

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-04-25T19:01:12Z

Some rights reserved. For more information, please see the item record link above.

Title Soft cardinality constraints on XML data: How exceptions
prove the business rule

Author(s) Ferrarotti, Flavio; Hartmann, Sven; Link, Sebastian; Marin,
Mauricio; Muñoz, Emir

Publication
Date 2013

Publication
Information

Ferrarotti F., Hartmann S., Link S., Marin M., Muñoz E. (2013)
Soft Cardinality Constraints on XML Data. In: Lin X.,
Manolopoulos Y., Srivastava D., Huang G. (eds) Web
Information Systems Engineering – WISE 2013. WISE 2013.
Lecture Notes in Computer Science, vol 8180. Springer, Berlin,
Heidelberg

Publisher Springer Verlag

Link to
publisher's

version
http://dx.doi.org/10.1007/978-3-642-41230-1_32

Item record http://hdl.handle.net/10379/6490

DOI http://dx.doi.org/10.1007/978-3-642-41230-1_32

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Soft Cardinality Constraints on XML Data

How Exceptions Prove the Business Rule

Flavio Ferrarotti1, Sven Hartmann2, Sebastian Link3, Mauricio Marin4, and
Emir Muñoz5

1 Victoria University of Wellington
2 Clausthal University of Technology

3 The University of Auckland
4 Yahoo! Research

5 DERI, National University of Ireland Galway

Contact e-mail: flavio.ferrarotti@vuw.ac.nz

Abstract. We introduce soft cardinality constraints which need to be
satisfied on average only, and thus permit violations in a controlled man-
ner. Starting from a highly expressive but intractable class, we establish a
fragment that is maximal with respect to both expressivity and efficiency.
More precisely, we characterise the associated implication problem ax-
iomatically and develop a low-degree polynomial time decision algorithm.
Any increase in expressivity of our fragment results in coNP-hardness of
the implication problem. Finally, we extensively test the performance of
our algorithm. The performance evaluation provides first-hand evidence
that reasoning about expressive notions of soft cardinality constraints on
XML data is practically efficient and scales well. Our results unleash soft
cardinality constraints on real-world XML practice, where a little more
semantics makes applications a lot more effective in contexts where ex-
ceptions to common rules may occur.

1 Introduction

Cardinality constraints are a very natural class of constraints that can be ob-
served easily and can express a lot of semantics important to applications such
as consistency management, data integration, query optimization, view main-
tenance and cardinality estimation. Generally speaking, cardinality constraints
capture information about the frequency with which certain data items occur in
particular contexts.

Example 1. Suppose we use XML to store data about teams involved in projects
within a research institute. Figure 1 shows an XML tree representing a small
fragment of such an XML document. The nodes are annotated by their type:
E for element nodes, A for attribute nodes, and S for text nodes. Of course,
in reality there would be far more data stored in the XML document. We use
the simplified example to illustrate how cardinality constraints can express im-
portant semantic properties of XML data. We assume that each project has a
manager and that several research teams (RTeam) and support teams (STeam)

can be involved in a given project. Technicians (Tech) belong to support teams,
Scientists (Sci) belong to research teams and Engineers (Eng) can belong to
both, support and research teams. Some of the semantic properties which can
be expressed by means of cardinality constraints are:

1. Every scientist is a member of 2, 3, or 4 research teams.
2. Every technician can work in up to 4 different support teams.
3. Every engineer is in 4 dififerent support teams and 1 or 2 research teams.
4. A project cannot have more than one manager.
5. Every support team is involved in 1, 2, or 3 projects.
6. Every research team is involved in up to 2 different projects.
7. A maximum of 2 support teams and 2 research teams should be involved in

a given project.
8. In every team, there should be two employees for each expertise level.
9. Within a given project, an employee cannot belong to more than one group.

10. No more than 5 employees of a given expertise level can be involved in the
same project. ut

E

db

E

A

E

ETech ETech ETech EEng EEng

A

id
A

id
A

id
A

id
A

id

E EEE

S S SS S

Exper·
tise

Exper·
tise

E
Exper·
tise

Exper·
tise

STeam

High Medium Low Low High

T1 T2 T3 E1 E2

Exper·
tise

Exper·
tise

A

id
A

id
A

id
A

id

E EE

S S SS

Exper·
tise

Exper·
tise

E
Exper·
tise

E E E E

Exper·
tise

A

id

E

S

E

High

Sci

S3

A

id

E

S

E

E

Project 1
E

A
A

Manager

M1

High Low Low

E

Sci SciEngEng

Low

S1 S2

Exper·
tise

Sci

S4

Medium

RTeam

Project 2

...

E3 E4

ST1 RT1

Sid RidMid

Fig. 1. Fragment of an XML tree with information on projects and teams.

For the effectiveness of XML applications, it is an important problem to iden-
tify useful classes of cardinality constraints. This is challenging, since for semi-
structured XML data more so than for structured data, the more semantics
of application domains can be captured the less efficient reasoning about these
constraints usually becomes (see [1, 2, 8] among others).

In addition, exceptions to business rules are the common norm for (XML)
data, and are therefore difficult to handle by strictly enforced constraints, which
makes them often impractical to exploit. Indeed, it is often difficult to specify
exact bounds for cardinality constraints. In many cases we only have a good idea
of what rules should apply to most data.

Example 2. The constraints in Example 1 express rules that apply to most
projects in the research institute, but clearly exceptions may occur. For instance,

according to the first cardinality constraint in that example, every scientist is a
member of 2, 3, or 4 research teams. However, it is likely that some scientists
participate in 5 research teams or more. Nevertheless this will be an exception
to most cases. ut
The previous example motivates the idea to treat cardinality constraints as soft
constraints, which do not strictly enforce the constraint on all data, but on
most data. Under this interpretation, soft cardinality constraints express an ideal
or a preferred situation while still allowing room for violations of the strict
constraints.

Example 3. The first cardinality constraint in Example 1 is better interpreted as
a soft cardinality constraint. We can expect that scientists on average participate
in 2 to 4 research teams, or that the number of researchers working in less than
2 and more than 4 research teams is considerably small. Similar observations
apply to the other cardinality constraints in Example 1, too. ut

Paper Organization. In Section 2 we assemble useful technical notations
on XML trees. In Section 3, we introduce soft cardinality constraints to effec-
tively deal with the problem that exceptions confirm the rule in practice. Soft
cardinality constraints need to be satisfied on average only, and thus permit
exceptions to the general business rules in a controlled manner. We start by
defining a highly expressive class of soft cardinality constraints. This class can
be used to capture a wide range of interesting semantic properties of XML data,
such as those described in Example 1. It allows data engineers to specify “soft”
bounds on the number of nodes in an XML tree that are equal on some of their
subnodes. These “soft” bounds can be violated by individual nodes, but should
be respected on average. Bounds can be specified with respect to a context node.
The soft constraints use a very general notion of value equality which is not re-
stricted to leaf nodes, and an expressive path language to select nodes using
single-label wildcards, child navigation, and descendant navigation from XPath.

In Section 4 we focus on a particular fragment of soft cardinality constraints,
and characterise the associated implication problem axiomatically. In Section 5
we develop a low-degree polynomial time algorithm for deciding implication. The
fragment under investigation is still expressive, allowing for instance to express
most of the cardinality constraints in Example 1. Any increase in expressiv-
ity of our fragment is likely to cause intractability of the implication problem.
There is great potential for practical uses of the proposed decision algorithm. For
example, the process of checking XML data integrity against soft cardinality con-
straints can benefit a lot from the ability to decide implication efficiently. Clearly,
if a set Σ of soft cardinality constraints implies a soft cardinality constraint ϕ
and we have already checked that an XML data tree satisfies Σ then there is no
need to test ϕ anymore, thus saving considerable resources. Section 5 reports on
the outcomes of a performance anaylsis that provides first-hand evidence that
reasoning about our fragment of soft cardinality constraints is practically effi-
cient and scales well. Our results unleash cardinality constraints to application
contexts where a little more semantics makes applications a lot more effective
and where exceptions can be tolerated.

Related Work. The topic of XML constraints has attracted much attention
over the last decade (see [5, 10, 11, 17] among others). However, as far as we know,
this article is the first to explore the concept of soft constraints in the context
of XML. It is not the first time that cardinality constraints for XML data are
studied [6], and they have a long and successful history in the field of database
design (see [16] for a recent survey). Soft constraints are not new in the context
of database design, where deontic logic has long been used as a tool to model soft
constraints, see [12] for a survey. More recently, soft constraints have also been
studied in the context of the constraint satisfaction problem (see [4, 9, 13] among
others) where constraints are often soft in the sense that they do not have to
be satisfied for a solution to be acceptable. None of these works, however, deals
with the implication problem for soft constraints on XML data.

2 Basic Terminology

We use the common tree model of XML for our investigation. Let E denote a
countably infinite set of element tags, A a countably infinite set of attribute
names, and let S represent simple text data in XML (PCDATA). These sets are
pairwise disjoint. The elements of L = E ∪A ∪ {S} are called labels. An XML
tree is a 6-tuple T = (V, lab, ele, att, val, r) where V is a set of nodes, and lab
is a mapping V → L assigning a label to every node in V . A node v ∈ V is an
element node if lab(v) ∈ E, an attribute node if lab(v) ∈ A, and a text node if
lab(v) = S. Moreover, ele and att are partial mappings defining the edge relation
of T : for any node v ∈ V , if v is an element node, then ele(v) is a list of element
and text nodes, and att(v) is a set of attribute nodes in V . If v is an attribute or
text node, then ele(v) and att(v) are undefined. The partial mapping val assigns
a string to each attribute and text node: for each node v ∈ V , val(v) is a string
if v is an attribute or text node, while val(v) is undefined otherwise. Finally, r
is the unique and distinguished root node.

A path p of T is a finite sequence of nodes v0, . . . , vm in V such that (vi−1, vi)
is an edge of T for i = 1, . . . ,m. The path p determines a word lab(v1). · · · .lab(vm)
over the alphabet L, denoted by lab(p). For navigation in the XML tree, we use
the path language PL{., , ∗} consisting of words given by the following grammar:
Q → ` | ε | Q.Q | | ∗. Here ` ∈ L is any label, ε denotes the empty path
expression, “.” denotes the concatenation of two path expressions, “ ” denotes
the single-label wildcard, and “ ∗” denotes the variable length don’t care wild-
card. Let P,Q be words from PL{., , ∗}. P is a refinement of Q, denoted by
P . Q, if P is obtained from Q by replacing variable length wildcards in Q by
words from PL{., , ∗} and single-label wildcards in Q by labels from L. Let Q be
a word from PL{., , ∗}. A path p in the XML tree T is called a Q-path if lab(p)
is a refinement of Q. For a node v of T , v[[Q]] denotes the set of nodes in T that
are reachable from v following any Q-path.

We use [[Q]] as an abbreviation for r[[Q]] where r is the root node. For
S ⊆ {., , ∗}, PLS denotes the subset of PL{., , ∗} expressions restricted to the
constructs in S. Q ∈ PL{., , ∗} is valid if it does not have labels ` ∈ A or ` = S

in a position other than the last one. Let P,Q be words from PL{., , ∗}. P is
contained in Q, denoted by P ⊆ Q, if for every XML tree T and every node v
of T we have v[[P]] ⊆ v[[Q]].

If a node u lies on the path from a node v to the root, then u is an ancestor
of v, and v a descendent of u. An independent set J of an XML tree T is a set
of pairwise incomparable nodes, i.e., no node in J is an ancestor of any other
node in J . Every path from a leaf to the root is a branch of T . An independent
set intersects a branch at most once. For a node u of T , a u-independent set J
of T is a set of descendents of u such that each pair of distinct nodes in J has u
as their lowest common ancestor. Clearly, u-independent sets are independent.

Two nodes u, v are value equal, denoted by u =v v, if the subtrees rooted
at u and v are isomorphic by an isomorphism that preserves string values. For
nodes v and v′ of an XML tree T , the value intersection of v[[Q]] and v′[[Q]] is
given by v[[Q]] ∩v v′[[Q]] = {(w,w′) | w ∈ v[[Q]], w′ ∈ v′[[Q]], w =v w

′}.

3 Soft Cardinality Constraints

Now we define a highly expressive class of soft cardinality constraints. The first
source of expressivity comes from the ability to specify soft upper bounds (soft-
max) as well as soft lower bounds (soft-min) on the number of nodes (target
nodes) in an XML tree that are value-equal on some of its subnodes (field nodes).
These soft bounds can be violated by some individual nodes, but they should be
respected in average. There is also the possibility of specifying the soft bounds
w.r.t. a context node. The second source of expressivity results from the gen-
erality of the path language PL{., , ∗} used for the selection of nodes. The final
source of expressivity is due to the use of the robust notion of value-equality
defined in the previous section, which is not restricted to leaf or attribute nodes.

Definition 1. We define a soft cardinality constraint ϕ for XML as an expres-
sion of the form soft-card(Q, (Q′, {Q1, . . . , Qk})) = (soft-min, soft-max) where k
is a non-negative integer, where Q,Q′, Q1, . . . , Qk ∈ PL{., , ∗} such that Q.Q′,
Q.Q′.Q1, . . . , Q.Q′.Qk are valid, and where soft-min ∈ N and soft-max ∈
N ∪ {∞} with soft-min ≤ soft-max. Herein, Q is called the context path, Q′

is called the target path, Q1, . . . , Qk are called the field paths, soft-min is called
the soft lower bound, and soft-max the soft upper bound of ϕ. If Q = ε, we call
ϕ absolute; otherwise ϕ is called relative.

In the sequel, for a soft cardinality constraint ϕ, we denote its context path
as Qϕ, its target path as Q′ϕ, its field paths as Qϕ1 , . . . , Q

ϕ
kϕ

and its soft lower
and upper bounds as soft-minϕ and soft-maxϕ, respectively.

Definition 2. Consider a soft cardinality constraint ϕ, an XML tree T , a con-
text node q ∈ [[Qϕ]] and a target node q′0 ∈ q[[Q′ϕ]]. We set fϕT (q, q′0) as the
maximum of |{q′ ∈ q[[Q′ϕ]] | ∃y1, . . . , yk.∀i = 1, . . . , k. yi ∈ q′[[Qϕi]] ∧ xi =v yi}
where x1, . . . , xk ranges through all xi ∈ q′0[[Qϕi]] (with i = 1, . . . , k). That is,
fϕT (q, q′0) is the maximum number of target nodes q′ in the sub-tree of T rooted

at the context node q that share with q′0 the same information on their field paths.
We say that T satisfies ϕ as a soft cardinality constraint if

soft-minϕ ≤
1

|U |
∑
q′0∈U

fϕT (q, q′0) ≤ soft-maxϕ

holds for every context node q ∈ [[Qϕ]] and every maximal q-independent set U ⊆
q[[Q′ϕ]]. If there is no target node q′0 ∈ q[[Q′ϕ]] in T for which for all i = 1, . . . , kϕ,
field nodes xi ∈ q′0[[Qϕi]] exists in T , then T satisfies the soft cardinality constraint
ϕ by default since it does not apply to T .

Example 4. Following the discussion in Examples 2 and 3 above, the following
expressions formalise the cardinality constraints in Example 1 when interpreted
as soft cardinality constraints over trees of the form illustrated in Figure 1.

1. soft-card(ε, (.RTeam.Sci, {id})) = (2, 4) or equivalently
soft-card(ε, (∗.RTeam.Sci, {id})) = (2, 4).

2. soft-card(ε, (.STeam.Tech, {id})) = (1, 4) or equivalently
soft-card(ε, (∗.STeam.Tech, {id})) = (1, 4)

3. soft-card(ε, (.STeam.Eng, {id})) = (4, 4) and
soft-card(ε, (.RTeam.Eng, {id})) = (1, 2).

4. soft-card(, (Manager, ∅)) = (1, 1).
5. soft-card(ε, (.Steam, {Sid})) = (1, 3).
6. soft-card(ε, (.Rteam, { ∗.Rid})) = (1, 2).
7. soft-card(, (STeam, { ∗.Sid})) = (1, 2) and

soft-card(, (RTeam, {Rid})) = (1, 2).
8. soft-card(. , (, { ∗.S})) = (2, 2) or equivalently

soft-card(. , (, {Expertise.S})) = (2, 2).
9. soft-card(, (. , {id})) = (1, 1).

10. soft-card(, (. , {Expertise.S})) = (1, 5).

Note that the soft cardinality constraints in point 1–3, 5 and 6 are absolute while
the soft cardinality constraints in the remaining points are relative. ut

Let Σ ∪ {ϕ} be a finite set of (soft) constraints in a class S. We say that Σ
finitely implies ϕ, denoted by Σ |= ϕ, if every finite XML tree T that satisfies
all σ ∈ Σ also satisfies ϕ. The finite implication problem for the class S is to
decide whether Σ |= ϕ. By Σ∗ we denote the (finite) semantic closure of Σ, i.e.,
the set of all (soft) constraints finitely implied by Σ.

If we want to take advantage of the proposed soft cardinality constraints
in real-world XML applications, then we must be able to reason about them
efficiently. Central to this task is the finite implication problem describe above.
Unfortunately the implication problem for the general class of soft cardinality
constraints introduced in Definition 1, is likely intractable. In fact, as stated in
the next theorem, there are at least three different sources of intractability:

i. the simultaneous use of both soft lower and soft upper bounds (as permitted
in S1 in Theorem 1),

ii. the complete absence of field paths (as permitted in S2 in Theorem 1), and

iii. the simultaneous use of arbitrary length wildcards in both target and field
paths (as permitted in S3 in Theorem 1).

Theorem 1. The finite implication problem for each of the following fragments
of soft cardinality constraints is coNP-hard.

S1 ={soft-card(ε, (P ′, {P1, . . . , Pk})) = (soft-min, soft-max)

| P ′, P1, . . . , Pk ∈ PL{.}, k ≥ 1, soft-max ≤ 5},
S2 ={soft-card(ε, (P ′, {P1, . . . , Pk})) = (1, soft-max)

| P ′, P1, . . . , Pk ∈ PL{.}, k ≥ 0, soft-max ≤ 6},
S3 ={soft-card(ε, (Q′, {Q1, . . . , Qk})) = (1, soft-max)

| Q′, Q1, . . . , Qk ∈ PL{.,
∗}, k ≥ 1, soft-max ≤ 4}.

We note that for each of the classes considered in Theorem 1, the 3-colorability
problem over graphs can be polynomially transformed to the complement of the
implication problem for soft cardinality constraints, but due to space limitations
we omit the formal proof.

To avoid the sources of intractability pointed out in Theorem 1, we will con-
sider a fragment of soft cardinality constraints that provides an optimal balance
with respect to expressivity and efficiency.

Definition 3. We define the fragment Msoft of soft-max cardinality constraints
as follows. Msoft = {soft-card(Q, (Q′, {Q1, . . . , Qk})) = (1, soft-max) | Q,Q′, Q1,
. . . , Qk ∈ PL{., , ∗} but s.t. Q′ or Q1. · · · .Qk ∈ PL{., }}. Since soft-min is always
set to 1, we use the abbreviation soft-card(Q, (Q′, {Q1, . . . , Qk})) ≤ soft-max to
denote the soft constraints in Msoft.

The fragment of soft-max cardinality constraints is still expressive, allowing
for instance to express most of the cardinality constraints in Example 1.

Example 5. The soft cardinality constraints in points 2, 4–7, 9 and 10 in Ex-
ample 4 belong to Msoft. Also the second soft cardinality constraint in point 3
belongs to Msoft. The remaining three soft cardinality constraints can still be
partially expressed as soft-max cardinality constraints if we change the lower
bound soft-min to 1. ut

Note that by Theorem 1, any increase in expressivity of the fragment of
soft-max constraints results in coNP-hardness of the implication problem.

4 Axiomatization

Table 1 shows a set of inference rules which constitutes a finite axiomatization for
the implication of soft-max cardinality constraints. Each inference rule has the
form premises

conclusion condition with premises from Msoft. That is, the path expressions
used in the premises are always chosen such that the respective soft cardinality
constraint lies in Msoft.

soft-card(Q, (Q′, S)) ≤ ∞
Q′∈PL{., } or

∅6=S⊆PL{., } soft-card(Q, (ε, S)) ≤ 1
(infinity) (epsilon)

soft-card(Q, (Q′.Q′′, S)) ≤ soft-max

soft-card(Q.Q′, (Q′′, S)) ≤ soft-max

soft-card(Q, (Q′, S)) ≤ soft-max

soft-card(Q, (Q′, S)) ≤ soft-max + 1
(target-to-context) (weakening)

soft-card(Q, (Q′, S ∪ {ε, P})) ≤ soft-max

soft-card(Q, (Q′, S ∪ {ε, P.P ′})) ≤ soft-max

soft-card(Q, (Q′, S)) ≤ soft-max

soft-card(Q, (Q′, S ∪ {P})) ≤ soft-max

Q′ or

P∈PL{., }

(prefix-epsilon) (superfield)

soft-card(Q, (Q′.P, {P ′})) ≤ soft-max

soft-card(Q, (Q′, {P.P ′})) ≤ soft-max
at least 2 of

Q′,P,P ′∈PL{., }
soft-card(Q, (Q′, S)) ≤ soft-max

soft-card(Q′′, (Q′, S)) ≤ soft-max
Q′′⊆Q

(subnodes) (context-path-containment)

soft-card(Q, (Q′.P, {ε, P ′})) ≤ soft-max

soft-card(Q, (Q′, {ε, P.P ′})) ≤ soft-max
at least 2 of

Q′,P,P ′∈PL{., }
soft-card(Q, (Q′, S)) ≤ soft-max

soft-card(Q, (Q′′, S)) ≤ soft-max
Q′′⊆Q′

(subnodes-epsilon) (target-path-containment)

soft-card(Q, (Q′, {P.P1, . . . , P.Pk})) ≤ soft-max,
soft-card(Q.Q′, (P, {P1, . . . , Pk})) ≤ soft-max′

soft-card(Q, (Q′.P, {P1, . . . , Pk})) ≤ soft-max · soft-max′
soft-card(Q, (Q′, S ∪ {P})) ≤ soft-max

soft-card(Q, (Q′, S ∪ {P ′})) ≤ soft-max
P ′⊆P

(multiplication) (field-path-containment)

Table 1. A finite axiomatization for soft cardinality constraints in Msoft.

Example 6. Let us define the soft-max cardinality constraints σ1 = soft-card(, (
RTeam, {Eng. ∗.S})) ≤ 2 and σ2 = soft-card(. , (Eng, { ∗.S})) ≤ 2, which are
applicable to XML documents that are structured in the way schematised by the
tree in Figure 1. The soft constraint σ1 states that in a given project, it is rare
that more than two research teams have engineers of a same expertise level. The
soft constraint σ2 states that it is unusual that there is more than two engineers
of a same expertise level within a given team. By applying the context-path-
containment rule to σ2 we derive σ3 = soft-card(.RTeam, (Eng, { ∗.S})) ≤ 2.
Then, by applying the multiplication rule to σ1 and σ3 we derive ϕ = soft-card(,
(RTeam.Eng, { ∗.S})) ≤ 4, which expresses that it is infrequent to find more
than 4 engineers of a same expertise level if we look at all the engineers in all
the research teams involved in a given project. ut

We omit the tedious, but not very difficult proof of the soundness of the
inference rules. Our next goal is to demonstrate that the set R of inference
rules in Table 1 is complete for the implication of soft-max constraints in the
class Msoft. Completeness means we need to show that for an arbitrary finite
set Σ ∪ {ϕ} of soft-max constraints in the class Msoft, if ϕ is not derivable from
Σ by R, then there is some XML tree T that satisfies all members of Σ but
violates ϕ. That is, T is a counter-example tree for the implication of ϕ by Σ.

In a first step, we represent ϕ as a finite node-labeled tree TΣ,ϕ, which we
call the ϕ-tree.

Definition 4. (ϕ-tree). Let Σ ∪ {ϕ} be a finite set of soft-max constraints in
the class Msoft. Let LΣ,ϕ denote the set of all labels ` ∈ L that occur in path
expressions of members in Σ ∪ {ϕ}, and fix a label `0 ∈ E − LΣ,ϕ. First we

transform the path expressions occurring in ϕ into simple path expressions in
PL{.}. For that purpose we replace each single-label wildcard “ ” by `0 and each
variable-length wildcard “ ∗” by a sequence of l + 1 labels `0, where l is the
maximum number of consecutive single-label wildcards that occurs in any soft
constraint in Σ ∪{ϕ}. This transformation turns Qϕ into Oϕ, Q′ϕ into O′ϕ, and
each Qϕi into Oϕ1 for i = 1, . . . , kϕ. The path expressions after the transformation
do not contain any more wildcards (neither single-label nor variable-length ones).
Let p be an Oϕ-path from a node rϕ to a node qϕ, let p′ be an O′ϕ-path from a
node r′ϕ to a node q′ϕ and, for i = 1, . . . , kϕ, let pi be a Oϕi -path from a node rϕi to
a node xϕi , such that the paths p, p′, p1, . . . , pkϕ are mutually node-disjoint. From
the paths p, p′, p1, . . . , pkϕ we obtain the ϕ-tree TΣ,ϕ by identifying the node r′ϕ
with qϕ, and by identifying each of the nodes rϕi with q′ϕ.

The marking of the ϕ-tree TΣ,ϕ is a subsetM of the node set of TΣ,ϕ: if for
all i = 1, . . . , kϕ we have Qϕi 6= ε, then M consists of the leaves of TΣ,ϕ, and
otherwise K consists of all descendant nodes of q′ϕ in TΣ,ϕ.

We use ϕ-trees to calculate the impact of soft-max constraints in Σ on a
possible counter-example tree T for the implication of ϕ by Σ. To distinguish
soft-max constraints that have an impact from those that do not, we introduce
the notion of applicability. Intuitively, when a soft-max constraint is not appli-
cable, then we do not need to satisfy its soft upper bound in a counter-example
tree as it does not require all its field paths.
Definition 5. (Applicability). Consider a ϕ-tree TΣ,ϕ, and letM be its mark-
ing. A soft-max constraint σ is said to be applicable to ϕ if there are nodes
wσ ∈ [[Qσ]] and w′σ ∈ wσ[[Q′σ]] in TΣ,ϕ such that w′σ[[Pσi]] ∩ M 6= ∅ for all
i = 1, . . . , kσ. We say that wσ and w′σ witness the applicability of σ to ϕ.

Then, we reverse the edges of the ϕ-tree and add to the resulting tree down-
ward edges for the applicable members of Σ. Finally, each upward edge receives
a label of 1 and each downward edge resulting from σ ∈ Σ a label of soft-maxσ.
This final directed graph GΣ,ϕ is called the cardinality network. A downward
edge resulting from σ tells us that under each source node there can be at most
soft-maxσ target nodes.

Definition 6. (Cardinality Network). We define the cardinality network
GΣ,ϕ of ϕ and Σ as the node-labeled directed graph obtained from TΣ,ϕ as follows:
the nodes and node-labels of GΣ,ϕ are exactly the nodes and node-labels of TΣ,ϕ,
respectively. The edges of GΣ,ϕconsist of the reversed edges from TΣ,ϕ. Further-
more, for each soft-max constraint σ ∈ Σ that is applicable to ϕ and for each pair
of nodes wσ ∈ [[Qσ]] and w′σ ∈ wσ[[Q′σ]] that witness the applicability of σ to ϕ we
add a directed edge (wσ, w

′
σ) to GΣ,ϕ. We refer to these additional edges as wit-

ness edges while the reversed edges from TΣ,ϕ are referred to as upward edges of
GΣ,ϕ. This is the case since for every witness wσ and w′σ the node w′σ is a descen-
dant of the node wσ in TΣ,ϕ, and thus the witness edge (wσ, w

′
σ) is a downward

edge or loop in GΣ,ϕ. We now introduce weights as edge-labels: every upward
edge e of GΣ,ϕ has weight ω(e) = 1, and every witness edge (u, v) of GΣ,ϕ has
weight ω(u, v) = min{soft-maxσ | (u, v) witnesses the applicability of some σ ∈
Σ to ϕ}.

The weight of a path t in the cardinality network is defined as the product

of the weights of its edges, i.e., ω(t) =
n∏
i=1

ω(vi−1, vi), or ω(t) = 1 if t has no

edges. The distance d(v, w) from a node v to a node w is the minimum over the
weights of all paths from v to w, or ∞ if no such path exists. When the target
node q′ϕ of constraint ϕ can be reached from its context node qϕ along a path of
weight at most soft-maxϕ in the cardinality network GΣ,ϕ then there exists no
counter-example tree T .

Example 7. Figure 2 shows the cardinality network GΣ,ϕ obtained for Σ =
{σ1, σ2} and ϕ, where σ1, σ2, and ϕ are the soft-max constraints used in Exam-
ple 6. Note that the distance d(qϕ, q

′
ϕ) = 4 and soft-maxϕ = 4. Thus, there is no

counter-example tree T , which is correct since ϕ is indeed implied by Σ. ut

E E EEEE S

d
b

el
l

R
T

ea
m

el
l

E
n

g

el
l

2 2

1 1 1 1 1 1 1

E

el
l

q
p
ri

m
e

q
1

Fig. 2. Cardinality Network.

The result below prove the following crucial observation. If ϕ is not derivable
from Σ by R, then every path from qϕ to q′ϕ in GΣ,ϕ has distance at least
soft-maxϕ + 1.

Lemma 1. Let Σ ∪ {ϕ} be a finite set of soft-max cardinality constraints in
the class Msoft. If the distance d(qϕ, q

′
ϕ) ≤ soft-maxϕ in the cardinality network

GΣ,ϕ, then ϕ is derivable from Σ by R.

The strategy to prove this lemma is to encode an inference by R by witness
edges of the cardinality network. We omit this proof as it is technical and lengthy.

If Σ ∪ {ϕ} is a finite set of soft-max constraints in the class Msoft such that
ϕ is not derivable from Σ by R, then the previous lemma allows us to construct
a finite XML tree T which satisfies all soft-max constraints in Σ but does not
satisfy ϕ. This fact proves the following important result.

Theorem 2. The inference rules in Table 1 are complete for the implication
of soft-max constraints in Msoft.

5 An Algorithm for Deciding Implication

Our Algorithm 1 for deciding the implication of soft-max constraints is similar to
the corresponding algorithms in [11, 6] for deciding the implication of the strictly
less expressive classes of numerical keys and (strict) cardinality constraints, re-
spectively. However, the construction of the cardinality network GΣ,ϕ, which is

central to the algorithms, requires considerably more effort for (strict) cardinality
constraints as studied in [6] as well as for the soft-max cardinality constraints as
studied here. This effort results in an increase in the worst-case time complexity
of the algorithm compared to numerical keys. Nevertheless, Algorithm 1 enables
us to conclude that the implication of soft cardinality constraints in Msoft can
be decided in low-degree polynomial time in the worst case.

The correctness of Algorithm 1 is due to the fact that for Σ ∪ {ϕ} a finite
set of soft-max cardinality constraints in Msoft, Σ |= ϕ holds if and only if
d(qϕ, q

′
ϕ) ≤ soft-maxϕ in the cardinality network GΣ,ϕ. This fact can be easily

proved from the results in the previous section.

Algorithm 1 Soft-max constraint implication.

Input: a finite set Σ ∪ {ϕ} of soft-max cardinality constraints in Msoft

Output: yes, if Σ |= ϕ; no, otherwise
1: Construct GΣ,ϕ for Σ and ϕ;
2: Find the shortest path P from qϕ to q′ϕ in GΣ,ϕ;
3: if ω(P) ≤ soft-maxϕ then return(yes); else return(no).

Interestingly, the algorithm has the same worst-case complexity as the algo-
rithm for the class of cardinality constraints in [6], which is clearly less expressive
since it does not allow variable length wildcards to appear in the field paths, and
does not cater for soft bounds. In fact, if Σ∪{ϕ} is a finite set of soft-max cardi-
nality constraints in Msoft, then the implication problem Σ |= ϕ can be decided
in time O(|ϕ| × l × (||Σ|| + |ϕ| × l)), where |ϕ| is the sum of the lengths of all
path expressions in ϕ, ||Σ|| is the sum of all sizes |σ| for σ ∈ Σ, and l is the
maximum number of consecutive single-label wildcards that occur in Σ.

It is important to note the blow-up in the size of the counter-example with
respect to ϕ. This is due to the occurrence of consecutive single-label wildcards.
If the number l is fixed in advance, then Algorithm 1 establishes a worst-case
time complexity that is quadratic in the input. In particular, if the input consists
of (numerical) keys, as studied in [10, 11], then the worst-case time complexity
of Algorithm 1 is that of the algorithm dedicated to (numerical) keys only [10].

6 Experimental Evaluation

We have amply tested our decision algorithm and analysed its performance. We
compare the performance against the implementation presented in [7] which is
optimised for deciding implication of the strictly less expressive class of XML
keys from [10]. The performance results were obtained in a fairly modest Intel
Core i7 2.8 GHz machine, with 4 GB of RAM, running a Linux kernel 2.6.32. We
compiled our C++ implementation of the algorithms using the standard g++
compiler from the GNU Compiler Collection 4.6.3.

Test Cases. To generate realistic sets of soft constraints to test our algo-
rithm, we generated soft-max constraints applicable to large XML documents
from [15]: 321gone.xml and yahoo.xml (auction data), dblp.xml (bibliographic

information on CS), nasa.xml (astronomical data), SigmodRecord.xml (articles
from SIGMOD Record), and mondial-3.0.xml (world geographic db).

We started by writing, for each document in the collection, a corresponding
set of around 10 appropriate (in the context of the document) soft-max cardinal-
ity constraints. On adapting the strategy from [7], we generated large sets of soft-
max cardinality constraints as follows. Firstly, using the manually defined sets
of soft-max constraints as seeds, we computed new implied soft-max constraints
by successively applying the inference rules from the axiomatization of soft-
max cardinality constraints shown in Table 1. Each constraint generated by this
method was added to the original set. We applied the multiplication, target-to-
context, prefix-epsilon, subnodes, subnodes-epsilon, superfield, context-path con-
tainment, target-path containment, and field-path-containment rules whenever
possible, since those are the rules which can produce implied soft-max cardi-
nality constraints with corresponding non trivial cardinality networks. Secondly,
we defined some non-implied (by the soft constraint defined previously) soft-
max cardinality constraints. We did that by taking non-implied soft cardinality
constraints ϕ, building their corresponding cardinality networks GΣ,ϕ, adding
several witness edges to them while keeping the weights ω(P) > soft-maxϕ, for
P the shortest path from qϕ to q′ϕ, and finally defining new non-implied soft-max
cardinality constraints corresponding to those witness edges. This process gave
us a robust collection of soft-max cardinality constraints to thoroughly test the
performance of the implication algorithm6.

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120 140 160

T
im

e
[m

s]

xlabel

xml-keys
soft xml-keys

soft-max constraints

Fig. 3. Performance of the Decision Algorithms for the Implication Problem.

Tests Results. To have a base line for determining how much the increase
in expressivity of the considered class of constraints affects the performance of
the decision algorithm, we first measured the performance of the algorithm in [7]
which is optimised for deciding implication of the strictly less expressive class of

6 All sets of constraints generated to test the performance of the decision algorithms
as well as the full set of results from those experiments and the binary codes, can
be downloaded from http://emir-munoz.github.com/xml-constraints

XML keys from [10]. For this we used the same sets of XML keys with simple non
empty field paths in PL{.} and context and target paths in PL{.,

∗} than in [7]. We
then ran our algorithm for soft-max constraints using the same sets of XML keys
but treating them as soft-max cardinality constraints with soft-max = 1 (i.e.,
“soft keys”). This allowed us to quantify the gain produced by the optimization
of the algorithm for XML keys presented in [7] and produced a base line to mea-
sure the effect of introducing single label wildcards in the soft-max cardinality
constraints. Finally we measured the performance of the algorithm for soft-max
cardinality constraints over the set of full soft-max constraints obtained with the
process described at the beginning of this section.

The results are shown in Figure 3. The x-axis corresponds to the number
of (soft) constraints in Σ, and the y-axis corresponds to the average running
time required to decide whether Σ implies a given (soft) constraint ϕ. More
precisely, let time(Σ,ϕ) be the running time required to decide Σ |= ϕ and let
Φ be a set of (soft) constraints such that Σ ∩ Φ = ∅, the running time shown in
Figure 3 corresponds to

(∑
ϕi∈Φ time(Σ,ϕi)

)
/|Φ|. In our experiments the sets

Φ were composed of 20 fixed (soft) constraints. We tested the scalability of the
algorithms by adding, in each iteration, 5 new (soft) constraints to the corre-
sponding Σ sets. Each of the experiments was executed 5 times. The resulting
error bars are include in the graph. They are consistent with time variations
commonly produced by the scheduling of the operating system and the use of
the time() function to measure the experiments [14].

From the experiments it is clear that the implication algorithm is practically
efficient and scales well in all three cases. Notably, the extra price to pay for the
added expressivity provided by the class of soft-max cardinality constraints is in
the order of just 5 milliseconds for a considerable big set of 150 constraints.

7 Conclusion

We have introduced an expressive class of soft cardinality constraints that is
sufficiently flexible to advance XML data processing in important areas of XML
application such as data exchange and integration, where exceptions to strict
rules are the common norm and are therefore difficult to handle by strict con-
straints. The flexibility results from the right balance between expressivity and
efficiency of maintenance. While slight extensions result in the intractability of
the associated implication problem, we have shown that our class is finitely ax-
iomatizable, robust and decidable in low-degree polynomial time. Thus, our class
forms a precious class of soft cardinality constraints that can be utilised effec-
tively by data engineers. Indeed, the performance tests presented in this paper
for its associated implication problem, clearly indicate that it can be maintained
efficiently by database systems for XML applications.

Future work can go into various directions. XML practice may well warrant
the study of other soft classes of cardinality constraints that require different
paradigms to specify soft bounds and to select and compare nodes. It would be
interesting to investigate soft cardinality constraints with regard to data clean-

ing, where one of the most important questions is how to model the consistency
of the data; for instance exploring conditional XML constraints in connection
with the idea of conditional functional dependencies [3]. Finally, it would also
be interesting to explore practical applications of the decision algorithm for the
implication problem in areas such as cardinality estimation and optimization of
XPath queries, XML constraint mining and validation of XML documents.

References

1. Arenas, M., Fan, W., Libkin, L.: What’s Hard about XML Schema Constraints?
In: DEXA. LNCS, vol. 2453, pp. 269–278. Springer (2002)

2. Arenas, M., Fan, W., Libkin, L.: On the Complexity of Verifying Consistency of
XML Specifications. SIAM J. Comput. 38(3), 841–880 (2008)

3. Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional Func-
tional Dependencies for Data Cleaning. In: ICDE. pp. 746–755. IEEE (2007)

4. Brown, K.: Soft consistencies for weighted csps. In: In Proceedings of Soft’03: 5th
International Workshop on Soft Constraints. Kinsale, Ireland (2003)

5. Buneman, P., Davidson, S.B., Fan, W., Hara, C.S., Tan, W.C.: Keys for XML.
Computer Networks 39(5), 473–487 (2002)

6. Ferrarotti, F., Hartmann, S., Link, S.: A Precious Class of Cardinality Constraints
for Flexible XML Data Processing. In: ER. LNCS, vol. 6998, pp. 175–188. Springer
(2011)

7. Ferrarotti, F., Hartmann, S., Link, S., Maŕın, M., Muñoz, E.: Performance Analysis
of Algorithms to Reason about XML Keys. In: DEXA. LNCS, vol. 7446, pp. 101–
115. Springer (2012)

8. Franceschet, M., Gubiani, D., Montanari, A., Piazza, C.: From Entity Relationship
to XML Schema: A Graph-Theoretic Approach. In: XSym. LNCS, vol. 5679, pp.
165–179. Springer (2009)

9. Hartmann, S.: Soft Constraints and Heuristic Constraint Correction in Entity-
Relationship Modelling. In: Semantics in Databases. LNCS, vol. 2582, pp. 82–99.
Springer (2001)

10. Hartmann, S., Link, S.: Efficient reasoning about a robust XML key fragment.
ACM Trans. Database Syst. 34(2) (2009)

11. Hartmann, S., Link, S.: Numerical constraints on XML data. Inf. Comput. 208(5),
521–544 (2010)

12. Meyer, J.J.C., Wieringa, R., Dignum, F.: The Role of Deontic Logic in the Specifi-
cation of Information Systems. In: Logics for Databases and Information Systems.
pp. 71–115. Kluwer (1998)

13. Preece, A.D., Chalmers, S., McKenzie, C., Pan, J.Z., Gray, P.M.D.: A seman-
tic web approach to handling soft constraints in virtual organisations. Electronic
Commerce Research and Applications 7(3), 264–273 (2008)

14. Stewart, D.B., Khosla, P.K.: Mechanisms for Detecting and Handling Timing Er-
rors. Commun. ACM 40(1), 87–93 (1997)

15. Suciu, D.: XML Data Repository, University of Washington. http://www.cs.

washington.edu/research/xmldatasets/www/repository.html (2002)
16. Thalheim, B.: Integrity Constraints in (Conceptual) Database Models. In: The

Evolution of Conceptual Modeling. LNCS, vol. 6520, pp. 42–67. Springer (2008)
17. Yu, C., Jagadish, H.V.: XML schema refinement through redundancy detection

and normalization. VLDB J. 17(2), 203–223 (2008)

