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Abstract. Homomorphic encryption offers potential for secure cloud compu-

ting.  However due to the complexity of homomorphic encryption schemes, per-

formance of implemented schemes to date have been unpractical.  This work 

investigates the use of hardware, specifically Field Programmable Gate Array 

(FPGA) technology, for implementing the building blocks involved in some-

what and fully homomorphic encryption schemes in order to assess the practi-

cality of such schemes.  We concentrate on the selection of a suitable multipli-

cation algorithm and hardware architecture for large integer multiplication, one 

of the main bottlenecks in many homomorphic encryption schemes.  We focus 

on the encryption step of an integer-based fully homomorphic encryption (FHE) 

scheme.  We target the DSP48E1 slices available on Xilinx Virtex 7 FPGAs to 

ascertain whether the large integer multiplier within the encryption step of a 

FHE scheme could fit on a single FPGA device.  We find that, for toy size pa-

rameters for the FHE encryption step, the large integer multiplier fits comforta-

bly within the DSP48E1 slices, greatly improving the practicality of the encryp-

tion step compared to a software implementation.  As multiplication is an im-

portant operation in other FHE schemes, a hardware implementation using this 

multiplier could also be used to improve performance of these schemes.  

   

1 Introduction 

Cloud computing offers numerous advantages to users, such as computing as a ser-

vice, storage and management of large amounts of data.  Yet this requires the trust of 

the public cloud service provider to maintain an adequate level of security and prevent 

leakage of private data.  Data security has been shown to be the greatest concern of 

clients who use the cloud [1].  If users could encrypt their data before storing it in an 

(untrusted) cloud server and still be able to compute on these ciphertexts, they could 

take advantage of the benefits of cloud computation without the risk of leaking their 

private data.  

mailto:n.hanley@qub.ac.uk


Secure cloud computing could be achieved by the use of an efficient fully homo-

morphic encryption scheme.  Homomorphic encryption is a method of encryption 

featuring four steps: {key-gen, encrypt, evaluate, decrypt}, where the step evaluate 

enables the correct computation, such as addition and multiplication, on ciphertexts 

without the use of decryption.  Traditionally, homomorphic encryption schemes were 

either additively or multiplicatively homomorphic; such schemes are also known as 

partially homomorphic encryption schemes.  Examples include the multiplicatively 

homomorphic ElGamal [2] and the additively homomorphic Paillier [3] cryptosys-

tems.  In 2005 Boneh-Goh-Nissam introduced a scheme which allowed a combination 

of additions and one multiplication on encrypted data [4]. 

The area of homomorphic encryption leapt forward in 2009 however, with Gentry's 

ground-breaking work on a fully homomorphic encryption (FHE) scheme based on 

ideal lattices, which introduced the first technique to allow an arbitrary number of 

operations (both additions and multiplications) to be employed on ciphertexts [5].  A 

FHE scheme is created by extending a somewhat homomorphic encryption (SHE) 

scheme, which allows a limited number of multiplications and additions.  In the last 

few years there has been much research to improve the efficiency of homomorphic 

encryption schemes [6], [7], [8].  The theory behind homomorphic encryption is de-

veloping at a quick pace; however there are few published results of timings from 

implementations of these schemes.  Moreover, from the results that have been pub-

lished, it is clear that improvements in the efficiency of these schemes are still need-

ed.  For example, in the SHE implementation of the largest lattice-based scheme in 

[9], bitwise encryption is reported to take 3.2 minutes.   In addition, the FHE imple-

mentation of the integer-based scheme for the large implementation in [10], bitwise 

encryption takes 7 minutes 15 seconds. The recent FHE implementation of AES [8] 

requires approximately 36 hours and 256 GB RAM to evaluate AES; this shows there 

is still much to be done before such schemes are practical and comparable to existing 

cryptographic encryption schemes.  It also highlights the complexity of homomorphic 

encryption and underlines the demand for more efficient implementations.  In this 

paper we investigate implementing a hardware building block, which in some form 

features in all of the SHE and FHE schemes, in order to improve their performance 

and hence their practicality. 

Three main structures have been proposed for FHE/SHE schemes: lattice-based, 

integer-based and schemes based on learning with errors (LWE) or ring learning with 

errors (RLWE).  The current focus of the research community is on RLWE schemes, 

as these promise greater efficiency due to recent optimisations to support batching, for 

example in [7].  However the integer-based schemes, introduced by van Dijk, Gentry, 

Halevi and Vaikuntanathan (DGHV) in [11], have a relatively simple structure in 

comparison to the RLWE schemes and lattice-based methods introduced by Gentry.  

The efficiency of the latest integer-based schemes [10], [12] is comparable to the 

lattice-based schemes.       

 As a first step in our investigation into a hardware implementation of SHE or FHE 

schemes, we consider the proposed parameter sizes and the main underlying computa-

tions involved in the encryption step of the integer-based FHE scheme proposed by 

Coron et al [10], a scheme similar to the original DGHV integer-based FHE scheme 



[11].  The main computations are modular reduction and large integer multiplication, 

and are used in all of the FHE schemes.  Therefore an efficient hardware implementa-

tion of these crypto-primitives can be used in future real time hardware implementa-

tions of any FHE scheme to improve performance.  We focus on considering a hard-

ware implementation of large integer multiplication and highlight some of the major 

issues involved.  We begin to address these implementation issues by selecting a suit-

able large integer multiplication algorithm for hardware implementation.  Due to the 

computational complexity of large integer multiplication, it is likely that a custom 

circuit architecture exploiting an Application Specific Integrated Circuit (ASIC) or a 

high-end FPGA technology in the form of a Xilinx Virtex 7 device will be required to 

enable real-time implementation.  Considering the reconfigurable nature and quick 

development time of FPGAs we base our implementations on these.  These devices 

also have exceptional levels of on-chip multiplication capability in the form of 

DSP48E1 slices. 

To our knowledge, there are no current hardware implementations of complete 

FHE schemes; however there has been work on FPGA implementation of primitives 

for a SHE scheme using Mathworks® Simulink [13].  There has also been research in 

similar areas, for example [14] discusses the practicality of existing applications of 

homomorphic encryption by an empirical evaluation based on the lattice-based 

scheme by Smart and Vercauteren [15], and highlights implementation issues such as 

memory access.  Another related publication [16] considers the hardware building 

blocks for the LWE cryptosystem and uses Fast Fourier Transform (FFT) multiplica-

tion in polynomial rings.  Although it is stated that there may be more suitable multi-

plication algorithms for this purpose, it is shown that this hardware implementation of 

LWE still outperforms the software implementation.  The Comba multiplication algo-

rithm, introduced in 1962 [17], has been implemented in an FPGA using DSP slices 

to carry out multiplications required in the area of elliptic curve cryptography [18].  

We look at using this multiplication method for large integer multiplication required 

in FHE schemes, as this type of   multiplication has been shown to be very suitable 

for use on DSP slices.  We estimate the performance of using Comba multiplication in 

DSP slices for the parameter sizes in the integer-based scheme by Coron et al [10] in 

order to establish the feasibility of a FPGA implementation of FHE schemes, and 

whether a hardware implementation of a multiplier would enable practical perfor-

mance of the encryption step in [10], therefore offering a significant improvement to 

the existing implementations of large integer multiplication in FHE schemes.     

We find in this initial evaluation for the toy-sized version of the encryption step of 

the FHE scheme in [10], the large integer multiplier fits comfortably within the 

DSP48E1 slices in a FPGA and would improve the practicality of the encryption step 

in [10], compared to a software implementation.  Moreover, the large integer multi-

plier for the specified small, medium and large versions of the encryption step also 

fits comfortably within the DSP48E1 slice, though in these versions off-chip memory 

must be used to cope with the large parameter sizes.  Indeed, as multiplication is an 

important operation in this type of encryption scheme, a hardware implementation 

using this multiplier, could be used to improve the performance of all FHE schemes.   



To our knowledge, there has been little previous analysis into the practicality of an 

FPGA based implementation of crypto primitives for FHE schemes. 

In Section 2 of this paper, the selected integer-based scheme is introduced and we 

justify our approach.  Section 3 presents a very brief survey of some multiplication 

methods and introduces the Comba multiplication method.  A suitable hardware ar-

chitecture and rough estimates for timings and resource requirements is given in Sec-

tion 4.  Some of the major implementation issues are also highlighted in this section. 

2 Overview of Integer-Based FHE Scheme by Coron et al. 

We focus on the proposed FHE scheme by Coron et al [10], based on the original 

integer-based FHE scheme [11], for its simple approach, detailed parameter sizes and 

reasonable performance in comparison to other implemented schemes, such as [9], 

[15].  We focus in particular on the encryption step, as this is one of the key steps in a 

FHE scheme which may need to be performed multiple times, unlike key generation 

which is only required initially.  Moreover the encryption step in [10] involves two 

important cryptographic building blocks: multiplication of large integers and modular 

reduction, which are also used in all other FHE schemes.  We explain the encryption 

step in the integer based FHE scheme in detail because of its relevance to this work.  

However, we refer the reader to [10] for details of the other steps in the scheme.    

The encryption step for a given message         is given as: 

          ∑             
 
                                      (1) 

where    is an integer from a specified range      
    

  and is used as random 

noise;        , where    is a random odd integer in the range [0,      and   is a 

random prime integer of   bits;    for       is an array of large random integers; 

and             is an array of random integers selected from a smaller range 

      .  The parameters       ,   and   in Equation (1) vary according to the size of 

scheme implemented.  Hence we refer the reader to [10] for full details on these pa-

rameters and further information on the generation of   .  

We target in particular the toy-sized FHE scheme; the parameter sizes for the four 

versions of the FHE scheme are listed in Table 1.  In the toy-sized scheme 158 multi-

plications of       are required where the bit sizes for    and    are 936 bits and 

150,000 bits respectively. In this paper we focus on the multiplier and establish a 

suitable approach to deal with these large parameter sizes.  As can be seen in Table 1, 

the parameter sizes are very large, which is common in FHE schemes.   For a discus-

sion of security of this scheme, we again refer the reader to [10].    

Table 1.Parameter Sizes (bits) for Encryption step in FHE Scheme in [10] 

Parameter Toy Small Medium Large 

   936 1,476 2,016 2,556 

   150,000 830,000 4,200,000 19,350,000 

   150,000 830,000 4,200,000 19,350,000 

  158 572 2110 7659 



The two main bottlenecks in the selected scheme are large integer multiplication 

and modular reduction.  These operations are also required in many other FHE 

schemes, such as the lattice based schemes [9], [15].  We have chosen to focus initial-

ly on multiplication as most efficient hardware implementations of modular reduction 

also require the use of a multiplier, for example Barrett reduction and Montgomery 

reduction both require multiplications [19].  Moreover, one of the main motivations 

for FHE and SHE schemes is to compute, using additions and multiplications, on 

encrypted data.  Therefore an efficient multiplier for large parameter sizes is essential 

for such schemes.    

Multiplication is only one of the issues to be addressed to implement this type of 

encryption scheme in hardware.  Other major issues in the hardware implementation 

of homomorphic encryption schemes exist, such as the transfer of large blocks of data 

to and from the board, memory access and efficient scheduling of operations.  In this 

initial study, we focus our attention on the multiplication bottleneck to establish the 

viability of an FPGA implementation of a FHE scheme and thus to justify continuing 

research to address the other important issues for a hardware implementation.    

3 Overview of the Comba Multiplication Algorithm 

Many multiplications with large multiplicands are required for implementation of the 

selected encryption scheme.  There are various different algorithms available to deal 

with larger multiplicands and multipliers.  Karatsuba multipliers [20] can be used to 

reduce the number and size of multiplications for large numbers by representing the 

large numbers,   and   , as additions of two smaller numbers, for example     
   

     ,      
     where   and   are numbers of bit length   .  Then the 

multiplications are reduced from 4 multiplications (and 3 additions) to 3 multiplica-

tions (and 1 addition and 3 subtractions) as shown in Equation (2): 

                
          

      

                
        

          
                               

However, Karatsuba requires intermediate storage of multiplication and subtraction 

results and is therefore not ideal for mapping to DSP slices, especially when consider-

ing such large parameter sizes.  Fast Fourier transforms (FFTs) can also be used for 

multiplications, particularly when many multiplications are required.  The use of 

FFTs has also been suggested in previous homomorphic encryption implementations 

[13]. Another alternative is Montgomery multiplication, commonly used in asymmet-

ric cryptosystems. However, this technique requires multiplications for both post- and 

pre-computation.  This method is more suitable when repeating multiplications such 

as in exponentiation algorithms, for example in RSA [21].   As we propose to target 

the DSP slices on a FPGA for large integer multiplication, we select a multiplication 

algorithm particularly suitable for the underlying FPGA platform for our initial inves-

tigation.  The Comba multiplication method introduced in [17] is used for hardware-

based large integer multiplication in [18] and it is very suitable for use on DSP slices 

as it can be easily broken down into partial products, therefore making efficient use of 



resources.  Moreover, when these partial products are accumulated, they are retained 

within the DSP block.  This method of multiplication involves a reversal of the order 

of words in the multiplicand, several shifts and multiplications with each shift.  For 

example, to multiply two 3-word numbers,     for          and          , 

reverse   =>           and calculate the partial products     by multiplying and 

adding:  

           

                 

                        

                                       

                                                      

 

Each of the partial products     are shifted left by   words (  ) and summed togeth-

er to give the final product, giving:   

 

                                        . 

 

For a generalised multiplication of      let the word-length of A equal   and the 

word-length of B equal   and without loss of generality let    .  There will be 

       required partial products in the Comba multiplication.  When     , the 

    partial product     requires     multiplications.  The partial products can there-

fore have a maximum of   multiplications.  When       the     partial product 

requires         multiplications.   As suggested in [18] we can combine the 

partial products into   steps which have   multiplications in each step.   Continuing 

the above example, we then have three steps which combine all of the partial prod-

ucts: 

      
                              

                               

                                           
                          

 

We refer the reader to [18] for further details on this optimisation and their hardware 

implementation.   

The choice of multiplier greatly depends on the size of the multiplication.  In the 

particular case of the implementation of the toy scheme mentioned previously, we 

have a multiplier of 936 bits and a multiplicand of 150000 bits.  We therefore propose 

to use a 936 bit multiplier and this can then be used several times and the partial 

products can be added to achieve the overall large multiplier.  When we consider an 

FPGA implementation of Comba multiplication, we can run each of the steps in a 

separate parallel DSP slice, and then the number of clock cycles required per multi-

plication is     the number of words in the largest multiplicand, and a few extra 

clocks for the summation of the partial products.   The number of DSP slices required 

for the multiplication is equal to the number of steps after combining the partial prod-

ucts which is also  .   



4 DSP Slice Usage and Estimated Timings for Large Integer 

Multiplier 

FPGAs are a suitable target technology for hardware for implementations of SHE and 

FHE. They are cheaper and offer greater flexibility than ASIC devices.  This makes 

them suitable for cryptographic purposes, as they can be re-programmed in-situ when 

protocols are changed and updated.  The latest FPGA devices offer a large amount of 

embedded hardware blocks, which can be used to carry out optimised operations, 

such as addition and multiply-accumulate steps.  The inclusion of dedicated DSP 

slices on an FPGA allows for very efficient multiplication and multiply-accumulate 

(MAC) operations.  For example, on current Xilinx Virtex 7 FPGAs there are up to 

3600 DSP48E1 slices, each with the capacity of a       bit signed multiplication 

and 48 bit accumulation; see Table 2 for further examples.  Furthermore, the    
   bit signed multiplier and the   bit accumulator are capable to run at frequency of 

up to 741 MHz [22].    

Table 2. Examples of Available DSP Slices in Selected Xilinx Virtex 7 FPGA Devices 

Xilinx Virtex 7 FPGA No. of DSP Slices No. Columns 

XC7VX415T 2,160 18 

XC7VX485T 2,800 20 

XC7VX980T 3,600 20 

 

The compact size imposes significant constraints on input word sizes and storage, 

which is problematic for FHE and SHE implementations with large key and cipher-

text sizes.   To circumvent this in so far as possible, we target one of the largest 

FPGAs, the Xilinx Virtex 7XC7VX980T. 

Our goal is to implement a 936 bit multiplier.  An un-optimised initial inference of 

a multiplier using ISE Design Suite reveals that a 936 bit multiplier requires      of 

the targeted device's DSP slices.  Therefore this highly un-optimised large multiplier 

fits on to the FPGA device.  However, inferring and cascading multipliers in ISE 

Design Suite requires exponentially many DSP slices for increasingly large multipli-

cations.  If an un-optimised implementation of a 936 bit multiplier is designed using 

partial products and shifts for example, this will most likely occupy over 2700 DSP 

slices just to implement the toy-sized multiplier.  The Xilinx Core Generator can only 

generate multipliers for up to 64 bits long, which is much smaller than our required 

multiplier.  Therefore an indirect approach must be taken. 

In [18] the dedicated hard core functions on FPGAs are targeted to produce effi-

cient implementations of both AES and ECC.  An efficient multiplier is presented, 

which firstly calculates the partial products using the Comba method and then these 

are added to generate the final result.  This technique is very suitable for large inte-

gers, as the DSP slices can be used in parallel, which allows for less device usage for 

the same multiplier size.  Although our target multiplier is 936 bits, we use a 16 bit 

unsigned multiplier, as the DSP slice has an 18-bit signed multiplier and thus a 16 bit 

multiplier is the most suitable size to work with that fits within a DSP slice.  Using  



this approach, a 944 bit multiplier can be designed using 59 DSP slices, where a few 

of the multiplications are redundant.  Each of these 59 DSP slices will calculate 

      multiplications up to 59 times and thus a full 944 bit multiplication can be 

calculated in around 60 clock cycles.  This multiplier can then be run multiple times 

to reach the appropriate multiplication size.  Therefore the 150000 bit    is represent-

ed in 9575 16 bit words and the 944 bit multiplier is used approximately 159 times.  

After each multiplication in the DSP slice the     are shifted right, and further multi-

plications with the shifted    are carried out and accumulated in the DSP slices.  The 

partial product adder combines these partial products.  The least significant word of 

each of the partial products accumulated in the DSP slices is saved in a register and 

the remainder is added to the next partial product.  This process is continued with all 

of the partial products consecutively to give the final output.  Additionally, several 

multipliers of this size can be implemented in parallel to increase the performance of 

the multiplier in the encryption step.   

Figure 1 shows a basic hardware architecture design of the Comba multiplier as 

proposed in [18].  The chosen 944 bit multiplicand and multiplier are both represented 

by 59 16 bit words, as shown by registers   and   in Figure 1;   and   represent the 

   and    from the selected FHE scheme.  The value   is equal to the number of 

words, in this case 59, and   is equal to the word size, 16.  This can be extended to 

larger sizes:                                 Each of these 59 words from both A 

and B is input into a separate DSP slice, again as shown in Figure 1.  The product of 

these two terms is accumulated within the DSP slices, using the internal 48 bit accu-

mulator logic.  The accumulation output is a maximum of            bits.  After 

each multiplication, the    in Figure 1 are shifted left by 16 bits and a new word is 

input to each of the 59 DSP slices to be multiplied by    which is also shifted one 

word to the right.  This process accumulates all of the partial products.  These partial 

products are then added together as previously described.  After the final output is 

stored in memory; the multiplier is used again 158 more times to calculate all of the 

parts of    and the output is combined to achieve the final result. 

Table 3 gives conservative estimates of timings for the multiplications required in 

the encryption step in all four versions of the FHE scheme in [10] without considering 

parallel implementation of multipliers, which would considerably speed up timings.  

We also assume a conservative estimate of a 500MHz clock frequency for the multi-

plier, as the critical path goes through the DSP block.  The published software timings 

for the encryption step in [10] requires, for example, 1 second for the toy sized en-

cryption step in the FHE scheme.   The multiplication step is one of the two bottle-

necks in the encryption scheme and this suggests that the use of hardware could great-

ly improve the practicality of such encryption steps or indeed any step in FHE 

schemes which requires large integer multiplication. 

 

 



 

 

Fig. 1. Hardware Architecture of Comba Multiplier 

We make the assumption that we can access the off-chip memory storage; storage 

of the products is an issue, especially with the larger versions of the FHE schemes but 

for the toy size this is not a major issue, as only 60 DSP slices are required per 944 bit 

multiplier.  Moreover 158 of these 0.15Mbit-sized products require a total of 23.7 

Mbits memory.  This is manageable on the targeted Xilinx Virtex 7 XC7VX980T, as 

there is 68 Mbits block RAM (BRAM) available.  For the large FHE scheme, each 

multiplication is around 19.35Mbits long and 7659 of these are required to be added, 



which highlights the storage issues associated with the large scheme sizes.  Addition-

ally the transfer of data must also be considered.   Not only do the parameter sizes 

increase with the larger versions of the FHE schemes but the number of required mul-

tiplications for encryption also increase; the issue of memory storage and access be-

comes a major issue and it is impossible to store the partial products or intermediate 

values within the memory storage on the FPGA.  Obviously there is a need to make 

use of off-chip memory, which will require careful management so as not to become 

the architecture bottleneck.    

Table 3. DSP Slices required and estimated timings for large integer multiplier in encryption 

step using Comba multiplication at 500 MHz  

Size of Scheme: Toy Small Medium Large 

No. of multiplications 

required in encryption   

158 572 2110 7659 

Size of required multi-

plier (bits) 

936  

150000  

1476  

830000 

2016  

4200000 

2556  

19350000 

Target multiplier (bits) 944 944 1488 1488 2016 2016 2560  560 

No. of DSP slices re-

quired for target multi-

plier  

60 94 127 161 

Estimation of Clock 

Cycles required (multi-

plications not  run in 

parallel) 

1507320 

 

 30002544   558449480 

  

 9320995341 

Estimated timing of all 

multiplications required 

in encryption step (secs) 

                                  

Published Timing (secs) 

of Encryption Step in 

[10] 

0.05 1 21 435 

     

We give an estimation of the timing for the multiplications required in each of 

these four versions using the number of multiplications required, an estimate of the 

number of required clock cycles to achieve the target multiplier size and the number 

of cycles required to achieve the full size multiplier.  We do not consider parallelising 

the multiplications in this estimation, although this is possible, as the number of re-

quired DSP slices for the selected target multiplier for all four versions occupies less 

than 5% of the target FPGA DSP slices.  Furthermore, we do not fully utilise the DSP 

slice multiplier of       bits; we could extend the       bit multiplier to a 

       bit unsigned multiplier for example, which would improve performance of 

the multiplier.  Therefore Table 3 lists conservative estimates.  From these results 

however, we can still see that the toy size version will fit on an FPGA and this could 

be parallelised to give an even better performance.  Moreover the estimated timings 

for the small, medium and large schemes suggest that a hardware implementation of 

FHE could offer significant improvements to the practicality of FHE schemes.  Pre-



liminary synthesis results* of a 944 bit multiplier show that it requires 59 DSP48E1s, 

and has a latency of 121 clocks: 1 for loading, 60 for multiply accumulate and 60 for 

partial product addition and shifting.  The overall latency of the multiplier is    
  clock cycles, where s is the number of words.   To our knowledge, this is one of the 

first analyses into the practicality of an FPGA based implementation of crypto primi-

tives for use in FHE schemes.  

5 Conclusions 

We have considered one of the most important building blocks involved in FHE 

schemes, large integer multiplication.  We have looked at the Comba multiplication 

method and the possibility of targeting DSP48E1 slices on a Xilinx Virtex 7 FPGA to 

perform the large integer multiplication to ultimately improve the performance of 

FHE schemes.   From the preliminary results we establish that the large integer multi-

plication in the encryption step for the toy scheme will fit comfortably on a single 

FPGA device.  Furthermore the conservatively estimated timings suggest using a 

hardware implementation of this multiplication algorithm should improve perfor-

mance of FHE schemes compared to the software implementations, especially for the 

larger versions of the FHE schemes [10].  This establishes the potential and justifica-

tion for continuing research into hardware implementations of crypto-primitives, such 

as large integer multiplication, to improve the performance and hence the practicality 

of FHE schemes.  There will however be issues with memory storage with these large 

versions of the FHE schemes.  As this is a relatively recent area of research, there is a 

lot of future work still to be carried out and we are currently pursuing a hardware 

implementation of a complete encryption step of a FHE scheme. 
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