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Abstract. The implausibility of the extreme rationality assumptions of Nash
equilibrium has been attested by numerous experimental studies with human
players. In particular, the fundamental social dilemmas such as the Traveler’s
dilemma, the Prisoner’s dilemma, and the Public Goods game demonstrate high
rates of deviation from the unique Nash equilibrium, dependent on the game pa-
rameters or the environment in which the game is played. These results inspired
several attempts to develop suitable solution concepts to more accurately explain
human behaviour. In this line, the recently proposed notion of cooperative equi-
librium, [5], [6], based on the idea that players have a natural attitude to coopera-
tion, has shown promising results for single-shot games. In this paper, we extend
this approach to iterated settings. Specifically, we define the Iterated Cooperative
Equilibrium (ICE) and show it makes statistically precise predictions of popula-
tion average behaviour in the aforementioned domains. Importantly, the definition
of ICE does not involve any free parameters, and so it is fully predictive.

1 Introduction

The standard assumption of economic models that players in strategic situations act
perfectly rationally has been constantly rejected by numerous experiments over the
years. These experiments, typically conducted on the fundamental social dilemmas
such as the Prisoner’s dilemma, the Traveler’s dilemma, and the Public Goods game,
have shown that cooperation between players (associated with the deviation from the
unique, but inefficient, Nash equilibrium) is frequent, and appears to depend on both
the game parameters and the environment in which the game is played. In particular,
it has been observed that the rate of cooperation in the Traveler’s dilemma depends on
the bonus/penalty value, whenever the game is single-shot or iterated [7], [12]; the rate
of cooperation in the Prisoner’s dilemma depends on the payoff parameters or the way
the players are matched to play together [11], [32]; and the rate of cooperation in the
Public Goods game depends on the marginal return or on the frequency of interaction
between free-riders and cooperators [13], [14] [17].

Considerable research efforts have been made in attempt to explain deviations from
Nash equilibria. Some methods developed to this end are based on the idea that hu-
mans have bounded rationality and/or can make mistakes in computations® [4], [9],
[20], [25]; others explain cooperation in terms of evolution [1], [3], [10], [19], [21],

3 See [31] for a recent parallelism among these approaches.



2 Capraro, Venanzi, Polukarov, Jennings

[22], [23], [29]. Finally, much of work has been directed towards defining profoundly
different solution concepts [24], [26], especially in the recent algorithmic game theory
and artificial intelligence communities [2], [8], [15], [16], [18], [27], [30]. This inter-
est is particularly motivated by the emerging applications of human-agent collectives,
where artificial agents interact with humans. To build such systems effectively, it is
highly important to understand and find accurate methods to predict human behaviour.

To this end, a new solution concept, termed cooperative equilibrium, has been re-
cently proposed for one-shot games [5], [6]. This approach is inspired by the aforemen-
tioned experimental findings, which suggest that players are conditionally cooperative—
that is, the same player may act more or less cooperatively in the same game scenario,
depending on the actual payoffs. In other words, humans have an attitude to cooper-
ation by nature: they do not act a priori as single players, but rather forecast how the
game would have been played if they formed coalitions and then select actions accord-
ing to their best forecast. It turns out, that direct implementation of this idea can predict
human behaviour with impressively high precision, as demonstrated in [5], [6] on the
aforementioned social dilemmas.

In this paper, we further explore this direction and extend the cooperatve equilib-
rium approach to iterated settings. Specifically, we define the Iterated Cooperative Equi-
librium (ICE), that combines this concept with some ideas developed in [7] for iterated
games. Importantly, in contrast to other methods, ICE does not use any free parameters,
and thus is fully predictive.

We then evaluate our method on the iterated Traveler’s dilemma, the Prisoner’s
dilemma, and the Public Goods game. To this end, we make use of the experimental
data provided in [7], [32] and [14] for these three domains, respectively.4 Our results
confirm that the ICE makes accurate predictions of population average behaviour in
social dilemmas. In particular, it clearly outperforms the Logit Learning Model (LLM)
developed in [7] for the Traveler’s dilemma.

The paper unfolds as follows. In Section 2 we define the social dilemmas in considera-
tion. In Section 3 we formalise our approach. We then apply it to the iterative Traveler’s
dilemma in Section 4, to the Prisoner’s dilemma in Section 5, and to the Public Goods
game in Section 6. Section 7 concludes with directions for future work.

2 Preliminaries

We start with the definitions of the social dilemmas in consideration of this paper.
Prisoner’s dilemma. Two players can choose to either cooperate (C) or defect (D).
If both players cooperate, each receives the monetary reward, R, for cooperating. If one
player defects and the other cooperates, then the defector receives the temptation payoff,
T, while the other receives the sucker payoff, S. If both players defect, they both receive
the punishment payoff, P. Payoffs are subjected to the condition 7 > R > P > S.
Traveler’s dilemma. Two travelers need to claim for a reimbursement between
L and H monetary units for their (identical) luggage that has been lost by the same

4 These were the only sources we could find that reported sufficient data for our purposes.
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air company. To avoid high claims, the air company employs the following rule: the
traveler who makes a lower claim, say m, gets a reimbursement of m + b monetary
units, and the other one gets a reimbursement of m — b monetary units, for a fixed
value of bonus/penalty, b. If both players claim the same amount, m, then they both get
reimbursed by m monetary units.

Public Goods game. n players receive an initial endowment of y > 0 monetary
units each and simultaneously choose an amount 0 < x; < y to contribute to a public
pool. The total amount in the pot is multiplied by «g and then divided equally among all
group members. Thus, player ¢’s utility is u;(z1,...,2,) =y —z; +a(x1 + ...+ x,),
where o = 2. The number « is termed the constant marginal return and assumed to
belong to the interval (1,1).

3 Iterated Cooperative Equilibrium

We now introduce the concept of iterated cooperative equilibrium for the aforemen-
tioned social dilemmas.

Let G = (N, (Si, u;)ien) be a normal-form game with a set N of n players, and
for all i € N, a finite set of strategies S; and a monetary payoff function u; : S — R,
where S = X jcnS;. As usual, we use —i to denote the set V \ {7} of all players but .
We denote by A(X) the set of probability distributions on a finite set X. Thus, A(.S;)
defines the set of mixed strategies for player ¢ € IV, and his expected payoff from a
mixed strategy profile o is given by u;(0) = > g ui(s)o1(s1) - ... Tn(sn).

The idea behind our approach is as follows. Suppose each agent ¢ simply considers
two possible scenarios: the fully selfish play p,, where players take individual actions
pursuing their private interests, and the fully cooperative play p., where players are
assumed to pursue the collective interest. With each scenario p we associate a value
v;(p), defined as an average v;(p) = e;(p)7:(p) + e;(P)7:(D), where, roughly speaking,

— 7;(p) is the probability that all players follow scenario p, and 7;(p) = 1 — 7;(p) is
the probability that (at least one of) the players —¢ will deviate from p for the sake
of their individual interests, knowing that player ¢ follows scenario p. In particular,
this implies that 7;(ps;) = 0, since a Nash equilibrium cannot be improved by
unilateral deviations;

— ¢;(p) is the payoff of i when scenario p is realised, and e;(p) is the infimum of
gains player ¢ achieves when other players deviate from p.

Then, the values v;(p) determine each player 4’s strategy as follows. Let p} € {ps,p.}
be the scenario that maximises the function v;, and define the induced game G(p})
to be the restriction of G where the set of allowed mixed strategy profiles is given by
{o|u;(c) > v;(p})}. Since this set is convex and compact, the induced game has Nash
equilibria. The cooperative equilibrium is then given by a combination of strategies
where each player 7 plays according to a Nash equilibrium of his induced game.
Formalising this idea is not completely trivial: while the payoffs e; seem straightfor-
ward to define, the probabilities ; are much more delicate, since the event “players —i
deviate from scenario p.” is not measurable in any universal sense. In iterated settings,
we can approach this problem applying a sort of fictitious play. Specifically, we start
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with initial values 7;(p.) = 7;(p:) = 3, and then at each step we update these prob-

abilities using observations made in previous rounds. To this end, we use the standard

method for probabilistic modelling of binary random events based on the beta family

of probability density functions [28]. If in the first round player ¢ has observed coop-

eration, then 7;(p.) grows from % to 2, otherwise it drops from 3 to  and so forth:

that is, if k£ is the number of cooperative plays observed in periods from 1 to ¢ — 1, then
7 )(pc) is updated to ’fill . We now define this procedure in detail.

Let G € {Prisoner’s dilemma, Traveler’s dilemma, Public Goods}. Then, G has a
unique Nash equilibrium, NE(G). Moreover, there is also a unique Pareto optimal strat-
egy profile, OPT'(G).

For each period ¢t > 1, we set vgt) (ps) = u; (NE(G)) and el(-t) (pe) = u; (OPT(G)).
For other parameters, we consider the first and the later rounds separately.

Period 1. We define:

~ el (po) = nf{u;(0)|o; = OPT(G)i;¥j # i, u; (0, OPT(G) ;) > u;(OPT(G))}
1s the infimum payoff that player ¢ obtains when he plays according to the Pareto
optimum, while other players deviate from this profile if the corresponding unilat-
eral deviation weakly improves the payoff to each deviator;

) =7 () = 3 1
0D (pe) = 7V (e (pe) + 70 F)e® (72):

— o2 = maxoD(p), o (o))
- Ind(G,i,1) is the restriction of game G where the set of allowed mixed strategy

profiles is limited to {U\uj (o) > vgl),Vj}.

Period t. We update payoffs e; and probabilities 7; as follows.

— Let o_; be the average of strategies played by players —¢ in periods from 1 to ¢ — 1.
Then, ei” (72) = u;(OPT(G);, 0_);
— Let O'( o) be the strategy played by players — in period s < ¢. We say that O'( Yisa

cooperation if there is a strategy o; # (NE(G)); such that (o;, 0 (S)) is allowed in

Ind(G, 1, s). Let k be the number of cooperations in periods from 1 to ¢ — 1. Then,

k+1
) (pe) = T

(1)( (t)(

pc) =1- T; pc);
(t) (pe), v (t) and Ind(G, i, t) are determined analogously to Period 1.

Given this, we can now make the following definition.

Definition 1. The iterated cooperative equilibrium (ICE) of game G in period ¢ is a
strategy profile o where strategy o; for each player ¢« € N corresponds to the strategy
he plays in the Nash equilibrium of the induced game Ind(G, i, t).

4 Traveler’s Dilemma

In this section, we demonstrate the predictive power of cooperative equilibrium on the
iterated Traveler’s dilemma. We make use of the experimental data provided by Capra-
Goeree-Gomez-Holt in [7] for the setting with L = 80 and H = 200, and compare ICE
predictions with the logit learning model (LLM), proposed in [7] to explain these data.
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There are two main differences between the LLM and ICE we would like to stress:

— First, as have been previously mentioned, ICE does not use any free parameter,
while the LLM involves two free parameters, a learning parameter and a error
parameter. In other words, ICE is a predictive model, and the LMM is descriptive.

— Second, the models are different conceptually. ICE applies the idea that people
have an attitude to cooperation: they do not act a priori as single players, but rather
forecast how the game would be played if they formed coalitions, and then play
according to their best forecast. In contrast, the LLM assumes selfish, individual
decisions, and explains deviations from Nash equilibrium in terms of mistakes.

We now proceed to compare between the ICE and the LLM predictions, based on the
experimental data collected in [7]. In this experiment, groups of 9, 10 and 12 sub-
jects played a 10 rounds Traveler’s dilemma with low (b € {5,10}), intermediate
(b € {20,25}) or high (b € {50,80}) bonus/penalty values. After each round, the
subjects’ claims were casually matched to determine their payoffs. In this paper, we ex-
clude the case with b = 10 since it involved an odd number of participants (9 players),
and so at each turn one player remained unmatched and his payoff was not determined;
we therefore cannot compute the ICE in this case. Following [7], the LLM predictions
are calculated using the values p = 0.75 and ¢ = 10.9 for the learning/error parameters.

Recall that the Traveler’s dilemma has a unique Nash equilibrium where each player
chooses the minimal claim of L = 80, whichever is the value of bonus/penalty, b. The
results in [7] show that in practice the players’ behaviour is not independent of the
value of b. Indeed, when the bonus/penalty value is low, the players tend to make very
high claims, especially in the last rounds; this to some extent is supported by the logit
learning model proposed in [7]. However, as can be seen from Table 1 and Figure 1, for
b = 5 the ICE predicted values fall much closer to the average observed claims than the
LLM predictions.

200

. Average ICE LLM
Period
observed claim prediction prediction 19

1 180.08 195.00  167.75 o

2 180.00 182.06 175.09 185

3 185.30 185.77 179.53 180

4 191.34 188.15 181.88 osl

5 194.98 190.03 183.81 jszcv;’age observed claim

6 196.62 191.35 185.14 o X UM

7 196.86 192.70 186.32 o

8 196.68 193.34 186.82 Period

190 igigi igjgg }g;g(z) Fig. 1: ICE vs. LLM for b = 5. The solid
: : : line corresponds to the actual data. The ICE

predictions are represented by the dashed
Table 1: Observed and predicted claims in Trav-  line, and the LLM predicted values are de-
eler’s dilemma with low bonus/penalty of b = 5. picted by the dotted line.

Table 2 and Figure 2 below present the data and predictions for the two cases with
intermediate bonus/penalty values of b = 20 and b = 25. For b = 20, ICE again clearly
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b=20 b=25
Period|  Average ICE LLM Average ICE LLM
observed claim prediction prediction|observed claim prediction prediction
1 131.20 180.00  152.64 139.96 175.00  146.60
2 127.20 13453  151.32 137.59 134.68  145.77
3 128.35 13557  150.63 159.90 137.94  146.73
4 108.70 133.02  148.74 154.27 146.38  150.66
5 103.30 125.69  144.38 146.49 150.19  151.17
6 117.30 120.66  142.55 161.44 148.51  147.84
7 105.80 119.37  145.71 151.88 150.65  150.60
8 117.30 117.60  146.60 139.12 150.99 14947
9 119.20 117.73  146.82 132.09 147.04 14274
10 119.20 117.66  149.14 143.04 143.62  135.32

Table 2: Observed and predicted claims in Traveler’s dilemma with intermediate bonus/penalty.

outperforms the LLM, as shown in Figure 2a. For b = 25, the two models show similar
performance: ICE is closer to the actual average claim in periods 2, 5, 6, 7 and 10,
while the LLM performs better in periods 1, 3, 4, 8, and 9 (see Figure 2b). Note that the
observed data in this case is very noisy, with no clear tendency towards higher or lower
claims across the rounds of the experiment.

\ —B— Average observed claim I\ —B— Average observed claim
1701 -A-icE R -4 -ce

\ XM ! X LM
160} 85

150

1 2 3 4 5
Period Period

6 7 8 9 10
(a)b=20 b)b=25

Fig. 2: ICE vs. LLM in Traveler’s dilemma for b € {20, 25}. Solid lines correspond to the actual
data. The ICE predictions are represented by dashed lines, and the LLM predicted values are
depicted by dotted lines.

As the bonus/penalty values get higher, the players reduce their claims, and actually
converge to the Nash equilibrium solution in the last rounds of the experiment for high
b (see Table 3 and Figure 3). While both ICE and the LLM capture this tendency, yet
again, the ICE predictions appear to be closer to the experimental data.

In conclusion, the ICE model is much more accurate than the LLM in the prediction
of population average behaviour in the Traveler’s dilemma. Next we show that it can
be successfully applied to other relevant social dilemmas, such as in fact the Prisoner’s
dilemma and the Public Goods game.



Cooperative Equilibria in Iterated Social Dilemmas 7

b =50 b =80
Period|  Average ICE LLM Average ICE LLM
observed claim prediction prediction|observed claim prediction prediction
1 155.86 150.00 117.17 120.07 120.00 98.04
2 125.37 122.15 130.95 112.18 103.33 103.38
3 125.77 121.66 121.63 106.16 101.66 103.26
4 109.13 119.06 117.15 88.75 93.55 92.43
5 89.47 114.75 106.95 85.00 91.66 92.23
6 102.26 106.46 95.13 84.91 85.71 88.44
7 101.68 100.67 101.74 82.41 83.33 85.79
8 84.38 96.99 108.54 81.58 82.96 83.77
9 82.00 91.43 105.42 80.00 80.00 83.35
10 88.27 88.27 100.63 80.00 80.00 83.34

Table 3: Observed and predicted claims in Traveler’s dilemma with high bonus/penalty.

—8— Average observed claim —&— Average observed claim
1504 -A-IcE 1200 -A-ice

R X LLM v X LM
140} \ "sy \
1MoL\
130
105
120
100 -
110 o

100 90|

90 85 |

80 80

Period Period

(2) b =50 (b) b =80

Fig. 3: ICE vs. LLM in Traveler’s dilemma for b € {50, 80}. Solid lines correspond to the actual
data. The ICE predictions are represented by dashed lines, and the LLM predicted values are
depicted by dotted lines.

5 Prisoner’s Dilemma

In this section, we test our method on the iterated Prisoner’s dilemma, using the exper-
imental data provided by Yang-Yue-Yu in [32]. Although it is a dominant strategy for
each player to defect, irrespective of payoffs or any other factors, human behaviours ob-
served in experimental studies show considerable rates of cooperation, which appear to
depend on game parameters or the environment in which it is played. The study in [32]
is particularly focused on the way the players are matched to play together. This fea-
ture is crucial since different matching rules entail different histories for a player, and
hence, different beliefs regarding his opponents’ play. These, in turn, ultimately reflect
on the player’s strategic decisions. Therefore, it is of great importance to provide pre-
diction methods that would achieve robust performance in different environments. As
we show, ICE can successfully tackle this challenge.
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The experiment involved 70 subjects that played a 25 rounds Prisoner’s dilemma
with payoffs parameters 7' = 12, R = 8, D = 3 and S = 1, under different matching
schemes. Specifically, it included the following treatments: (i) the random matching
(RM) where subjects were randomly paired in each period; (ii) the one-period corre-
lated matching (OP) where subjects who have selected identical strategies in a given
round are randomly paired with one another in the next period; and (iii) weighted-
history correlated matching (WH) where, after every round, subjects are matched with
a player who has been choosing similar strategies in the previous five periods. In more
detail, the history is weighted using Fibonacci numbers as follows. Each subject starts
with a sorting score T'(t) = 0, for all ¢ < 1. At each round ¢, his score is updated to
T(t) = ba(t — 1) + 3a(t — 2) + 2a(t — 3) + la(t — 4) + la(t — 5), where a(s) is 0
if he plays defection in period s, and 1 otherwise. In each period, subjects are paired in
the order of their current scores.

Table 4 and Figure 4 summarise the data collected in this experiment, along with
the corresponding values of iterated cooperative equilibrium. As these results demon-
strate, ICE accurately predicts the players’ behaviour in Prisoner’s dilemma, especially
for cases with correlated matching (see Figures 4b and 4c). In the case where the play-
ers were matched randomly (Figure 4a), the ICE predictions in the last rounds of the
experiment appear slightly more pessimistic than the actual data, which is implied by
relatively high rates of defection observed in the intermediate rounds.

& —B— Observed % of defecton 8Srdy & —B— Observed % of defecton oy —8—Observed % of defecon
=& ICE % of defection v =B (CE % of defection = ICE % of defection
5 10 15 20 5 5 0 15 20 5 5 15 20 5
Period Period Period
(a) RM treatment (b) OP treatment (C) WH treatment

Fig. 4: ICE in Prisoner’s dilemma. Solid lines correspond to the actual data. The ICE predictions
are represented by dashed lines.

6 Public Goods Game

In this section, we use ICE predictions to explain the experimental data on multi-round
Public Goods game presented by Gunnthorsdottir-Houser-McCabe in [14].

The experiment consisted of three treatments with different constant marginal re-
turns of = 0.3, a = 0.5, and o = 0.75. The first and the third treatment involved 36
subjects each, and 60 subjects participated in the second treatment. The subjects played
a 10 rounds Public Goods game in groups of 4, to which they were randomly matched
in each round.

The average observed contributions and the corresponding ICE predictions for the
first treatment with o = 0.3 are given in Table 5 and Figure 5.
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RM OP WH
Period|Observed % ICE % of|Observed % ICE % of|Observed % ICE % of
of defection defection |of defection defection|of defection defection
1 71.43 77.07 64.29 77.06 61.42 77.06
2 70.00 67.97 70.00 61.18 65.71 58.46
3 72.86 68.59 71.43 64.80 68.57 61.31
4 81.43 69.22 78.57 66.29 70.00 63.11
5 78.57 73.31 80.00 70.16 70.00 65.22
6 77.14 75.66 81.43 73.07 77.14 66.65
7 82.86 77.00 75.71 75.94 70.00 69.47
8 84.29 78.99 85.71 77.06 65.71 70.15
9 70.00 81.21 78.57 79.46 68.57 70.74
10 78.57 80.87 81.43 80.17 77.14 71.22
11 78.57 81.51 75.71 81.28 80.00 72.51
12 84.29 82.18 75.71 81.62 77.14 73.93
13 77.14 83.31 77.14 82.04 68.57 74.97
14 84.29 83.85 71.43 82.62 72.85 74.76
15 80.00 84.82 68.57 82.68 71.42 75.24
16 81.43 85.29 70.00 82.13 74.28 75.50
17 84.29 86.00 77.14 81.49 68.57 75.67
18 81.43 86.58 81.43 81.74 65.71 75.52
19 77.14 86.92 77.14 82.28 74.28 75.05
20 78.57 87.00 81.43 82.36 71.42 75.41
21 74.29 87.22 75.71 82.98 74.28 75.79
22 80.00 86.91 75.71 83.04 77.14 76.18
23 81.43 87.18 74.29 83.14 72.85 76.55
24 78.57 87.41 81.43 83.12 75.71 76.70
25 78.57 87.56 85.71 83.52 84.28 77.08

Table 4: Observed and predicted behaviour in iterated Prisoner’s dilemma.

Average
Period| observed Standard ICE %0 S —
—8— Average observed contribution
contribution deviation prediction s g o prodiclod contribution
1 41.00 18.92 0.00 N
2 29.36 18.11 18.50 ol N\
3 3189 17.89  15.86 ) N
4 27.80 2055  17.37 ARSI N
5 16.97 15.24 11.09 " J Tha ;‘:i—jﬂ\\;'a
6 10.50 9.80 7.24 i <
7 10.33 8.10 5.16 B T e S S ]
8 791 5.45 4.42 Period
]90 461;3 9451‘]1 }'56 Fig. 5: ICE in Public Goods with o = 0.3.
) 7. 17 The actual data are represented by the solid

line. The shaded area shows the standard
Table 5: Observed and predicted contributions in deviation. The dashed line corresponds to
Public Goods with marginal return of o = 0.3. the ICE predictions.
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The data are very heterogenous — note the high rates of standard deviation. This is
reflected on the fact that the ICE’s predictions in this setting seem less accurate than in
previously considered domains. Notice, however, that in all game rounds (except of the
very first one where the players beliefs are yet completely fictitious), the ICE values fall
within the standard deviation interval and their error decreases as the number of peri-
ods increases. Similar performance is also showed in treatments with higher marginal
returns, presented in Table 6 and Figure 6.

a=0.5 a=0.75
Period| Observed Standard ICE | Observed Standard ICE
contribution deviation prediction|contribution deviation prediction
1 55.48 19.77 25 65.00 17.47 43.75
2 58.88 20.69 74.31 62.08 17.67 84.01
3 55.83 22.09 69.57 71.11 13.53 79.29
4 49.03 22.06 64.62 67.78 14.76 78.97
5 42.16 21.67 59.67 67.02 15.64 78.07
6 44.16 21.29 54.75 63.02 14.88 77.18
7 42.33 19.84 53.10 57.16 19.47 75.48
8 35.38 22.17 50.86 54.02 21.46 73.40
9 31.60 22.72 48.94 54.52 18.26 71.56
10 31.10 17.93 45.53 57.78 24.12 69.81

Table 6: Observed and predicted contributions in Public Goods with constant marginal returns of
o =0.5,0.75.

—e— Average observed contribution 40 o Average observed contribution
10- 4~ |CE predicted contribution - -2—|CE predicted contribution
I Standard deviation Il Standard deviation
0 30
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Period Period
(a) a=0.5 b)a=0.75

Fig. 6: ICE in Public Goods with o« = 0.5,0.75. The actual data are represented by solid lines.
Shaded areas show the standard deviation. Dashed lines correspond to the ICE predictions.
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7 Conclusions

In this paper, we introduced the Iterated Cooperative Equilibrium (ICE) which extends
the approach of players’ natural attitude to cooperation to games played in iterated
fashion. In each round, the players forecast how the game would be played if they
formed coalitions, and select their actions accordingly. The beliefs are initially defined
through a sort of fictitious play, and then get updated at each step of the game, based on
previous observations. We applied this concept to three fundamental social dilemmas:
the Prisoner’s dilemma, the Traveler’s dilemma, and the Public Goods game. The novel
and most important features of the ICE is that (1) it does not use any free parameters and
so it is completely predictive; (2) it makes statistically precise predictions of population
average behaviour in the aforementioned domains.

This work opens a number of research directions, from the extension of the ICE to
include other relevant game models to theoretical questions concerning, for instance,
convergence of the iterative procedure. Regarding the latter point, one can easily see
that the ICE can converge only to one of Rabin’s fairness equilibria [24]: in the Trav-
eler’s dilemma, ICE can converge either to (200, 200) or to (80, 80); in the Prisoner’s
dilemma, ICE can converge either to (C,C) or to (D, D). But can actual human be-
haviour converge to a different strategy? The intuition suggests that the answer to this
question is negative and that, in general, human behaviour may not converge at all.
Indeed, if a player in the Traveler’s dilemma would know that his opponent plays an
intermediate strategy, say s = 175, then he would either reduce his claim to achieve
a larger gain (which would finally lead the players to the Nash equilibrium), or rather
decide to increase it to show his opponent that they both can gain more. This way of
reasoning generates an oscillation, that is perfectly coherent with and reflected by ICE.

Finally, it would also be interesting to try and combine ICE with evolutionary mod-
els, in order to tackle the “cold start” effect—i.e., inaccurate predictions in early itera-
tions. Indeed, ICE typically starts showing high performance only after a few rounds of
iteration, since players have to form statistically robust beliefs. Now, in [19] the authors
use an evolutionary model to explain the experimental data in the first two periods of
iterated Traveler’s dilemma presented in [7]. So, it is plausible that a clever combination
of ICE with evolutionary models can fit the experimental data even better.
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