
Targeting FPGA DSP Slices for a Large Integer Multiplier for Integer
Based FHE

Moore, C., Hanley, N., McAllister, J., O'Neill, M., O'Sullivan, E., & Cao, X. (2013). Targeting FPGA DSP Slices
for a Large Integer Multiplier for Integer Based FHE. In Financial Cryptography and Data Security: FC 2013
Workshops, USEC and WAHC 2013, Okinawa, Japan, April 1, 2013, Revised Selected Papers (pp. 226-237).
(Lecture Notes in Computer Science; Vol. 7862). Springer. https://doi.org/10.1007/978-3-642-41320-9_16

Published in:
Financial Cryptography and Data Security

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2013 Springer
The final publication is available at Springer via http://link.springer.com/chapter/10.1007%2F978-3-642-41320-9_16

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:25. Apr. 2024

https://doi.org/10.1007/978-3-642-41320-9_16
https://pure.qub.ac.uk/en/publications/0fe2c748-c585-4153-9d0a-44864bd32335

Queen's University Belfast - Research Portal

Targeting FPGA DSP Slices for a Large Integer Multiplier for
Integer Based FHE

Moore, C., Hanley, N., McAllister, J., O'Neill, M., O'Sullivan, E., & Cao, X. (2013). Targeting FPGA DSP Slices
for a Large Integer Multiplier for Integer Based FHE. Paper presented at Workshop on Applied Homomorphic
Cryptography, Japan.

Document Version:
Author final version (often known as postprint)

Link:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:18. Jan. 2016

http://pure.qub.ac.uk/portal/en/publications/targeting-fpga-dsp-slices-for-a-large-integer-multiplier-for-integer-based-fhe(0fe2c748-c585-4153-9d0a-44864bd32335).html

Targeting FPGA DSP Slices for a Large Integer

Multiplier for Integer Based FHE

Ciara Moore, Neil Hanley, John McAllister, Máire O’Neill, Elizabeth

O’Sullivan and Xiaolin Cao

Centre for Secure Information Technologies (CSIT),

Queen’s University Belfast, Northern Ireland

cmoore50@qub.ac.uk, n.hanley@qub.ac.uk,

j.Mcallister@ecit.qub.ac.uk, m.oneill@ecit.qub.ac.uk,

e.osullivan@qub.ac.uk,xcao03@qub.ac.uk

Abstract. Homomorphic encryption offers potential for secure cloud compu-

ting. However due to the complexity of homomorphic encryption schemes, per-

formance of implemented schemes to date have been unpractical. This work

investigates the use of hardware, specifically Field Programmable Gate Array

(FPGA) technology, for implementing the building blocks involved in some-

what and fully homomorphic encryption schemes in order to assess the practi-

cality of such schemes. We concentrate on the selection of a suitable multipli-

cation algorithm and hardware architecture for large integer multiplication, one

of the main bottlenecks in many homomorphic encryption schemes. We focus

on the encryption step of an integer-based fully homomorphic encryption (FHE)

scheme. We target the DSP48E1 slices available on Xilinx Virtex 7 FPGAs to

ascertain whether the large integer multiplier within the encryption step of a

FHE scheme could fit on a single FPGA device. We find that, for toy size pa-

rameters for the FHE encryption step, the large integer multiplier fits comforta-

bly within the DSP48E1 slices, greatly improving the practicality of the encryp-

tion step compared to a software implementation. As multiplication is an im-

portant operation in other FHE schemes, a hardware implementation using this

multiplier could also be used to improve performance of these schemes.

1 Introduction

Cloud computing offers numerous advantages to users, such as computing as a ser-

vice, storage and management of large amounts of data. Yet this requires the trust of

the public cloud service provider to maintain an adequate level of security and prevent

leakage of private data. Data security has been shown to be the greatest concern of

clients who use the cloud [1]. If users could encrypt their data before storing it in an

(untrusted) cloud server and still be able to compute on these ciphertexts, they could

take advantage of the benefits of cloud computation without the risk of leaking their

private data.

mailto:n.hanley@qub.ac.uk

Secure cloud computing could be achieved by the use of an efficient fully homo-

morphic encryption scheme. Homomorphic encryption is a method of encryption

featuring four steps: {key-gen, encrypt, evaluate, decrypt}, where the step evaluate

enables the correct computation, such as addition and multiplication, on ciphertexts

without the use of decryption. Traditionally, homomorphic encryption schemes were

either additively or multiplicatively homomorphic; such schemes are also known as

partially homomorphic encryption schemes. Examples include the multiplicatively

homomorphic ElGamal [2] and the additively homomorphic Paillier [3] cryptosys-

tems. In 2005 Boneh-Goh-Nissam introduced a scheme which allowed a combination

of additions and one multiplication on encrypted data [4].

The area of homomorphic encryption leapt forward in 2009 however, with Gentry's

ground-breaking work on a fully homomorphic encryption (FHE) scheme based on

ideal lattices, which introduced the first technique to allow an arbitrary number of

operations (both additions and multiplications) to be employed on ciphertexts [5]. A

FHE scheme is created by extending a somewhat homomorphic encryption (SHE)

scheme, which allows a limited number of multiplications and additions. In the last

few years there has been much research to improve the efficiency of homomorphic

encryption schemes [6], [7], [8]. The theory behind homomorphic encryption is de-

veloping at a quick pace; however there are few published results of timings from

implementations of these schemes. Moreover, from the results that have been pub-

lished, it is clear that improvements in the efficiency of these schemes are still need-

ed. For example, in the SHE implementation of the largest lattice-based scheme in

[9], bitwise encryption is reported to take 3.2 minutes. In addition, the FHE imple-

mentation of the integer-based scheme for the large implementation in [10], bitwise

encryption takes 7 minutes 15 seconds. The recent FHE implementation of AES [8]

requires approximately 36 hours and 256 GB RAM to evaluate AES; this shows there

is still much to be done before such schemes are practical and comparable to existing

cryptographic encryption schemes. It also highlights the complexity of homomorphic

encryption and underlines the demand for more efficient implementations. In this

paper we investigate implementing a hardware building block, which in some form

features in all of the SHE and FHE schemes, in order to improve their performance

and hence their practicality.

Three main structures have been proposed for FHE/SHE schemes: lattice-based,

integer-based and schemes based on learning with errors (LWE) or ring learning with

errors (RLWE). The current focus of the research community is on RLWE schemes,

as these promise greater efficiency due to recent optimisations to support batching, for

example in [7]. However the integer-based schemes, introduced by van Dijk, Gentry,

Halevi and Vaikuntanathan (DGHV) in [11], have a relatively simple structure in

comparison to the RLWE schemes and lattice-based methods introduced by Gentry.

The efficiency of the latest integer-based schemes [10], [12] is comparable to the

lattice-based schemes.

 As a first step in our investigation into a hardware implementation of SHE or FHE

schemes, we consider the proposed parameter sizes and the main underlying computa-

tions involved in the encryption step of the integer-based FHE scheme proposed by

Coron et al [10], a scheme similar to the original DGHV integer-based FHE scheme

[11]. The main computations are modular reduction and large integer multiplication,

and are used in all of the FHE schemes. Therefore an efficient hardware implementa-

tion of these crypto-primitives can be used in future real time hardware implementa-

tions of any FHE scheme to improve performance. We focus on considering a hard-

ware implementation of large integer multiplication and highlight some of the major

issues involved. We begin to address these implementation issues by selecting a suit-

able large integer multiplication algorithm for hardware implementation. Due to the

computational complexity of large integer multiplication, it is likely that a custom

circuit architecture exploiting an Application Specific Integrated Circuit (ASIC) or a

high-end FPGA technology in the form of a Xilinx Virtex 7 device will be required to

enable real-time implementation. Considering the reconfigurable nature and quick

development time of FPGAs we base our implementations on these. These devices

also have exceptional levels of on-chip multiplication capability in the form of

DSP48E1 slices.

To our knowledge, there are no current hardware implementations of complete

FHE schemes; however there has been work on FPGA implementation of primitives

for a SHE scheme using Mathworks® Simulink [13]. There has also been research in

similar areas, for example [14] discusses the practicality of existing applications of

homomorphic encryption by an empirical evaluation based on the lattice-based

scheme by Smart and Vercauteren [15], and highlights implementation issues such as

memory access. Another related publication [16] considers the hardware building

blocks for the LWE cryptosystem and uses Fast Fourier Transform (FFT) multiplica-

tion in polynomial rings. Although it is stated that there may be more suitable multi-

plication algorithms for this purpose, it is shown that this hardware implementation of

LWE still outperforms the software implementation. The Comba multiplication algo-

rithm, introduced in 1962 [17], has been implemented in an FPGA using DSP slices

to carry out multiplications required in the area of elliptic curve cryptography [18].

We look at using this multiplication method for large integer multiplication required

in FHE schemes, as this type of multiplication has been shown to be very suitable

for use on DSP slices. We estimate the performance of using Comba multiplication in

DSP slices for the parameter sizes in the integer-based scheme by Coron et al [10] in

order to establish the feasibility of a FPGA implementation of FHE schemes, and

whether a hardware implementation of a multiplier would enable practical perfor-

mance of the encryption step in [10], therefore offering a significant improvement to

the existing implementations of large integer multiplication in FHE schemes.

We find in this initial evaluation for the toy-sized version of the encryption step of

the FHE scheme in [10], the large integer multiplier fits comfortably within the

DSP48E1 slices in a FPGA and would improve the practicality of the encryption step

in [10], compared to a software implementation. Moreover, the large integer multi-

plier for the specified small, medium and large versions of the encryption step also

fits comfortably within the DSP48E1 slice, though in these versions off-chip memory

must be used to cope with the large parameter sizes. Indeed, as multiplication is an

important operation in this type of encryption scheme, a hardware implementation

using this multiplier, could be used to improve the performance of all FHE schemes.

To our knowledge, there has been little previous analysis into the practicality of an

FPGA based implementation of crypto primitives for FHE schemes.

In Section 2 of this paper, the selected integer-based scheme is introduced and we

justify our approach. Section 3 presents a very brief survey of some multiplication

methods and introduces the Comba multiplication method. A suitable hardware ar-

chitecture and rough estimates for timings and resource requirements is given in Sec-

tion 4. Some of the major implementation issues are also highlighted in this section.

2 Overview of Integer-Based FHE Scheme by Coron et al.

We focus on the proposed FHE scheme by Coron et al [10], based on the original

integer-based FHE scheme [11], for its simple approach, detailed parameter sizes and

reasonable performance in comparison to other implemented schemes, such as [9],

[15]. We focus in particular on the encryption step, as this is one of the key steps in a

FHE scheme which may need to be performed multiple times, unlike key generation

which is only required initially. Moreover the encryption step in [10] involves two

important cryptographic building blocks: multiplication of large integers and modular

reduction, which are also used in all other FHE schemes. We explain the encryption

step in the integer based FHE scheme in detail because of its relevance to this work.

However, we refer the reader to [10] for details of the other steps in the scheme.

The encryption step for a given message is given as:

 ∑

 (1)

where is an integer from a specified range

 and is used as random

noise; , where is a random odd integer in the range [0, and is a

random prime integer of bits; for is an array of large random integers;

and is an array of random integers selected from a smaller range

 . The parameters , and in Equation (1) vary according to the size of

scheme implemented. Hence we refer the reader to [10] for full details on these pa-

rameters and further information on the generation of .

We target in particular the toy-sized FHE scheme; the parameter sizes for the four

versions of the FHE scheme are listed in Table 1. In the toy-sized scheme 158 multi-

plications of are required where the bit sizes for and are 936 bits and

150,000 bits respectively. In this paper we focus on the multiplier and establish a

suitable approach to deal with these large parameter sizes. As can be seen in Table 1,

the parameter sizes are very large, which is common in FHE schemes. For a discus-

sion of security of this scheme, we again refer the reader to [10].

Table 1.Parameter Sizes (bits) for Encryption step in FHE Scheme in [10]

Parameter Toy Small Medium Large

 936 1,476 2,016 2,556

 150,000 830,000 4,200,000 19,350,000

 150,000 830,000 4,200,000 19,350,000

 158 572 2110 7659

The two main bottlenecks in the selected scheme are large integer multiplication

and modular reduction. These operations are also required in many other FHE

schemes, such as the lattice based schemes [9], [15]. We have chosen to focus initial-

ly on multiplication as most efficient hardware implementations of modular reduction

also require the use of a multiplier, for example Barrett reduction and Montgomery

reduction both require multiplications [19]. Moreover, one of the main motivations

for FHE and SHE schemes is to compute, using additions and multiplications, on

encrypted data. Therefore an efficient multiplier for large parameter sizes is essential

for such schemes.

Multiplication is only one of the issues to be addressed to implement this type of

encryption scheme in hardware. Other major issues in the hardware implementation

of homomorphic encryption schemes exist, such as the transfer of large blocks of data

to and from the board, memory access and efficient scheduling of operations. In this

initial study, we focus our attention on the multiplication bottleneck to establish the

viability of an FPGA implementation of a FHE scheme and thus to justify continuing

research to address the other important issues for a hardware implementation.

3 Overview of the Comba Multiplication Algorithm

Many multiplications with large multiplicands are required for implementation of the

selected encryption scheme. There are various different algorithms available to deal

with larger multiplicands and multipliers. Karatsuba multipliers [20] can be used to

reduce the number and size of multiplications for large numbers by representing the

large numbers, and , as additions of two smaller numbers, for example

 ,
 where and are numbers of bit length . Then the

multiplications are reduced from 4 multiplications (and 3 additions) to 3 multiplica-

tions (and 1 addition and 3 subtractions) as shown in Equation (2):

However, Karatsuba requires intermediate storage of multiplication and subtraction

results and is therefore not ideal for mapping to DSP slices, especially when consider-

ing such large parameter sizes. Fast Fourier transforms (FFTs) can also be used for

multiplications, particularly when many multiplications are required. The use of

FFTs has also been suggested in previous homomorphic encryption implementations

[13]. Another alternative is Montgomery multiplication, commonly used in asymmet-

ric cryptosystems. However, this technique requires multiplications for both post- and

pre-computation. This method is more suitable when repeating multiplications such

as in exponentiation algorithms, for example in RSA [21]. As we propose to target

the DSP slices on a FPGA for large integer multiplication, we select a multiplication

algorithm particularly suitable for the underlying FPGA platform for our initial inves-

tigation. The Comba multiplication method introduced in [17] is used for hardware-

based large integer multiplication in [18] and it is very suitable for use on DSP slices

as it can be easily broken down into partial products, therefore making efficient use of

resources. Moreover, when these partial products are accumulated, they are retained

within the DSP block. This method of multiplication involves a reversal of the order

of words in the multiplicand, several shifts and multiplications with each shift. For

example, to multiply two 3-word numbers, for and ,

reverse => and calculate the partial products by multiplying and

adding:

Each of the partial products are shifted left by words () and summed togeth-

er to give the final product, giving:

 .

For a generalised multiplication of let the word-length of A equal and the

word-length of B equal and without loss of generality let . There will be

 required partial products in the Comba multiplication. When , the

 partial product requires multiplications. The partial products can there-

fore have a maximum of multiplications. When the partial product

requires multiplications. As suggested in [18] we can combine the

partial products into steps which have multiplications in each step. Continuing

the above example, we then have three steps which combine all of the partial prod-

ucts:

We refer the reader to [18] for further details on this optimisation and their hardware

implementation.

The choice of multiplier greatly depends on the size of the multiplication. In the

particular case of the implementation of the toy scheme mentioned previously, we

have a multiplier of 936 bits and a multiplicand of 150000 bits. We therefore propose

to use a 936 bit multiplier and this can then be used several times and the partial

products can be added to achieve the overall large multiplier. When we consider an

FPGA implementation of Comba multiplication, we can run each of the steps in a

separate parallel DSP slice, and then the number of clock cycles required per multi-

plication is the number of words in the largest multiplicand, and a few extra

clocks for the summation of the partial products. The number of DSP slices required

for the multiplication is equal to the number of steps after combining the partial prod-

ucts which is also .

4 DSP Slice Usage and Estimated Timings for Large Integer

Multiplier

FPGAs are a suitable target technology for hardware for implementations of SHE and

FHE. They are cheaper and offer greater flexibility than ASIC devices. This makes

them suitable for cryptographic purposes, as they can be re-programmed in-situ when

protocols are changed and updated. The latest FPGA devices offer a large amount of

embedded hardware blocks, which can be used to carry out optimised operations,

such as addition and multiply-accumulate steps. The inclusion of dedicated DSP

slices on an FPGA allows for very efficient multiplication and multiply-accumulate

(MAC) operations. For example, on current Xilinx Virtex 7 FPGAs there are up to

3600 DSP48E1 slices, each with the capacity of a bit signed multiplication

and 48 bit accumulation; see Table 2 for further examples. Furthermore, the
 bit signed multiplier and the bit accumulator are capable to run at frequency of

up to 741 MHz [22].

Table 2. Examples of Available DSP Slices in Selected Xilinx Virtex 7 FPGA Devices

Xilinx Virtex 7 FPGA No. of DSP Slices No. Columns

XC7VX415T 2,160 18

XC7VX485T 2,800 20

XC7VX980T 3,600 20

The compact size imposes significant constraints on input word sizes and storage,

which is problematic for FHE and SHE implementations with large key and cipher-

text sizes. To circumvent this in so far as possible, we target one of the largest

FPGAs, the Xilinx Virtex 7XC7VX980T.

Our goal is to implement a 936 bit multiplier. An un-optimised initial inference of

a multiplier using ISE Design Suite reveals that a 936 bit multiplier requires of

the targeted device's DSP slices. Therefore this highly un-optimised large multiplier

fits on to the FPGA device. However, inferring and cascading multipliers in ISE

Design Suite requires exponentially many DSP slices for increasingly large multipli-

cations. If an un-optimised implementation of a 936 bit multiplier is designed using

partial products and shifts for example, this will most likely occupy over 2700 DSP

slices just to implement the toy-sized multiplier. The Xilinx Core Generator can only

generate multipliers for up to 64 bits long, which is much smaller than our required

multiplier. Therefore an indirect approach must be taken.

In [18] the dedicated hard core functions on FPGAs are targeted to produce effi-

cient implementations of both AES and ECC. An efficient multiplier is presented,

which firstly calculates the partial products using the Comba method and then these

are added to generate the final result. This technique is very suitable for large inte-

gers, as the DSP slices can be used in parallel, which allows for less device usage for

the same multiplier size. Although our target multiplier is 936 bits, we use a 16 bit

unsigned multiplier, as the DSP slice has an 18-bit signed multiplier and thus a 16 bit

multiplier is the most suitable size to work with that fits within a DSP slice. Using

this approach, a 944 bit multiplier can be designed using 59 DSP slices, where a few

of the multiplications are redundant. Each of these 59 DSP slices will calculate

 multiplications up to 59 times and thus a full 944 bit multiplication can be

calculated in around 60 clock cycles. This multiplier can then be run multiple times

to reach the appropriate multiplication size. Therefore the 150000 bit is represent-

ed in 9575 16 bit words and the 944 bit multiplier is used approximately 159 times.

After each multiplication in the DSP slice the are shifted right, and further multi-

plications with the shifted are carried out and accumulated in the DSP slices. The

partial product adder combines these partial products. The least significant word of

each of the partial products accumulated in the DSP slices is saved in a register and

the remainder is added to the next partial product. This process is continued with all

of the partial products consecutively to give the final output. Additionally, several

multipliers of this size can be implemented in parallel to increase the performance of

the multiplier in the encryption step.

Figure 1 shows a basic hardware architecture design of the Comba multiplier as

proposed in [18]. The chosen 944 bit multiplicand and multiplier are both represented

by 59 16 bit words, as shown by registers and in Figure 1; and represent the

 and from the selected FHE scheme. The value is equal to the number of

words, in this case 59, and is equal to the word size, 16. This can be extended to

larger sizes: Each of these 59 words from both A

and B is input into a separate DSP slice, again as shown in Figure 1. The product of

these two terms is accumulated within the DSP slices, using the internal 48 bit accu-

mulator logic. The accumulation output is a maximum of bits. After

each multiplication, the in Figure 1 are shifted left by 16 bits and a new word is

input to each of the 59 DSP slices to be multiplied by which is also shifted one

word to the right. This process accumulates all of the partial products. These partial

products are then added together as previously described. After the final output is

stored in memory; the multiplier is used again 158 more times to calculate all of the

parts of and the output is combined to achieve the final result.

Table 3 gives conservative estimates of timings for the multiplications required in

the encryption step in all four versions of the FHE scheme in [10] without considering

parallel implementation of multipliers, which would considerably speed up timings.

We also assume a conservative estimate of a 500MHz clock frequency for the multi-

plier, as the critical path goes through the DSP block. The published software timings

for the encryption step in [10] requires, for example, 1 second for the toy sized en-

cryption step in the FHE scheme. The multiplication step is one of the two bottle-

necks in the encryption scheme and this suggests that the use of hardware could great-

ly improve the practicality of such encryption steps or indeed any step in FHE

schemes which requires large integer multiplication.

Fig. 1. Hardware Architecture of Comba Multiplier

We make the assumption that we can access the off-chip memory storage; storage

of the products is an issue, especially with the larger versions of the FHE schemes but

for the toy size this is not a major issue, as only 60 DSP slices are required per 944 bit

multiplier. Moreover 158 of these 0.15Mbit-sized products require a total of 23.7

Mbits memory. This is manageable on the targeted Xilinx Virtex 7 XC7VX980T, as

there is 68 Mbits block RAM (BRAM) available. For the large FHE scheme, each

multiplication is around 19.35Mbits long and 7659 of these are required to be added,

which highlights the storage issues associated with the large scheme sizes. Addition-

ally the transfer of data must also be considered. Not only do the parameter sizes

increase with the larger versions of the FHE schemes but the number of required mul-

tiplications for encryption also increase; the issue of memory storage and access be-

comes a major issue and it is impossible to store the partial products or intermediate

values within the memory storage on the FPGA. Obviously there is a need to make

use of off-chip memory, which will require careful management so as not to become

the architecture bottleneck.

Table 3. DSP Slices required and estimated timings for large integer multiplier in encryption

step using Comba multiplication at 500 MHz

Size of Scheme: Toy Small Medium Large

No. of multiplications

required in encryption

158 572 2110 7659

Size of required multi-

plier (bits)

936

150000

1476

830000

2016

4200000

2556

19350000

Target multiplier (bits) 944 944 1488 1488 2016 2016 2560 560

No. of DSP slices re-

quired for target multi-

plier

60 94 127 161

Estimation of Clock

Cycles required (multi-

plications not run in

parallel)

1507320

 30002544 558449480

 9320995341

Estimated timing of all

multiplications required

in encryption step (secs)

Published Timing (secs)

of Encryption Step in

[10]

0.05 1 21 435

We give an estimation of the timing for the multiplications required in each of

these four versions using the number of multiplications required, an estimate of the

number of required clock cycles to achieve the target multiplier size and the number

of cycles required to achieve the full size multiplier. We do not consider parallelising

the multiplications in this estimation, although this is possible, as the number of re-

quired DSP slices for the selected target multiplier for all four versions occupies less

than 5% of the target FPGA DSP slices. Furthermore, we do not fully utilise the DSP

slice multiplier of bits; we could extend the bit multiplier to a

 bit unsigned multiplier for example, which would improve performance of

the multiplier. Therefore Table 3 lists conservative estimates. From these results

however, we can still see that the toy size version will fit on an FPGA and this could

be parallelised to give an even better performance. Moreover the estimated timings

for the small, medium and large schemes suggest that a hardware implementation of

FHE could offer significant improvements to the practicality of FHE schemes. Pre-

liminary synthesis results* of a 944 bit multiplier show that it requires 59 DSP48E1s,

and has a latency of 121 clocks: 1 for loading, 60 for multiply accumulate and 60 for

partial product addition and shifting. The overall latency of the multiplier is
 clock cycles, where s is the number of words. To our knowledge, this is one of the

first analyses into the practicality of an FPGA based implementation of crypto primi-

tives for use in FHE schemes.

5 Conclusions

We have considered one of the most important building blocks involved in FHE

schemes, large integer multiplication. We have looked at the Comba multiplication

method and the possibility of targeting DSP48E1 slices on a Xilinx Virtex 7 FPGA to

perform the large integer multiplication to ultimately improve the performance of

FHE schemes. From the preliminary results we establish that the large integer multi-

plication in the encryption step for the toy scheme will fit comfortably on a single

FPGA device. Furthermore the conservatively estimated timings suggest using a

hardware implementation of this multiplication algorithm should improve perfor-

mance of FHE schemes compared to the software implementations, especially for the

larger versions of the FHE schemes [10]. This establishes the potential and justifica-

tion for continuing research into hardware implementations of crypto-primitives, such

as large integer multiplication, to improve the performance and hence the practicality

of FHE schemes. There will however be issues with memory storage with these large

versions of the FHE schemes. As this is a relatively recent area of research, there is a

lot of future work still to be carried out and we are currently pursuing a hardware

implementation of a complete encryption step of a FHE scheme.

References

1. Cloud Industry Forum: UK cloud adoption and trends for 2013,

http://www.cloudindustryforum.org/white-papers/uk-cloud-adoption-and-trends-for-2013

2. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme based on Discrete

Logarithms. IEEE Transactions on Information Theory. 31 (4), 473-481, (1985)

3. Paillier, P.: Public-Key Cryptosystems based on Composite Degree Residuosity Classes.

In: EUROCRYPT. pp. 223-238 (1999)

4. Boneh, D., Goh, E., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In: TCC.

pp. 325-341 (2005)

5. Gentry, C.: A Fully Homomorphic Encryption Scheme. Stanford: PhD Dissertation

(2009)

6. Brakerski, Z., Vaikuntanathan, V.: Efficient Fully Homomorphic Encryption from

*
 Post place and route results are not presented, due to over-mapping of the i/o pins

(standard) LWE. In: FOCS. pp. 97-106 (2011)

7. Gentry, C., Halevi, S., Smart, N. P.: Fully Homomorphic Encryption with Polylog

Overhead. In: EUROCRYPT. pp. 465-482 (2012)

8. Gentry, C., Halevi, S., Smart, N. P.: Homomorphic Evaluation of the AES Circuit. In:

CRYPTO. pp. 850-867 (2012)

9. Gentry, C., Halevi, S.: Implementing Gentry's Fully Homomorphic Encryption Scheme.

In: EUROCRYPT. pp. 129-148 (2011)

10. Coron, J.S., Naccache, D., Tibouchi, M.: Public Key Compression and Modulus

Switching for Fully Homomorphic Encryption over the Integers. In: EUROCRYPT. pp.

446-464 (2012)

11. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic Encryption

over the Integers. In: EUROCRYPT. pp. 24-43 (2010)

12. Coron, J.-S, Tibouchi, M., Naccache, D., Mandal, A.: Fully Homomorphic Encryption

over the Integers with Shorter Public Keys. In: CRYPTO. pp. 487-504 (2011)

13. Cousins, D., Rohloff, K., Peikert, C., Schantz, R.: An update on SIPHER (Scalable

Implementation of Primitives for Homomoprhic EncRyption) - FPGA implementation

using Simulink. In: HPEC. pp.1-5 (2012)

14. Brenner, M., Perl, H. Smith, M.: Practical Applications of Homomorphic Encryption. In:

SECRYPT. pp. 5-14 (2012)

15. Smart, N. P., Vercauteren, F.: Fully Homomorphic Encryption with Relatively Small Key

and Ciphertext Sizes. In: PKC. pp. 420-443 (2010)

16. Göttert, N., Feller, T., Schneider, M., Buchmann, J., Huss, S. A.: On the Design of

Hardware Building Blocks for Modern Lattice-Based Encryption Schemes. In: CHES. pp.

512-529 (2012)

17. Comba, P. G: Exponentiation Cryptosystems on the IBM PC. IBM Systems Journal. 29,

526-538 (1990)

18. Güneysu, T.: Utilizing Hard Cores of Modern FPGA Devices for High-Performance

Cryptography. J. Cryptographic Engineering. 1, 37-55 (2011)

19. Bosselaers, A., Govaerts, R., Vandewalle, J.: Comparison of Three Modular Reduction

Functions. In: CRYPTO. pp. 175-186 (1993)

20. Karatsuba, A., Ofman, Y.: Multiplication of Many-Digit Numbers by Automatic

Computers. Doklady Akad. Nauk SSSR. 145, 293-294 (1962)

21. Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures and

Public-Key Cryptosystems, Communications of the ACM. 21, 120-126 (1978)

22. 7 Series FPGAs Overview, www.xilinx.com (Accessed 28 December 2012)

23. Brenner, M., Perl, H., Smith, M.: How Practical is Homomorphically Encrypted Program

Execution? An Implementation and Performance Evaluation. In: TrustCom. pp. 375-382

(2012)

