Skip to main content

Network Visualization for Integrative Bioinformatics

  • Chapter
  • First Online:
Book cover Approaches in Integrative Bioinformatics

Abstract

Approaches to investigate biological processes have been of strong interest in the past few years and are the focus of several research areas like systems biology. Biological networks as representations of such processes are crucial for an extensive understanding of living beings. Due to their size and complexity, their growth and continuous change, as well as their compilation from databases on demand, researchers very often request novel network visualization, interaction, and exploration techniques. In this chapter, we first provide background information that is needed for the interactive visual analysis of various biological networks. Fields such as (information) visualization, visual analytics, and automatic layout of networks are highlighted and illustrated by a number of examples. Then, the state of the art in network visualization for the life sciences is presented together with a discussion of standards for the graphical representation of cellular networks and biological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abello J, van Ham F (2004) Matrix zoom: a visual interface to semi-external graphs. In: Proceedings of the IEEE symposium on information visualization, Austin. IEEE Computer Society, Los Alamitos, Texas, pp 183–190

    Google Scholar 

  2. Aigner W, Miksch S, Schumann H, Tominski C (2011) Visualization of time-oriented data. Springer, London/New York

    Google Scholar 

  3. Albrecht M, Kerren A, Klein K, Kohlbacher O, Mutzel P, Paul W, Schreiber F, Wybrow M (2010) On open problems in biological network visualization. In: Proceedings of the international symposium on graph drawing (GD ’09), Chicago. LNCS, vol 5849. Springer, pp 256–267

    Google Scholar 

  4. Appel RD, Bairoch A, Hochstrasser DF (1994) A new generation of information retrieval tools for biologists: the example of the ExPASy WWW server. Trends Biochem Sci 19:258–260

    Google Scholar 

  5. Batagelj V, Mrvar A (2004) Pajek – analysis and visualization of large networks. In: Jünger M, Mutzel P (eds) Graph drawing software. Springer, Berlin/New York, pp 77–103

    Google Scholar 

  6. Becker MY, Rojas I (2001) A graph layout algorithm for drawing metabolic pathways. Bioinformatics 17(5):461–467

    Google Scholar 

  7. Beddow J (1990) Shape coding of multidimensional data on a microcomputer display. In: Proceedings of the 1st conference on visualization ’90, VIS ’90, San Francisco. IEEE Computer Society Press, Los Alamitos, pp 238–246

    Google Scholar 

  8. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. W H Freeman, New York

    Google Scholar 

  9. Berge C (1989) Hypergraphs: the theory of finite sets. North-Holland, Amsterdam

    Google Scholar 

  10. Borisjuk L, Hajirezaei MR, Klukas C, Rolletschek H, Schreiber F (2005) Integrating data from biological experiments into metabolic networks with the DBE information system. Silico Biol 5(2):93–102

    Google Scholar 

  11. Bostock M Edgar Anderson’s Iris data set scatter plot matrix. http://mbostock.github.com/d3/talk/20111116/iris-splom.html. Last accessed 13 Mar 2013

  12. Breitkreutz BJ, Stark C, Tyers M (2003) Osprey: a network visualization system. Genome Biol 4(3):R22

    Google Scholar 

  13. Buchheim C, Jünger M, Leipert S (2002) Improving walker’s algorithm to run in linear time. In: Revised papers from the 10th international symposium on graph drawing, GD ’02, Irvine. Springer, London, pp 344–353

    Google Scholar 

  14. Card S, Mackinlay J, Shneiderman B (eds) (1999) Readings in information visualization: using vision to think. Morgan Kaufmann, San Francisco

    Google Scholar 

  15. Carey VJ, Gentry J, Whalen E, Gentleman R (2005) Network structures and algorithms in BioConductor. Bioinformatics 21(1):135–136

    Google Scholar 

  16. Chambers JM, Cleveland WS, Kleiner B, Tukey PA (1983) Graphical methods for data analysis. Wadsworth, Belmont

    MATH  Google Scholar 

  17. Chen C (2004) Information visualization: beyond the horizon, 2nd edn. Springer, London/Berlin/Heidelberg

    Google Scholar 

  18. Chernoff H (1973) The use of faces to represent points in k-dimensional space graphically. J Am Stat Assoc 68:361–368

    Google Scholar 

  19. Cleveland WC, McGill ME (1988) Dynamic graphics for statistics. CRC, Boca Raton

    Google Scholar 

  20. Collins C, Viegas F, Wattenberg M (2009) Parallel tag clouds to explore and analyze faceted text corpora. In: Proceedings of the IEEE symposium on visual analytics science and technology (VAST ’09), Atlantic City. IEEE Computer Society, pp 91–98

    Google Scholar 

  21. Czauderna T, Klukas C, Schreiber F (2010) Editing, validating and translating of SBGN maps. Bioinformatics 26(18):2340–2341

    Google Scholar 

  22. D3. Data-driven documents. http://d3js.org. Last accessed 13 Mar 2013

  23. Demir E, Babur O, Dogrusöz U, Gürsoy A, Nisanci G, Çetin Atalay R, Ozturk M (2002) PATIKA: an integrated visual environment for collaborative construction and analysis of cellular pathways. Bioinformatics 18(7):996–1003

    Google Scholar 

  24. Di Battista G, Eades P, Tamassia R, Tollis IG (1999) Graph drawing: algorithms for the visualization of graphs. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  25. Diehl S, Görg C, Kerren A (2001) Preserving the mental map using foresighted layout. In: Ebert DS, Favre JM, Peikert R (eds) Data visualization 2001, Eurographics, Ascona. Springer, Vienna, pp 175–184

    Google Scholar 

  26. Droste P, Miebach S, Niedenführ S, Wiechert W, Nöh K (2011) Visualizing multi-omics data in metabolic networks with the software Omix: a case study. Biosystems 105(2):154–161

    Google Scholar 

  27. Dykes J, MacEachren AM, Kraak MJ (2005) Exploring geovisualization. Pergamon, Oxford

    Google Scholar 

  28. Eades P (1984) A heuristic for graph drawing. Congressus Numerantium 42:149–160

    MathSciNet  Google Scholar 

  29. Eiglsperger M, Fekete SP, Klau GW (2001) Orthogonal graph drawing. In: Kaufmann M, Wagner D (eds) Drawing graphs. Lecture notes in computer science, vol 2025. Springer, Berlin/Heidelberg, pp 121–171

    Google Scholar 

  30. EPE. EPE Edinburgh PAthway editor. http://epe.sourceforge.net/SourceForge/EPE.html. Last accessed 02 Aug 2012

  31. ExposeData.com. Nutrient contents – parallel coordinates. http://exposedata.com/parallel/. Last accessed 13 Mar 2013

  32. Feinberg J. Wordle. http://www.wordle.net. Last accessed 13 Mar 2013

  33. Forster M, Pick A, Raitner M, Schreiber F, Brandenburg FJ (2002) The system architecture of the BioPath system. Silico Biol 2(3):415–426

    Google Scholar 

  34. Freeman E, Fertig S (1995) Lifestreams: organizing your electronic life. In: AAAI fall symposium on AI applications in knowledge navigation and retrieval, Cambridge. Association for the Advancement of Artificial Intelligence, pp 38–44

    Google Scholar 

  35. Friedrich C, Schreiber F (2003) Visualization and navigation methods for typed protein-protein interaction networks. Appl Bioinform 2(3 Suppl):19–24

    Google Scholar 

  36. Funahashi A, Morohashi M, Kitano H (2003) CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 1(5):159–162

    Google Scholar 

  37. Funahashi A, Matsuoka Y, Jouraku A, Kitano H, Kikuchi N (2006) CellDesigner: a modeling tool for biochemical networks. In: Proceedings of the 38th conference on winter simulation, winter simulation conference, Monterey, pp 1707–1712

    Google Scholar 

  38. Fung D, Wilkins M, Hart D, Hong S (2010) Using the clustered circular layout as an informative method for visualizing protein-protein interaction networks. Proteomics 10(14):2723–2727

    Google Scholar 

  39. Gehlenborg N, O’Donoghue SI, Baliga NS, Goesmann A, Hibbs MA, Kitano H, Kohlbacher O, Neuweger H, Schneider R, Tenenbaum D, Gavin AC (2010) Visualization of omics data for systems biology. Nat Methods 7:S56–S68

    Google Scholar 

  40. Goesmann A, Haubrock M, Meyer F, Kalinowski J, Giegerich R (2002) PathFinder: reconstruction and dynamic visualization of metabolic pathways. Bioinformatics 18(1):124–129

    Google Scholar 

  41. Görg C, Pohl M, Qeli E, Xu K (2007) Visual representations. In: Kerren A, Ebert A, Meyer J (eds) Human-centered visualization environments. LNCS, tutorial, vol 4417. Springer, Berlin, pp 163–230

    Google Scholar 

  42. Han K, Ju BH, Park JH (2002) InterViewer: dynamic visualization of protein-protein interactions. In: Kobourov SG, Goodrich MT (eds) Proceedings of the international symposium on graph drawing (GD ’02), Irvine. LNCS, vol 2528. Springer, pp 364–365

    Google Scholar 

  43. Heer J, Shneiderman B (2012) Interactive dynamics for visual analysis. Commun ACM 55(4):45–54

    Google Scholar 

  44. Henry N, Fekete JD, McGuffin MJ (2007) Nodetrix: a hybrid visualization of social networks. IEEE Trans Vis Comput Graph 13:1302–1309

    Google Scholar 

  45. Hu Z, Mellor J, Wu J, DeLisi C (2004) VisANT: an online visualization and analysis tool for biological interaction data. BMC Bioinform 5(1):e17

    Google Scholar 

  46. Hu Z, Hung JH, Wang Y, Chang YC, Huang CL, Huyck M, DeLisi C (2009) VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucl Acids Res 37(Web Server issue):W115–W121

    Google Scholar 

  47. Huang W, Eades P, Hong SH (2009) A graph reading behavior: geodesic-path tendency. In: Proceedings of the IEEE Pacific visualization symposium, 2009 (PacificVis ’09), Beijing, pp 137–144

    Google Scholar 

  48. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531

    Google Scholar 

  49. Inselberg A, Dimsdale B (1990) Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: Proceedings of the IEEE conference on visualization (Vis ’90), San Francisco. IEEE Computer Society, pp 361–378

    Google Scholar 

  50. Javed W, Elmqvist N (2012) Exploring the design space of composite visualization. In: Proceedings of the IEEE Pacific symposium on visualization (PacificVis ’12), Songdo. IEEE Computer Society Press, pp 1–8

    Google Scholar 

  51. Jerding DF, Stasko JT (1998) The information mural: a technique for displaying and navigating large information spaces. IEEE Trans Vis Comput Graph 4(3):257–271

    Google Scholar 

  52. Johnson B, Shneiderman B (1991) Tree-maps: a space-filling approach to the visualization of hierarchical information structures. In: Proceedings of the 2nd conference on visualization (Vis ’91), San Diego. IEEE Computer Society Press, Los Alamitos, pp 284–291

    Google Scholar 

  53. Jolliffe I (2002) Principal component analysis. Springer, New York

    MATH  Google Scholar 

  54. Junker BH, Klukas C, Schreiber F (2006) VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinform 7:109

    Google Scholar 

  55. Junker A, Hartmann A, Schreiber F, Bäumlein H (2010) An engineer’s view on regulation of seed development. Trends Plant Sci 15(6):303–307

    Google Scholar 

  56. Junker A, Rohn H, Czauderna T, Klukas C, Hartmann A, Schreiber F (2012) Creating interactive, web-based and data-enriched maps using the systems biology graphical notation. Nat Protoc 7:579–593

    Google Scholar 

  57. Jusufi I (2012) Towards the visualization of multivariate biochemical networks. Licentiate thesis, Linnaeus University

    Google Scholar 

  58. Jusufi I, Dingjie Y, Kerren A (2010) The network lens: interactive exploration of multivariate networks using visual filtering. In: Proceedings of the 14th international conference on information visualisation (IV ’10), London. IEEE Computer Society Press, pp 35–42

    Google Scholar 

  59. Jusufi I, Kerren A, Aleksakhin V, Schreiber F (2012) Visualization of mappings between the gene ontology and cluster trees. In: Proceedings of the SPIE 2012 conference on visualization and data analysis (VDA ’12), IS&T/SPIE, Burlingame. SPIE, vol 8294, pp 8294–20

    Google Scholar 

  60. Jusufi I, Klukas C, Kerren A, Schreiber F (2012) Guiding the interactive exploration of metabolic pathway interconnections. Inf Vis 11(2):136–150

    Google Scholar 

  61. Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at GenomeNet. Nucl Acids Res 30(1):42–46

    Google Scholar 

  62. Karp PD, Paley SM (1994) Automated drawing of metabolic pathways. In: Lim H, Cantor C, Bobbins R (eds) Proceedings of the international conference on bioinformatics and genome research, Tallahassee, pp 225–238

    Google Scholar 

  63. Kaser O, Lemire D (2007) Tag-cloud drawing: algorithms for cloud visualization. In: Proceedings of tagging and metadata for social information organization (WWW ’07), Banff

    Google Scholar 

  64. Kaufmann M, Wagner D (1999) Drawing graphs: methods and models. Lecture notes in computer science, tutorial, vol 2025. Springer, Berlin/Heidelberg

    Google Scholar 

  65. Keim DA (2002) Information visualization and visual data mining. IEEE Trans Vis Comput Graph 7(1):1–8

    Google Scholar 

  66. Keim D, Kriegel HP (1994) Visdb: database exploration using multidimensional visualization. IEEE Comput Graph Appl 14(5):40–49

    Google Scholar 

  67. Keim D, Oelke D (2007) Literature fingerprinting: a new method for visual literary analysis. In: Proceedings of the IEEE symposium on visual analytics science and technology (VAST ’07), Sacramento. IEEE Computer Society Press, pp 115–122

    Google Scholar 

  68. Keim D, Andrienko G, Fekete JD, Görg C, Kohlhammer J, Melançon G (2008) Visual analytics: definition, process, and challenges. In: Kerren A, Stasko JT, Fekete JD, North C (eds) Information visualization: human-centered issues and perspectives. Lecture notes in computer science, vol 4950. Springer, Berlin/Heidelberg, pp 154–175

    Google Scholar 

  69. Keim D, Kohlhammer J, Ellis G, Mansmann F (eds) (2010) Mastering the information age – solving problems with visual analytics. Eurographics Digital Library, Goslar

    Google Scholar 

  70. Kerren A, Schreiber F (2012) Toward the role of interaction in visual analytics. In: Proceedings of the winter simulation conference, winter simulation conference, WSC ’12, Berlin, pp 420:1–420:13

    Google Scholar 

  71. Kerren A, Ebert A, Meyer J (eds) (2007) Human-centered visualization environments. LNCS, tutorial, vol 4417. Springer, Berlin

    Google Scholar 

  72. Kerren A, Ebert A, Meyer J (2007) Introduction to human-centered visualization environments. In: Kerren A, Ebert A, Meyer J (eds) Human-centered visualization environments. LNCS, tutorial, vol 4417. Springer, Berlin, pp 1–9

    Google Scholar 

  73. Kerren A, Stasko JT, Fekete JD, North C (2007) Workshop report: information visualization human-centered issues in visual representation, interaction, and evaluation. Inf Vis 6(3):189–196

    Google Scholar 

  74. Kerren A, Stasko JT, Fekete JD, North C (eds) (2008) Information visualization: human-centered issues and perspectives. Lecture notes in computer science, vol 4950. Springer, Berlin/Heidelberg

    Google Scholar 

  75. Kerren A, Köstinger H, Zimmer B (2012) Vincent – visualisation of network centralities. In: Proceedings of the international conference on information visualization theory and applications (IVAPP ’12), INSTICC, Rome, pp 703–712

    Google Scholar 

  76. Kitano H (2003) A graphical notation for biochemical networks. Biosilico 1(5):169–176

    Google Scholar 

  77. Koh K, Lee B, Kim B, Seo J (2010) Maniwordle: providing flexible control over wordle. IEEE Trans Vis Comput Graph 16:1190–1197

    Google Scholar 

  78. Köhler J, Baumbach J, Taubert J, Specht M, Skusa A, Rüegg A, Rawlings C, Verrier P, Philippi S (2006) Graph-based analysis and visualization of experimental results with ONDEX. Bioinformatics 22(11):1383–1390

    Google Scholar 

  79. Kohn KW, Aladjem MI (2006) Circuit diagrams for biological networks. Mol Syst Biol 2:e2006.0002

    Google Scholar 

  80. Kohonen T, Schroeder MR, Huang TS (eds) (2001) Self-organizing maps, 3rd edn. Springer, New York/Secaucus

    MATH  Google Scholar 

  81. Kojima K, Nagasaki M, Jeong E, Kato M, Miyano S (2007) An efficient grid layout algorithm for biological networks utilizing various biological attributes. BMC Bioinform 8:76

    Google Scholar 

  82. Kolpakov FA (2002) BioUML – framework for visual modeling and simulation of biological systems. In: Proceedings of the international conference on bioinformatics of genome regulation and structure, Novosibirsk. Springer, pp 130–133

    Google Scholar 

  83. Kono N, Arakawa K, Ogawa R, Kido N, Oshita K, Ikegami K, Tamaki S, Tomit M (2009) Pathway projector: web-based zoomable pathway browser using KEGG Atlas and Google maps API. PLoS ONE 4(11):e7710

    Google Scholar 

  84. Koutsofios E, North S (1995) Drawing graphs with dot. Technical report, AT&T Bell Laboratories, Murray Hill

    Google Scholar 

  85. Krull M, Voss N, Choi C, Pistor S, Potapov A, Wingender E (2003) TRANSPATH: an integrated database on signal transduction and a tool for array analysis. Nucl Acids Res 31(1):97–100

    Google Scholar 

  86. Küntzer J, Backes C, Blum T, Gerasch A, Kaufmann M, Kohlbacher O, Lenhof HP (2007) BNDB – the biochemical network database. BMC Bioinform 8:367

    Google Scholar 

  87. Lee B, Riche N, Karlson A, Carpendale S (2010) Sparkclouds: visualizing trends in tag clouds. IEEE Trans Vis Comput Graph 16(6):1182–1189

    Google Scholar 

  88. Le Novère N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem MI, Wimalaratne SM, Bergman FT, Gauges R, Ghazal P, Kawaji H, Li L, Matsuoka Y, Villéger A, Boyd SE, Calzone L, Courtot M, Dogrusoz U, Freeman TC, Funahashi A, Ghosh S, Jouraku A, Kim S, Kolpakov F, Luna A, Sahle S, Schmidt E, Watterson S, Wu G, Goryanin I, Kell DB, Sander C, Sauro H, Snoep JL, Kohn K, Kitano H (2009) The systems biology graphical notation. Nat Biotechnol 27(8):735–741

    Google Scholar 

  89. Li Q, Bao X, Song C, Zhang J, North C (2003) Dynamic query sliders vs. brushing histograms. In: CHI ’03 extended abstracts on human factors in computing systems, CHI EA ’03, Fort Lauderdale. ACM, New York, pp 834–835

    Google Scholar 

  90. Liu J (2012) Visualization of weather data: temperature trend visualization. Bachelor’s thesis, School of Computer Science, Physics and Mathematics, Linnaeus University, Växjö

    Google Scholar 

  91. MacNeil S, Elmqvist N (2013) Visualization mosaics for multivariate visual exploration. Comput Graph Forum 32:38–50

    Google Scholar 

  92. Mardia KV (1979) Multivariate analysis. Academic, London/New York

    MATH  Google Scholar 

  93. Mi H, Schreiber F, Novère NL, Moodie S, Sorokin A (2009) Systems biology graphical notation: activity flow language level 1. Nat Preced. doi:10.1038/npre.2009.3724.1

    Google Scholar 

  94. Michal G (1993) Biochemical pathways (Poster). Boehringer Mannheim, Mannheim

    Google Scholar 

  95. Michal G (1998) On representation of metabolic pathways. BioSystems 47:1–7

    Google Scholar 

  96. Michal G (1999) Biochemical pathways. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  97. Moodie S, Novère NL, Sorokin A, Mi H, Schreiber F (2009) Systems biology graphical notation: process description language level 1. Nat Preced. doi:10.1038/npre.2009.3721.1

    Google Scholar 

  98. Mrowka R (2001) A Java applet for visualizing protein-protein interaction. Bioinformatics 17(7):669–670

    Google Scholar 

  99. Nicholson DE (1997) Metabolic pathways map (Poster). Sigma Chemical Co., St. Louis

    Google Scholar 

  100. Nightingale F (1858) Notes on matters affecting the health, efficiency, and hospital administration of the British Army. Harrison & Sons, London

    Google Scholar 

  101. Nikitin A, Egorov S, Daraselia N, Mazo I (2003) Pathway studio – the analysis and navigation of molecular networks. Bioinformatics 19(16):2155–2157

    Google Scholar 

  102. Nöllenburg M (2007) Geographic visualization. In: Kerren A, Ebert A, Meyer J (eds) Human-centered visualization environments. LNCS, tutorial, vol 4417. Springer, Berlin, pp 257–294

    Google Scholar 

  103. Novère NL, Moodie S, Sorokin A, Schreiber F, Mi H (2009) Systems biology graphical notation: entity relationship language level 1. Nat Preced. doi:10.1038/npre.2009.3719.1

    Google Scholar 

  104. Oesterling P, Scheuermann G, Teresniak S, Heyer G, Koch S, Ertl T, Weber G (2010) Two-stage framework for a topology-based projection and visualization of classified document collections. In: Proceedings of the IEEE symposium on visual analytics science and technology (VAST ’10), Salt Lake City. IEEE Computer Society, pp 91–98

    Google Scholar 

  105. O’Madadhain J, Fisher D, Nelson T. JUNG – Java universal network/graph framework. http://jung.sourceforge.net/. Last accessed 27 Jan 2013

  106. Pickett RM, Grinstein GG (1988) Iconographic displays for visualizing multidimensional data. In: Proceedings of the 1988 IEEE international conference on systems, man, and cybernetics, Beijing, vol 1, pp 514–519

    Google Scholar 

  107. Reingold EM, Tilford JS (1981) Tidier drawing of trees. IEEE Trans Softw Eng 7(2):223–228

    Google Scholar 

  108. Richard JS, Catrambone R, Guzdial M, Mcdonald K (2000) An evaluation of space-filling information visualizations for depicting hierarchical structures. Int J Hum Comput Stud 53:663–694

    MATH  Google Scholar 

  109. Roberts JC (2004) Exploratory visualization with multiple linked views. In: MacEachren A, Kraak MJ, Dykes J (eds) Exploring geovisualization. Elseviers, Amsterdam

    Google Scholar 

  110. Rohn H, Junker A, Hartmann A, Grafahrend-Belau E, Treutler H, Klapperstück M, Czauderna T, Klukas C, Schreiber F (2012) VANTED v2: a framework for systems biology applications. BMC Syst Biol 6:139

    Google Scholar 

  111. Rohrschneider M, Heine C, Reichenbach A, Kerren A, Scheuermann G (2010) A novel grid-based visualization approach for metabolic networks with advanced focus & context view. In: Proceedings of the international symposium on graph drawing (GD ’09), Chicago. LNCS, vol 5849. Springer, pp 268–279

    Google Scholar 

  112. Rohrschneider M, Ullrich A, Kerren A, Stadler PF, Scheuermann G (2010) Visual network analysis of dynamic metabolic pathways. In: Proceedings of the 6th international conference on advances in visual computing – volume Part I (ISVC ’10), Las Vegas. Springer, Berlin/Heidelberg, pp 316–327

    Google Scholar 

  113. Salamonsen W, Mok KY, Kolatkar P, Subbiah S (1999) BioJAKE: a tool for the creation, visualization and manipulation of metabolic pathways. In: Proceedings of the Pacific symposium on biocomputing, Big Island, pp 392–400

    Google Scholar 

  114. Sander G (1994) Graph layout through the VCG tool. In: Tamassia R, Tollis IG (eds) Proceedings of the DIMACS international workshop on graph drawing (GD ’94), Princeton. Springer, pp 194–205

    Google Scholar 

  115. Schreiber F (2002) High quality visualization of biochemical pathways in BioPath. Silico Biol 2(2):59–73

    Google Scholar 

  116. Schreiber F, Dwyer T, Marriott K, Wybrow M (2009) A generic algorithm for layout of biological networks. BMC Bioinform 10:375

    Google Scholar 

  117. Schreiber F, Colmsee C, Czauderna T, Grafahrend-Belau E, Hartmann A, Junker A, Junker BH, Klapperstück M, Scholz U, Weise S (2012) MetaCrop 2.0: managing and exploring information about crop plant metabolism. Nucl Acids Res 40(1):D1173–D1177

    Google Scholar 

  118. Serov VN, Spirov AV, Samsonova MG (1998) Graphical interface to the genetic network database GeNet. Bioinformatics 14(6):546–547

    Google Scholar 

  119. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Google Scholar 

  120. Shannon R, Holland T, Quigley A (2008) Multivariate graph drawing using parallel coordinate visualisations. Technical report 2008-6, School of Computer Science and Informatics, University College Dublin

    Google Scholar 

  121. Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of the IEEE symposium on visual languages (VL ’96), Boulder. IEEE Computer Society, pp 336–343

    Google Scholar 

  122. Shneiderman B, Aris A (2006) Network visualization by semantic substrates. IEEE Trans Vis Comput Graph 12:733–740

    Google Scholar 

  123. Sirava M, Schäfer T, Eiglsperger M, Kaufmann M, Kohlbacher O, Bornberg-Bauer E, Lenhof HP (2002) BioMiner – modeling, analyzing, and visualizing biochemical pathways and networks. Bioinformatics 18(Suppl. 2):S219–S230

    Google Scholar 

  124. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3):431–432

    Google Scholar 

  125. Sommer B, Künsemöller J, Sand N, Husemann A, Rumming M, Kormeier B (2010) Cellmicrocosmos 4.1 – an interactive approach to integrating spatially localized metabolic networks into a virtual 3d cell environment. In: Fred ALN, Filipe J, Gamboa H (eds) Proceedings of the first international conference on bioinformatics (BIOINFORMATICS ’10), Valencia, pp 90–95

    Google Scholar 

  126. Spence R (2007) Information visualization: design for interaction, 2nd edn. Prentice Hall, Harlow

    Google Scholar 

  127. Stasko J, Muthukumarasamy J (1996) Visualizing program executions on large data sets. In: Proceedings of the IEEE symposium on visual languages (VL ’96), Boulder. IEEE Computer Society, pp 166–173

    Google Scholar 

  128. Suderman M, Hallett MT (2007) Tools for visually exploring biological networks. Bioinformatics 23(20):2651–2659

    Google Scholar 

  129. Sugiyama K, Tagawa S, Toda M (1981) Methods for visual understanding of hierarchical system structures. IEEE Trans Syst Man Cybern SMC-11(2):109–125

    MathSciNet  Google Scholar 

  130. Thomas JJ, Cook KA (2006) A visual analytics agenda. IEEE Comput Graph Appl 26(1):10–13

    Google Scholar 

  131. Tufte ER (1990) Envisioning information. Graphics Press, Cheshire

    Google Scholar 

  132. Tufte ER (1997) Visual explanations: images and quantities, evidence and narrative. Graphic Press, Cheshire

    MATH  Google Scholar 

  133. Tufte ER (2001) The visual display of quantitative information, 2nd edn. Graphics Press, Cheshire

    Google Scholar 

  134. van Ham F, van Wijk JJ (2002) Beamtrees: compact visualization of large hierarchies. In: Proceedings of the IEEE symposium on information visualization (InfoVis ’02), Boston. IEEE Computer Society, pp 93–100

    Google Scholar 

  135. van Iersel MP, Kelder T, Pico AR, Hanspers K, Coort S, Conklin BR, Evelo C (2008) Presenting and exploring biological pathways with PathVisio. BMC Bioinform 9:399. 1–9

    Google Scholar 

  136. van Iersel MP, Villéger A, Czauderna T, Boyd SE, Bergmann FT, Luna A, Demir E, Sorokin AA, Dogrusöz U, Matsuoka Y, Funahashi A, Aladjem MI, Mi H, Moodie SL, Kitano H, Novère NL, Schreiber F (2012) Software support for SBGN maps: SBGN-ML and LibSBGN. Bioinformatics 28(15):2016–2021

    Google Scholar 

  137. Van Wijk JJ, Nuij WAA (2003) Smooth and efficient zooming and panning. In: Proceedings of the IEEE conference on information visualization (InfoVis ’03), Seattle. IEEE Computer Society, Washington, DC, pp 15–22

    Google Scholar 

  138. Viegas FB, Wattenberg M, Feinberg J (2009) Participatory visualization with wordle. IEEE Trans Vis Comput Graph 15:1137–1144

    Google Scholar 

  139. Walker JQ (1990) A node-positioning algorithm for general trees. Softw Pract Exp 20(7):685–705

    Google Scholar 

  140. Ward M, Grinstein G, Keim DA (2010) Interactive data visualization: foundations, techniques, and application. A.K. Peters, Natick

    Google Scholar 

  141. Ware C (2004) Information visualization: perception for design, 2nd edn. Morgan Kaufmann, San Francisco

    Google Scholar 

  142. Wattenberg M (2006) Visual exploration of multivariate graphs. In: Proceedings of the SIGCHI conference on human factors in computing systems (CHI ’06), Montreal. ACM, New York, pp 811–819

    Google Scholar 

  143. Weise S, Grosse I, Klukas C, Koschützki D, Scholz U, Schreiber F, Junker BH (2006) Meta-All: a system for managing metabolic pathway information. BMC Bioinform 7:465

    Google Scholar 

  144. Wiese R, Eiglsperger M, Kaufmann M (2001) yFiles: visualization and automatic layout of graphs. In: Mutzel P, Jünger M, Leipert S (eds) Proceedings of the international symposium on graph drawing (GD ’01), Vienna. LNCS, vol 2265. Springer, pp 453–454

    Google Scholar 

  145. Williams M, Munzner T (2004) Steerable, progressive multidimensional scaling. In: Proceedings of the IEEE symposium on information visualization (InfoVis ’04), Austin. IEEE Computer Society Press, pp 57–64

    Google Scholar 

  146. Williamson C, Shneiderman B (1992) The dynamic homefinder: evaluating dynamic queries in a real-estate information exploration system. In: Proceedings of the international ACM conference on research and development in information retrieval (SIGIR ’92), Copenhagen. ACM, New York, pp 338–346

    Google Scholar 

  147. Wise J, Thomas J, Pennock K, Lantrip D, Pottier M, Schur A, Crow V (1995) Visualizing the non-visual: spatial analysis and interaction with information from text documents. In: Proceedings of the IEEE symposium on information visualization (InfoVis ’95), Atlanta. IEEE Computer Society, pp 51–58

    Google Scholar 

  148. Yi JS, Kang YA, Stasko J, Jacko J (2007) Toward a deeper understanding of the role of interaction in information visualization. IEEE Trans Vis Comput Graph 13(6):1224–1231

    Google Scholar 

  149. yWorks. yEd graph editor. http://www.yworks.com/en/products_yed_about.html. Last accessed 02 Aug 2012

  150. Zimmer B, Jusufi I, Kerren A (2012) Analyzing multiple network centralities with ViNCent. In: Proceedings of SIGRAD 2012: interactive visual analysis of data, Växjö, 29–30 Nov 2012. Number 81 in Linköping electronic conference proceedings. Linköping University Electronic Press, pp 87–90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Kerren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kerren, A., Schreiber, F. (2014). Network Visualization for Integrative Bioinformatics. In: Chen, M., Hofestädt, R. (eds) Approaches in Integrative Bioinformatics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41281-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41281-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41280-6

  • Online ISBN: 978-3-642-41281-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics