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Abstract. Although mixed-integer evolution strategies (MIES) have
been successfully applied to optimization of mixed-integer problems, they
may encounter challenges when fitness evaluations are time consuming.
In this paper, we propose to use a radial-basis-function network (RBFN)
trained based on the rank correlation coefficient distance metric to assist
MIES. For the distance metric of the RBFN, we modified a heteroge-
neous metric (HEOM) by multiplying the weight for each dimension.
Whilst the standard RBFN aims to approximate the fitness accurately,
the proposed RBFN tries to rank the individuals (according to their fit-
ness) correctly. Kendall rank correlation Coefficient (RCC) is adopted to
measure the degree of rank correlation between the fitness and each vari-
able. The higher the rank similarity with fitness, the greater the weight
one variable will be given. Experimental results show the efficacy of the
MIES assisted by the RBFN trained by maximizing the RCC performs.

1 Introduction

Evolution Strategies (ES) [1] are a branch of Evolutionary Algorithms (EA) [2],
and have been successfully applied to various real-world applications. Successful
as they are, ESs have encountered challenges, one of which is the heterogeneity of
the decision variables. There are some real-world optimization problems, whose
decision variables are of different types. This kind of optimization problems
is called mixed-integer optimization problems [3]. It usually contains continu-
ous variables, integer variables and nominal discrete variables simultaneously.
Canonical Evolution Strategies usually work on optimization problems of homo-
geneous (typically continuous) decision variables only.

Mixed-integer evolution strategies (MIES) [4] were proposed by Emmerich
et al to optimize the rigorous process simulators which is a mixed-integer opti-
mization problem in chemical plant design. MIES can deal with different variable



types simultaneously, which usually include continuous, integer and nominal dis-
crete. In [4–6], MIES have been employed to successfully solve mixed-integer op-
timization problems occurring in optical filter design, rigorous process simulators
for chemical plant design and image analysis agent for intravascular ultrasound
image analysis.

Another challenge to Evolution Strategies is the difficulty in fitness evalua-
tions [7]. As discussed in [7], in many real-world problems, fitness evaluations
need a high complexity of performance analyses, which means each single fitness
evaluation is highly time-consuming. In some other cases, explicit fitness func-
tions do not exist, therefore human experts are needed for assigning a fitness
value to a candidate solution. Both huge time consumption for fitness evalua-
tions and fatigue of human experts will prevent Evolution Strategies from being
applied to a wider range of problems. Using a metamodel (also known as sur-
rogates) to estimate the fitness values is a common approach to addressing this
kind of problems [7]. Typical metamodels include polynomial models, kriging
models, neural networks and support vector machines [8].

The difficulty in fitness evaluations in real-world applications is also a chal-
lenge that MIES faces. A straightforward idea for addressing this problem is to
use a metamodel-assisted MIES. However, most research on metamodel assisted
Evolution Strategies focus on continuous optimization problems [8]. To the best
of our knowledge, only one paper has been reported on developing metamodels
for MIES [9]. In [9], Li et al chose radial-basis-function networks (RBFNs) [10]
as the metamodel, and modified the canonical RBFN to make it more suited for
mixed-integer search spaces by introducing a heterogeneous distance metric.

In this paper, we propose a new RBFN to assist MIES. The distance metric of
the proposed RBFN is based on the Kendall rank correlation coefficient (RCC)
[11]. Before obtaining the distance between two individuals, we first determine
the weights for each variable according to the Kendall RCC between variables
and the true fitness values. Since the distance metric is related to the rank, we
hope that the new RBFN will help MIES to select better individuals, thereby
improving the performance of the RBFN assisted MIES.

This paper is organized as follows. In Section 2.1, we introduce MIES together
with a formal statment of Mixed-integer optimization problems. Recombination
and mutation operators for MIES proposed by Li in [4] are discussed. RBFN
assisted MIES are described in Section 2.2, where the modified the distance
metric for RBFN proposed in [9] is also presented. In Section 3, we introduce
the Kendall rank correlation coefficient [11] and propose a RCC based RBFN for
assisting MIES. The performance of the new algorithm is verified on four test
problems in Section 4. Section 5 concludes this paper.

2 RBFN Assisted MIES

2.1 Mixed-Integer Evolution Strategies

MIES can deal with different types of variables simultaneously, which usually
include continuous, integer and nominal discrete. A mixed-integer global opti-



mization problem can be defined as follows [9]:

f(r1, ..., rnr , z1, ..., znz , d1, ..., dnd)→ min (1)

subject to:

ri ∈ [rmin
i , rmax

i ] ⊂ R, i = 1, ..., nr

zi ∈ [zmin
i , zmax

i ] ⊂ Z, i = 1, ..., nz

di ∈ Di = {di,1, ..., di,|Di|}, i = 1, ..., nd

Here, r denotes the continuous variables, z integer variables, and d the nom-
inal discrete variables. ri denotes the ith continuous variable, zi the ith integer
variable, and di the ith nominal discrete variable. nr, nz and nd is the number
of continuous, integer, and nominal discrete variables, respectively. Di denotes
a set of nominal discrete values. The fitness function is denoted by f .

An individual in Evolution Strategies is denoted as [4]:

a = (r1, ..., rnr , z1, ..., znz , d1, ..., dnd , σ1, ..., σnσ , ς1, ..., ςnς , ρ1, ..., ρnρ)

The parameters r1, ..., rnr , z1, ..., znz , d1, ..., dnd are called object parameter-
s, correspond to the variables of mixed-integer optimization, while σ1, ..., σnσ ,
ς1, ..., ςnς , ρ1, ..., ρnρ are strategy parameters for Evolution Strategies. σ1, ..., σnσ
are the average step size for continuous values, ς1, ..., ςnς are step size for integer
values and ρ1, ..., ρnρ are the mutation probabilities for nominal discrete values.

There are two most widely used classes of recombination used in ES: discrete
recombination, sometimes also referred to as dominant recombination, and inter-
mediate recombination [1]. In this paper, we adopted dominant recombination for
object parameters and intermediate recombination for strategy parameters. For
each object parameter of offspring individual, dominant recombination chooses
the object parameter from parents with a equal probability. By contrast, for
each strategy parameter of the offspring individual, intermediate recombination
obtains the mean of the strategy parameter from all recombination parents.

Different variable types need different mutation operators. To make the mu-
tation operator suited for mixed-integer optimization problems, Emmerich et al.
proposed a new mutation operator in [4]. This mutation operator is combined
with the standard mutations for continuous, integer and nominal discrete, as
described in [12–14].

Algorithm 1 presents the detail of the mutation, where τg denotes the global
learning rate and τl the local learning rate. The recommended settings [4] are
τl = 1/

√
2
√
nr and τg = 1/

√
2nr. U(0, 1) denotes uniform distribution and

N(0, 1) denotes the standardized normal distribution. T z
[a,b] is a transformation

function for integer parameters [4]. Transformation makes sure that the values
are within the boundaries. The details of the transformation are shown in [4].

2.2 RBFN Assisted MIES

MIES has been applied successfully to real-world problems [4,6]. However, MIES
has also encountered some challenges such as the time consuming of fitness e-



/*Mutation of continuous values*/
for i = 1, ..., nr do

σ′i ← σiexp(τgNg + τlN(0, 1))
r′i ← ri +N(0, s′i)

end
/*Mutation of integer values*/
for i = 1, ..., nz do

ς ′i ← ςiexp(τgNg + τlN(0, 1))
u1 = U(0, 1);u2 = U(0, 1)

p = 1− ςi/nz

1+
√

1+(
ςi
nz

)2

G1 = b ln (1−u1)
1−p

c;G2 = b ln (1−u2)
1−p

c;
z′i = T z

[zmini ,zmaxi ]
(zi +G1 −G2)

end
/*Mutation of discrete values*/
p′ = 1/[1 + 1−p

p
∗ exp(−τl ∗N(0, 1))]

for i ∈ {1, ..., nd} do
if U(0, 1) < p′i then

d′i ← uniformly randomly value from Di

end

end

Algorithm 1: Mutation operator in MIES

valuation just we mentioned above. For those expensive optimization problems,
it is helpful to use metamodel to predict fitness values to reduce computation
time. Typical metamodels include polynomial models, kriging models, neural
networks and support vector machines [8]. For MIES, an additional challenge
for constructing metamodels is that the model should be able to deal with mul-
tiple types of variables, unlike in most meta-model assisted EAs, where fitness
functions of continuous variables only are involved. In [9], Li et al. has adopted
an RBFN as metamodel for approximating functions having different types of
variables.

Measuring distance between individuals is necessary when RBFN is employed
for fitness estimation, because the activation function in the hidden layer involves
calculating the distance between individuals. However the distance metric used
for RBFN is based on one single type of variables in general. Therefore, how to
measure the distance between mixed-integer individuals is crucial.

A straightforward way is to use different metrics for different variable types,
and then combine these different metrics to obtain the distance between indi-
viduals. In [9], Li et al adopted the Euclidean distance for continuous variables,
Manhattan distance for integer variables, and an overlap metric for nominal dis-
crete variables. Then HEOM (Heterogeneous Euclidean-Overlap Metric) is used
to combine different metrics. HEOM [15] is a heterogeneous metric which uses
different attribute distance functions on different kinds of attributes and takes
the square root of the sum of the various distances.



The formal statement of the distance between two individuals is described
as follows [9]:

∆x(x, x′) =
√
∆r(r, r′) +∆z(z, z′) +∆d(d, d′) (2)

∆r(r, r′) =

nr∑
i=1

(ri − r′i)2;

∆z(z, z′) =

nz∑
i=1

|zi − z′i|;

∆d(d, d′) =

nd∑
i=1

I(di 6= d′i),

with I(true) = 1, I(false) = 0.

(3)

This modified RBFN was used as a metamodel to assist MIES, and success-
fully accelerated MIES on test problems as well as on the parameter optimization
of an IVUS (intravascular ultrasound) image analysis feature detector, which is
a real-world optimization problem [9]. Li et al. put forward an RBFN assisted
MIES algorithm as described below [9]:

t← 0
Initialize population Pt of K+, including µ, individuals randomly generated
within the individuals space I
Evaluate the Pt and insert results to database D
while Termination criteria not fulfilled do

Train RBFN based on K+ latest evaluations
Generate the λ+ offspring
Predict fitness of λ+ offspring
Select the best λ individuals out of λ+ offspring
Evaluate λ selected individuals by using original fitness function, and
insert results to database D
Select the µ best individuals for Pt+1 from λ offspring
t← t+ 1

end

Algorithm 2: Main Loop of RBFN-Assisted MIES

In each generation, RBFN is trained using the K+th latest individuals which
are evaluated using the original fitness values. λ+ offspring will be generated in
each generation. RBFN was used to predict the fitness values of the offspring,
and λ individuals were selected from the λ+ offspring according to the predicted
fitness values of the λ+ offspring. For these λ selected individuals, evaluating
the true fitness value using the original fitness function, and µ individuals are
selected from λ individuals according to the true fitness values. In other words,
the RBFN is used to pre-select offspring.



3 RBFN Based on Kendall Rank Correlation Coefficient

3.1 Kendall Rank Correlation Coefficient as a Distance Metric

Although it has been successful for the modified RBFN to predict fitness func-
tions for MIES, much room remains for improvement. For instance, the distance
metric may introduce bias into variables of different types. Suppose there are
two continuous variables. One of the variables value ranges between 0 and 10,
while the other variable value is between 0 to one million. We can judge that
the latter is dominating in the calculated distance. It means that the range of
a variable can bias its importance in the distance metric, which is however, not
reasonable since all the variables should be equally important.

In this paper, we propose a new rank-based distance metric for RBFN to
improve the performance of MIES assisted by RBFN. We first introduce K-
endall Rank Correlation Coefficient before we provide the details about the new
distance metric.

Kendall Rank Correlation Coefficient [11] (Kendall RCC) was proposed to
evaluate the degree of similarity between two vectors. Suppose there are two
random vectors X(x1, x2, ..., xn) and Y (y1, y2, ..., yn). And (x1, y1), (x2, y2),...,
(xn, yn) are defined as a joint variable of X and Y . To measure the degree of
similarity between the joint variables, concordant and discordant are introduced.

(xi, yi), (xj , yj)is

{
c if (xi > yi and xj > yj) or (xi < yi and xj < yj)
d if (xi > yi and xj < yj) or (xi < yi and xj > yj)

(4)

Here, c denotes the concordant and d discordant.

There are n joint variables and 1
2n(n− 1) pairs of joint variable. For all the

1
2n(n− 1) pairs of joint variables, we can obtain the number of concordant pairs
cnum and the number of discordant pairs dnum .

The Kendall RCC τ is defined by:

τ =
(cnum − dnum)

1
2n(n− 1)

. (5)

The range of coefficient is from −1 to 1 because of the denominator is the
number of the pairs of the joint variable. τ = 1 if the relative ranks of two vectors
are totally same; τ = −1, if one of the relative ranks is the inverse of the other;
τ = 0, while the relative ranks of two vectors are fully independent.

Here, we propose a new distance metric for the mixed-integer RBFN base
on RCC. In this paper, the Euclidean distance has been adopted for continuous
variables, Manhattan metric for integer variables, and overlap metric for nominal
discrete variables. Similarly, HEOM is adopted for combing different metrics.

∆x(x, x′) =
√
∆r(r, r′) +∆z(z, z′) +∆d(d, d′) (6)



Here,

∆r(r, r′) =

nr∑
i=1

wri(ri − r′i)2;

∆z(z, z′) =

nz∑
i=1

wzi |zi − z′i|;

∆d(d, d′) =

nd∑
i=1

wdiI(di 6= d′i),

withI(true) = 1, I(false) = 0.

(7)

3.2 RBFN Base on RCC assisted MIES

How to determine the weight for each variable is of big importance, since the
negative effect caused by the different ranges of variables needs to be avoided,
whilst the relative ranks among individuals need to be ensured as much as pos-
sible. Before training RBFN, there are K+ individuals whose true fitness values
are known. Thus, the true fitness values of these individuals, and the variables
of individuals are known. In determining the weights of variables, the main idea
is that the variable that has a higher degree of similarity with true fitness values
will be assigned a bigger weight.

Suppose an individual has m variables, and there are n individuals for train-
ing the RBFN. X1(f1; a11, a21, ..., am1), X2(f2; a12, a22, ..., am2),... Xn(fn; a1n,
a2n, ..., amn).

Here, Xi denotes the ith individual for training; fi is the true fitness value
of the ith individual; aji denotes the value of the jth variable of the ith indi-
vidual. The order of the m + 1 vectors are (f1, f2, ..., fn), (a11, a12, ..., a1n),...,
(am1, am2, ..., amn). Here, (f1, f2, ..., fn) is a vector combined by all the true
fitness values of n individuals. (aj1, aj2, ..., ajn) is a vector combined by all the
values of ith variable of n individuals. To determine the weight of variable aj , we
can obtain τi between two vectors (f1, f2, ..., fn) and (aj1, aj2, ..., ajn). wi = τi.

The difference between RBFN assisted MIES and RCC-RBFN assisted MIES
is that, before training RBFN in each time, we use the K+ training individuals
to compute the weights of the variables. The distance metric between two indi-
viduals can then be determined, once the weights of the variables are obtained.
The RCC-RBFN assisted MIES as below.

4 Experimental Study

In order to assess the efficacy of RCC-RBCN, we applied RCC-RBFN assisted
MIES to a number of test functions. Comparison of the performance of RCC-
RBFN assisted MIES and RBFN assisted MIES has been conducted.



t← 0
Initialize population Pt of K+, including µ, individuals randomly generated
within the individuals space I
Evaluate the Pt and insert results to database D
while Termination criteria not fulfilled do

Compute the weights for variables
Train RBFN based onK+ latest evaluations
Generate the λ+ offspring
Predict fitness of λ+ offspring
Select the best λ individuals out of λ+ offspring
Evaluate λ selected individuals by using original fitness function, and
insert results to database D
Select the µ best individuals for P t+1 from λ offspring
t← t+ 1

end

Algorithm 3: Main Loop of RCC-RBFN Assisted MIES

4.1 Test Functions

Four mixed integer optimization problems, denotes as f1−f4, are chosen as test
functions. f1 is a mixed-integer sphere function chosen from [9], f2 is a weighted
sphere function, f4 is a modified step function, f2 - f4 are chosen from [4].
The minimum of these test functions are all 0. The detailed information of the
fitness functions can be found in [4, 9]. The test functions are described below.
In these four test functions, we set nr = nd = nz = 5. That is, the dimension
of the test functions are 15. For all test functions, ri ∈ [0, 1000] (1 ≤ i ≤ nr),
zi ∈ [0, 1000] (1 ≤ i ≤ nz), di ∈ {0, 1, ..., 9} (1 ≤ i ≤ nd).

f1(r, z, d) =

nr∑
i=1

r2i +

nz∑
i=1

z2i +

nd∑
i=1

d2i → min (8)

f2(r, z, d) =

nr∑
i=1

ir2i +

nz∑
i=1

iz2i +

nd∑
i=1

id2i → min (9)

f3(r, z, d) =

n∑
i=1

(

i∑
j=1

(rj + zj + dj))
2 → min (10)

f4(r, z, d) =

nr∑
i=1

bric2 +

nz∑
i=1

(zi div 10)2 +

nd∑
i=1

(di mod 2)2 → min (11)

4.2 Configuration

In this paper, we adopt overlapping-generation model (µ+λ)-MIES, also known
as the plus strategy. It is a selection mechanism where the parents in each genera-
tion compete with offspring for survival rather than directly die off. (µ+λ)-MIES



converges faster than (µ, λ)-MIES, but may result in premature convergence. S-
ince all test functions considered here are unimodal, the (µ + λ) strategy is
adopted.

We adopted Gaussian function as the radial basis function for RBFN [16].
The standard deviation σ is set to σ = dmax√

2m1
. Here, m1 is the number of the

center and dmax is the maximum distance between individuals.

G(x, xi) = exp(− 1

2σ2
i

‖x− xi‖2) (12)

We set µ = 4, λ = 10, λ+ = 36 and K = 64. The average convergence
histories of each algorithm on the 15 − D test functions f1 - f4 are shown in
Figure 1.

4.3 Result and Analysis

(a) test function 1 (b) test function 2

(c) test function 3 (d) test function 4

Fig. 1: Test functions

To compare the performance among MIES, RCC-RBFN assisted MIES and
RBFN assisted MIES, the profiles of evolutionary optimization of the algorithms
were showed in Figure 1. The maximum number of allowed fitness evaluations



of both algorithms was set 5000. 100 independent runs on each algorithms were
collected. As we can see from the Figure 1, RCC-RBFN assisted MIES has
performed much better than MIES and RBFN assisted MIES in all test functions.

Table 1: Wilcoxon rank sum test
standard MIES RBFN assisted MIES RCC-RBFN assisted MIES

f1 1.2154e+005±1.4646e+005 − 3.3215e+004±6.2000e+004 − 5.3681±26.8744
f2 2.7870e+005±4.2415e+005 − 1.5898e+005±2.3380e+005 − 20.6850±83.5361
f3 9.5717e+004±1.4152e+005− 4.0563e+004±8.2662e+004 − 0.5722±1.2554
f4 6.2876e+003±4.0548e+003− 2.4826e+003±2.6181e+003 − 162.2921±431.8199

− 4 4
+ 0 0
≈ 0 0

Note 1. +, − and ≈ denotes that the performance of the standard MIES and the
RBFN assisted MIES is better than, worse than, or similar to RCC-RBFN assisted
MIES according to the result of the Wilcoxon rank sum test.

In Table 1, the average and standard deviation of the best results are pre-
sented. The Wilcoxon rank-sum test with a significance level of 0.05 was used to
compare the solutions of RBFN assisted MIES and RCC-RBFN assisted MIES.
The results clearly indicate that RCC-RBFN assisted MIES wins in all four tests.

The results also imply that RCC-RBFN outperforms the standard RBFN in
accerlating MIES. Thus, the new distance metric makes RBFN more effective
when it is applied to assist MIES.

5 Conclusion

In this paper, we have proposed a rank correlation coefficient based RBFN to
improve the performance of RBFN assisted MIES. Our experimental results
show that the RCC-RBFN assisted MIES performs much better than the MIES
assistanted by a distance-based RBFN.

The present work is very preliminary in that it has been tested only on four
test functions and the dimension of the function is relatively low. More research
is needed to extend the proposed RBFN model for solving more complex and
high-dimensional mixed integer optimization problems. It is also hoped that the
proposed method can be verified in solving real-world problems.
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