estimabh samples drawn from
Dn. Note that drawing a sample fron,Dneans thah observations are dravimith
replacemenfrom the originaln observation$xs,y1), ..., (Xn, Yn)-

3 Consistency of Bootstrap SVMs

In this section it will be shown under appropriate assunmithat the weak con-
sistency of bootstrap estimators carries over to the Had#ulifferentiable SVM
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functional in the sense that the sequence of “conditionatioan laws” (given
(X1,Y1), (X2, Y2),...) of y/n(f 5, — fLp,a) is asymptotically consistent in proba-
bility for estimating the laws of the random elemegfa(f_p, » — fLp). In other
words, ifnis large, the "random distribution”

ZL(Vn(fLp,a— fLeaa)) 4)

based on bootstrapping an SVM can be considered as a validxapgation of the
unknown finite sample distribution

ZL(Vn(fLpaa — fLpa))- (5)

Assumption 1 Let 2° ¢ RY be closed and bounded and 18t ¢ R be closed.
Assume that k. 2" x 2~ — R is the restriction of an m-times continuously dif-
ferentiable kernek : RY x RY — R such that m> d/2 and k+ 0. Let H be the
RKHS of k and leP be a probability distribution or(.2" x %, (2" x %)). Let

L: 2" x% xR — [0,0) be a convexP-square-integrable Nemitski loss function of
order pe [1,) such that the partial derivatives

aL 9%L
L/(Xayat) = E(vavt) and L//(vavt) = ﬁ(xayat)

exist for every(x,y,t) € 2" x % x R. Assume that the maps
(X7y7t) — L/(X7y7t) and (X7y7t) = L//(X7y7t)

are continuous. Furthermore, assume that for evegy(8, »), there isalj € Lo(P)
and a constantbe [0, ) such that, for everyx,y) € 2" x %/,

sup [L'(xy,t)] <bg(xy)  and sup [L"(xy.t)[ <b”.  (6)

te[—a.al te[—a,a)

The conditions on the kernklin Assumptionl are satisfied for many common
kernels, e.g., Gaussian RBF kernel, exponential kernginpamial kernel, and lin-
ear kernel, but also Wendland kernkjg based on certain univariate polynomials
pa,c of degree d/2| 43¢+ 1for ¢ € IN such that > d/4, see 17].

The conditions on the loss functianin Assumptionl are satisfied, e.g., for the
logistic loss for classification or for regression, howethes popular non-smooth
loss functions hingeg-insensitive, and pinball are not covered. Howev8y,Re-
mark 3.5] described an analytical method to approximaté sien-smooth loss
functions up to an arbitrarily good precisien> 0 by a convex P-square integrable
Nemitski loss function of ordep € [1, ).

We can now state our result on the consistency of the boptsiparoach for
SVMs.
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Theorem 2. Let Assumptiod be satisfied. Let € (0,). Then

) SEF()H)‘EMh(‘/ﬁ(fL,@n,/\ — fLpya)) —EN(S(G))| = 0, (7)
Emh(v/n( fLpor—fLeaa ) *~Emh(v/n( fLooa—fLpaa )), =0, (8)

converge in outer probability, wher@ is a tight Borel-measurable Gaussian pro-
cess, §is a continuous linear operator with

$(Q) = Ko (Eq(L'(X.Y, fLpx (X)@(X))), Qe4(Z x%) (9)

and
Kp:H—=H, f—2Af+Ep(L"(X,Y,fLpa (X)) f(X)P(X)) (10)

is a continuous linear operator which is invertible.

For details orKp, S;, andG we refer to Lemmad, Theoren®s, and Lemma.

4 Proofs

4.1 Toolsfor the proof of Theorem 2

We will need two general results on bootstrap methods pravéh3] and adopt
their notation, se€l3, Chapters 3.6 and 3.9]. LB, be the empirical measure of an
i.i.d. samplezy, ... Z, from a probability distribution P. Thempirical processs the
signed measure

Gn = Vn(P,—P).

Given the sample values, 12%,...,7Z, be an i.i.d. sample frorﬁ)n. Thebootstrap
empirical distributionis the empirical measui®, := =1y, ., and thebootstrap
empirical processs

Gn=VN(Bn—Pn) = % i(Mni —1)z,

whereMy,; is the number of times th&; is “redrawn” from the original sample
Z1,...Zn, M := (Mp1,...,Mpp) is stochastically independentdy, . . ., Z, and multi-
nomially distributed with parametersand probabilitie%,...,%. If outer expecta-
tions are computed, stochastic independence is understaedms of a product
probability space. Le¥;,Z5,... be the coordinate projections on the fissicoor-
dinates of the product spa¢&”, #(Z),P*) x (f(ﬁ,Q) and let the multinomial
vectorsM depend on the last factor only, s8] p. 345f].

The following theorem shows (conditional) weak convergefoe the empirical
bootstrap, where the symbel denotes the weak convergence of finite measures.
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We will need only the equivalence betweghand (iii ) from this theorem and list
part(ii) only for the sake of completeness.

Theorem 3 ([13, Thm. 3.6.2, p.347]). Let.# be a class of measurable functions
with finite envelope function. Defing, := n~Y/25" | (M, i — 1)(& — P). The fol-
lowing statements are equivalent:

(i) .7 is Donsker andP*|| f — Pf||2; < oo;

(i) sugeBLl\EM,Nh(ﬁ?n) — Eh(G)| converges outer almost surely to zero and the
sequencéy N h(§{n)* —EmnN h(§(n)* converges almost surely to zero for every
heBL;.

(iii) SUFHGBLl‘EM hA(@“) — ]Eh(GA)| converges outer almost surely to zero and the se-
quenceEyh(Gn)* — Emh(Gn). converges almost surely to zero for everg h
BLj.

Here the asterisks denote the measurable cover functidghgegpect to M, N, and
73,75, .. jointly.

Consider sequences of random eleménts- P (Z,) andP, = ]f”n(Zn, Mn) in a
normed spac® such that the sequengén(P, — P) converges unconditionally and
the sequencg/n(P, — Pn) converges conditionally o, in distribution to a tight
random element. A precise formulation of the second assumption is

sup |Emh(vNn(Bn—Py)) —Eh(G)| — 0, (11)
heBL1(DD)
Emh(v/n(Bn—Pn))" —Ewh(yv/n(By—Pn)), — 0, (12)

in outer probability, withh ranging over the bounded Lipschitz functions, sE& [
p.378, Formula (3.9.9)]. The next theorem shows that ungprogriate assump-
tions, weak consistency of the bootstrap estimators caonwer to any Hadamard-
differentiable functional in the sense that the sequenteooiditional random laws”
(givenZy,Zy,...) of v/n(@(Pn) — @(PPy)) is asymptotically consistent in probability
for estimating the laws of the random elemeyis(@(Pn) — ¢(P)), see L3, p.378].

Theorem 4 ([13, Thm. 3.9.11, p. 378]). (Delta-method for bootstrap in probability)
LetD andE be normed spaces. Let: D, C D — E be Hadamard-differentiable

at P tangentially to a subspadeg. LetP, and P, be maps as indicated previously
with values inDy such thatGy, := \/n(P, — P) ~» G and that (L1)-(12) holds in outer
probability, whereG is separable and takes its valueslig. Then

sup [Emh(vA(@(Pn) — @(Pn))) —Eh(gh(G))| -0,  (13)
heBL1(E)

Emh(VA(@(Pn) — @(Pn)))" — Emh(Vi(@(Pn) — 9(Pn)), =0,  (14)

holds in outer probability.
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As was pointed out byl[3, p. 378], consistency in probability appears to be sufficien
for (many) statistical purposes and the theorem above stuw/ss retained under
Hadamard differentiability at the single distribution P.

We now list some results fron8], which will also be essential for the proof of
Theoren?.

Theorem 5 ([8, Theorem 3.1]). Let Assumptiond be satisfied. Then, for every regu-
larizing parameter\g € (0, ), there is a tight, Borel-measurable Gaussian process
H:Q — H, w— H(w), such that

VA(fLppap, = fLpag) ~H inH (15)

for every Borel-measurable sequence of random reguladmaparametersip,
with /n(Ap, —Ag) — 0 in probability. The Gaussian procesbis zero-mean; i.e.,
E(f,H)y = Ofor every fe H.

Lemmal ([8 LemmaA.5]). For every Fe Bg defined later in 25),
Ke tH = H, 1o 20T 4 [L00Y: fLy) 0 (0) FO @000 (F)(xY)  (26)

is a continuous linear operator which is invertible.

Theorem 6 ([8, Theorem A.8]). For every ki € Bs which fulfills iy(b) < Ep(b) +
Ao, the map SBs— H, F — f, ), is Hadamard-differentiable inftangentially to
the closed linear span$B= cl(lin(Bs)). The derivative in §is a continuous linear
operator $0 : Bp — H such that

S, (G) = =K. (Ei(a) (L' (X.Y, LRy 0o (X)) @(X))), VG elin(Bs).  (17)

Lemma2 ([8, Lemma A.9]). For every data set P= ((X1,Y1),---, (Xn,¥n)) €
(2 x%)", letFp, denote the element &£ (<) which corresponds to the empirical
measuréPy, := Pp,,. That is,Fp,(g) = [gdP, = n1 S19(xi,Yyi) for every ge 4.
Then

VN(Fp, —171(P) ~G inle(¥), (18)

whereG : Q — ((¥) is a tight Borel-measurable Gaussian process such that
G(w) € By for everyw € Q.

4.2 Proof of Theorem 2

The proof relies on the application of TheordnmHence, we have to show the fol-
lowing steps:

1. The empirical process, = \/n(P, — P) weakly converges to a separable Gaus-
sian proces§.
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2. SVMs are based on a mgpwhich is Hadamard differentiable at P tangentially

to some appropriate subspace.
3.

use Theoren8. Actually, we will show that par{i) of Theorem3 is satisfied

which gives the equivalence to pdiit) , from which we conclude tha.()-(12)

The assumptiond {)-(12) of Theorem¥ are satisfied. For this purpose we will

hold true. For the proof that pafi) of Theoren is satisfied, i.e., that a suitable

set.7 is a P-Donsker class and that|P — Pf||2. < », we use several facts

recently shown by§].
4. We put all parts together and apply Theorém

Step 1. To apply Theoremt, we first have to specify the considered spabes
E, Dy, Do and the magpp. As in [8] we use the following notations. Becaulsés
a P-square-integrable Nemitski loss function of orpder[1, ), there is a function
b € Ly(P) such that

LY D] <bxy)+[t[P,  (xyt)e 2 x# xR. (19)
Let
Co:=\/Ag 'Ep(b) + 1, (20)
Define
G =4 UG UYs, (22)
where
G :={9: 2 x% - R: Jze R** suchthag =l _.,,} (22)

is the set of all indicator functiors_ 5,

@y = {g: s p|ifoeH It eH suchthatHfoHHfgco

e S e ) | @)

%5 = {b}. (24)

Now let /., (¥¢) be the set of all bounded functiofs: ¢ — R with norm ||F||. =
SURey |F (9)]- Define

and

F(g)=/gduVvge ¥,

Bsi=<(F:9—>R
beLa(u),b; € La(p) Vace (0,)

Ju # 0 afinite measure 0™ x # such that}
(25)

and
Bo := cl(lin(Bs)) (26)

the closed linear span &s in /»(¥). That is,Bs is a subset of.,(¢) whose ele-

ments correspond to finite measures. Hence probabilityumesare covered as spe-

cial cases. The elementsBf can be interpreted as some kind of generalized distri-

butions functions, becaugg C ¥. The assumptions dnand P imply that/ — R,
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g+— [gdP is a well-defined element &s. For everyF € Bg, let ((F) denote the
corresponding finite measure ¢&2" x %', B(2" x #')) such that~(g) = [gdu
for all g € 4. Note that the mapis well-defined, because by definition B4, 1 (F)
uniquely exists for everf € Bs.

With these notations, we will apply Theorehior

D:={x(¥4), E:=H (= RKHS of the kernek),
]D)q; =Bs, Dg:=Bp:= C|(|in(Bs)),
Ao € (0,00), (27)
@.=S S:Bs—H, F fipy i=1fLiFa =
arginfren [L(xY, (X)) di (F)(xY) + Aol 7 -

At first glance this definition o seems to be somewhat technical. However, this
will allow us to use a functional delta method for bootstragirators of SVMs with
regularization parametér= Ag € (0, ).

Lemmaz2 guarantees that the empirical proc&s:= /n(P, — P) weakly con-
verges to a tight Borel-measurable Gaussian process.

Since ao-compact set in a metric space is separable, separabildyrafdom
variable is slightly weaker than tightness, s&8 p. 17]. Therefore(s in our Theo-
rem2is indeed separable.

Step 2. Theorem6 showed that the maf® indeed satisfies the necessary
Hadamard-differentiability in the point P=:1 ~(F).

Step 3.We know that4 is a P-Donsker class, see Lemgi&lence, an immediate
consequence fromiB, Theorem 3.6.1, p. 347] is, that

sup [Emh(Gn) — Eh(G)| (28)
hEBLl

converges in outer probability to zero afig is asymptotically measurable.
However, we will prove a somewhat stronger result, namel{4hs a P-Donsker
class and P|g — Pg||Z < «, which is part(i) of Theorem3, and then partiii) of
Theorem3 yields, that the term in28) converges even outer almost surely to zero
and the sequence . A
Emh(Gn)* — Emh(Gn). (29)

converges almost surely to zero for evarg BL 1.
Because¥ is a P-Donsker class, it remains to show thigtd®- Pg||2, < . Due
to

P'llg—Pollf = | (suplg—En(g) )2dP" (30)
ge¥

and¥ = ¢ U% U%3, we obtain the inequality
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Pllg—Pallg < P sup(g”+2igl - Plgl + (Pla)?)
ge

< P*supg? +2P* sup(|g|- Pg|) + sup(P|g|)?
ge¥ ge¥ gev

3
< 3 (P supg™+ 2P supl(gl-Plg)) + sup(Plal)*).  (3D)
=

geY; 9geY; geY;

We will show that each of the three summands on the right hatelof the last
inequality is finite. Ifg € ¢, theng equals the indicator functidp_, , for somez €
RY1. Hence)|g||» = 1 and the summand fgr= 1 is finite. If g € %3, theng = b €
Lo(P) becausé is by assumption a P-square-integrable Nemitski loss fomaif
orderp € [1,). Hence the summand fgr= 3 is finite, too. Let us now consider the
case thay € ¥%. By definition of%,, for everyg € ¢, there existf, fop € H such that
[folly < co, Iflly <1, andg = LY f, where we used the notatigh’; f)(x,y) :=

L' (x,y, fo(x)) f(x) forall (x,y) € 2" x % . Using|| f||e <||K||« || f||4 fOr everyf e H,
we obtain

Ifolly <co = [[folle < o[kl and [[f[y <1 = [[fllo <[K[o. (32)

Define the constaret:= co||k|| With cg given by 0). Hence, for all(x,y) € 2" x
g/y

sup  L'(xy, fo()[* < sup sup |L'(x,y,t)[?
foeH; | folln <co foeH; || fol|o<a te[—a,+a]
(6)
< sup (Bh(xy))?. (33)

foeH; || follo<a

Hence we get

P* supg?
S22

-/ sup L/ (6. o)) £ (00 0P ()
9€%2: [ folln <co. || flln <1.9=L%, f

< [ sup UxyR()F sup (TP (xy)
foeH; || folly <co feH; | flly<1

(33,(32)
<K [ (0h)2dP = (K2 [ (bh)?dP< e,

becausdy, € L,(P) and||k|| < « by Assumptionl. With the same arguments we
obtain, for eveng € 4,
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Plg] < /suplgldF’*
R SC7)

< [ s Uekfobo)l sup [00/dP (xy)
focH:[Ifolly<co feH; | flly<1

(33,32
< [ 0L0cy) K P ()

< Ko [bhdP< oo,
becausd, € L,(P) and||k|| < o by Assumptioril. Hence,
2
P sup((g|Plg)) < K [ 6P [ suplgldP* < |3 ( [ badP)” < eo
[ S7) &

Therefore, the sum on the right hand side &1)(is finite and thus the assump-
tion P||g— Pg|l§ < o is satisfied. This yields by paffii) of Theorem3 that
sup1€BL1|EM h(Gn) — Eh(G)| converges outer almost surely to zero and the se-
qguence . A

Emh(Gn)* —Emh(Gn)« (34)

converges almost surely to zero for evérg BL1, where the asterisks denote the
measurable cover functions with respecM@ndZy, Z,, ... jointly.

Step 4. Due to Step 3, the assumptiohl] of Theorend is satisfied. We now
show that additionally12) is satisfied, i.e., that the term i84) converges to zero
in outer probability. In general, one cant conclude that almost sure convergence
implies convergence in outer probability, sd&,[p. 52]. We know that the term in
(34) converges almost surely to zero for evéryg BL1, where the asterisks denote
the measurablecover functions with respect td and (X1,Y1), (X2,Y2),... jointly.
Hence, for everh € BL, the cover functions to be considered 8#) are measur-
able. Additionally, the multinomially distributed randosariableM is stochastically
independent ofXy, VY1), ..., (Xn,Yn) in the bootstrap, where independence is under-
stood in terms of a product probability space, sE& p. 346] for details. There-
fore, an application of the Fubini-Tonelli theorem, see, g4 p. 174, Thm. 2.4.10],
yields that the inner integrély h(\/ﬁ(]f”n —Pp))" —Em h(\/ﬁ(]f”n —Pn)), considered
by Fubini-Tonelli ismeasurabldor everyn € IN and everyh € BL;. Recall that al-
most sure convergence of measurable functions impliesezgance in probability
which is equivalent with convergence in outer probabildyfeasurable functions.
Hence we have convergence in outer probability3id) (Therefore, all assumptions
of Theorenm are satisfied and the assertion of our theorem follows. |
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