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Abstract. Adoption or rejection of ideas, products, and technologiesin a soci-
ety is often governed by simultaneous propagation of positive and negative in-
fluences. Consider a planner trying to introduce an idea in different parts of a
society at different times. How should the planner design a schedule considering
this fact that positive reaction to the idea in early areas has a positive impact on
probability of success in later areas, whereas a flopped reaction has exactly the
opposite impact? We generalize a well-known economic modelwhich has been
recently used by Chierichetti, Kleinberg, and Panconesi (ACM EC’12). In this
model the reaction of each area is determined by its initial preference and the
reaction of early areas. We model the society by a graph whereeach node repre-
sents a group of people with the same preferences. We consider a full propagation
setting where news and influences propagate between every two areas. We gen-
eralize previous works by studying the problem when people in different areas
have various behaviors.
We first prove, independent of the planner’s schedule, influences help (resp., hurt)
the planner to propagate her idea if it is an appealing (resp., unappealing) idea.
We also study the problem of designing the optimal non-adaptive spreading strat-
egy. In the non-adaptive spreading strategy, the schedule is fixed at the beginning
and is never changed. Whereas, in adaptive spreading strategy the planner decides
about the next move based on the current state of the cascade.We demonstrate
that it is hard to propose a non-adaptive spreading strategyin general. Never-
theless, we propose an algorithm to find the best non-adaptive spreading strat-
egy when probabilities of different behaviors of people in various areas drawn
i.i.d from an unknown distribution. Then, we consider the influence propagation
phenomenon when the underlying influence network can be any arbitrary graph.
We show it is#P -complete to compute the expected number of adopters for a
given spreading strategy. However, we design a polynomial-time algorithm for
the problem of computing the expected number of adopters fora given schedule
in the full propagation setting. Last but not least, we give apolynomial-time algo-
rithm for designing an optimal adaptive spreading strategyin the full propagation
setting.

Keywords: Influence Maximization, Scheduling, Spreading Strategy, Algorithm.

1 Introduction

People’s opinions are usually formed by their friends’ opinions. Whenever a new con-
cept is introduced into a society, the high correlation between people’s reactions initiates
an influence propagation. Under this propagation, the problem of promoting a product
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or an opinion depends on the problem of directing the flow of influences. As a result, a
planner can develop a new idea by controlling the flow of influences in a desired way.
Although there have been many attempts to understand the behavior of influence propa-
gation in a social network, the topic is still controversialdue to lack of reliable informa-
tion and complex behavior of this phenomenon. For example, one compelling approach
is “seeding” which was introduced by the seminal work of Kempe, Kleinberg, and Tra-
dos [1] and is well-studied in the literature [1,2,3]. The idea is to influence a group of
people in the initial investment period and spread the desired opinion in the ultimate ex-
ploitation phase. Another approach is to use time-varying and customer-specific prices
to propagate the product (see e.g., [4,5,6]). All of these papers investigate the influence
propagation problem when only positive influences spread into the network. However,
in many real world applications people are affected by both positive and negative influ-
ences, e.g., when both consenting and dissenting opinions broadcast simultaneously.

We generalize a well-known economic model introduced by Arthur [7]. This model
has been recently used by Chierichetti, Kleinberg, and Panconesi [8]. Assume an orga-
nization is going to develop a new idea in a society where the people in the society are
grouped inton different areas. Each area consists of people living near each other with
almost the same preferences. The planner schedules to introduce a new idea in different
areas at different times. Each area may accept or reject the original idea. Since areas
are varied and effects of early decisions boost during the diffusion, a schedule-based
strategy affects the spread of influences. This framework closely matches to various
applications from economics to social science to public health where the original idea
could be a new product, a new technology, or a new belief.

Consider the spread of two opposing influences simultaneously. Both positive and
adverse reactions to a single idea originate different flowsof influences simultaneously.
In this model, each area has aninitial preferenceof Y orN . The initial preference of
Y (N ) means the area will accept (decline) the original idea whenthere are no network
externalities. Letci be a non-negative number indicating how reaction of people in areai
depends on the others’. We callci thethresholdof areai. Assume the planner introduced
the idea in areai at times. Let mY andmN be the number of areas which accept or
reject the idea before times. If |mY −mN | ≥ ci the people in areai decide based on
the majority of previous adopters. It means they adopt the idea ifmY −mN ≥ ci and
drop it if mN −mY ≥ ci. Otherwise, if|mY −mN | < ci the people in areai accept or
reject the idea if the initial preference of areai isY orN respectively. The planner does
not know exact initial preferences and has only prior knowledge about them. Formally
speaking, for areai the planner knows the initial preference of areai will be Y with
probabilitypi and will beN with probability1 − pi. We callpi the initial acceptance
probabilityof areai.

We consider the problem when the planner classifies different areas into various
types. The classification is based on the planner’s knowledge about the reaction of peo-
ple living in each area. Hence, the classification is based ondifferent features, e.g.,
preferences, beliefs, education, and age such that people in areas with the same type
react almost the same to the new idea. It means all areas of thesame type have the same
thresholdci and the same initial acceptance probabilitypi. It is worth mentioning pre-
vious works only consider the problem when all areas have thesame type, i.e., allpi’s
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andci’s are the same [7,8]. The planner wants to manage the flow of influences, and her
spreading strategyis a permutationπ over different areas. Her goal is to find a spread-
ing strategyπ which maximizes the expected number of adopters. We consider both
adaptiveandnon-adaptivespreading strategies in this paper. In the adaptive spreading
strategy, the planner can see results of earlier areas for further decisions. On the other
hand, in the non-adaptive spreading strategy the planner decides about the permutation
in advance. We show the effect of a spreading strategy on the number of adopters with
an example in Appendix A.

1.1 Related Work

We are motivated by a series of well-known studies in economics and politics literature
in order to model people’s behavior [7,9,10,11]. Arthur first proposed a framework
to analyze people’s behavior in a scenario with two competing products [7]. In this
model people are going to decide about one of two competing products alternatively. He
studied the problem when people are affected by all previouscustomers, and the planner
has the same prior knowledge about people’s behavior, i.e.,people have the same types.
He demonstrated that a cascade of influences is formed when products have positive
network externalities, and early decisions determine the ultimate outcome of the market.
It has been showed the same cascade arises when people look atearlier decisions, not
because of network externalities, but because they have limited information themselves
or even have bounded rationality to process all available data [9,10].

Chierichetti, Kleinberg, and Panconesi argued when relations between people form
an arbitrary network, the outcome of an influence propagation highly depends on the or-
der in which people make their decisions [8]. In this setting, a potential spreading strat-
egy is an ordering of decision makers. They studied the problem of finding a spreading
strategy which maximizes the expected number of adopters when people have the same
type, i.e., people have the same thresholdc and the same initial acceptance probability
p. They proved for anyn-node graph there is an adaptive spreading strategy with at least
O(npc) adopters. They also showed for anyn-node graph all non-adaptive spreading
strategies result in at least (resp. at most)n

2 if initial acceptance probability is less (resp.
greater) than12 . They considered the problem on an arbitrary graph when nodes have
the same type. While we mainly study the problem on a completegraph when nodes
have various types, we improve their result in our setting and show the expected number
of adopters for all adaptive spreading strategies is at least (resp. at most)np if initial
acceptance probability isp ≥ 1

2 (resp.p ≤ 1
2 ). We also show the problem of designing

the best spreading strategy is hard on an arbitrary graph with several types of customers.
We prove it is#P -complete to compute the expected number of adopters for a given
spreading strategy.

The problem of designing an appropriate marketing strategybased on network ex-
ternalities has been studied extensively in the computer science literature. For example,
Kempe, Kleinberg, and Tardos [1] studied the following question in their seminal work:
How can we influence a group of people in an investment phase inorder to propagate an
idea in the exploitation phase? This question was introduced by Domingos and Richard-
son [12]. The answer to this question leads to a marketing strategy based on seeding.
There are several papers that study the same problem from an algorithmic point of view,
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e.g., [2,3,13]. Hartline, Mirrokni, and Sundararajan [6] also proposed another market-
ing strategy based on scheduling for selling a product. Their marketing strategy is a
permutationπ over customers and pricepi for customeri. The seller offers the product
with pricepi to customeri at timet wheret = π−1(i). The goal is to find a marketing
strategy which maximizes the profit of the seller. This approach is followed by several
works, e.g., [4,5,14]. These papers study the behavior of aninfluence propagation when
there is only one flow on influences in the network. In this paper, we study the problem
of designing a spreading strategy when both negative and positive influences propagate
simultaneously.

The propagation of competitive influences has been studied in the literature (See
[15] and its references). These works studied the influence propagation problem in the
presence of competing influences, i.e., when two or more competing firms try to propa-
gate their products at the same time. However we study the problem of influence prop-
agation when there exist both positive and negative reactions to the same idea. There
are also studies which consider the influence propagation problem in the presence of
positive and negative influences [16,17]. Che et al. [16] usea variant of the indepen-
dent cascade model introduced in [1]. They model negative influences by allowing each
person to flips her idea with a given probabilityq. Li et al. [17] model the negative in-
fluences by negative edges in the graph. Although they study the same problem, we use
different models to capture behavior of people.

1.2 Our Results

We analyze an influence propagation phenomenon where two opposing flows of influ-
ences propagate through a social network. As a result, a mistake in the selection of
early areas may result in propagation of negative influences. Therefore a good under-
standing of influence propagation dynamics seems necessaryto analyze the properties
of a spreading strategy. Besides the previous papers which have studied the problem
with just one type [7,8], we consider the scheduling problemwith various types. Also,
we mainly study the problem in afull propagationsetting as it matches well to our
motivations. In the full propagation setting news and influences propagate between ev-
ery two areas. One can imagine how internet, media, and electronic devices broadcast
news and influences from everywhere to everywhere. In thepartial propagationsetting
news and influences do not necessarily propagate between every two areas. In the par-
tial propagation setting the society can be modeled with a graph, where there is an edge
from areai to areaj if and only if influences propagate from areai to areaj.

Our main focus is to analyze the problem when the planner chooses a non-adaptive
spreading strategy. Consider an arbitrary non-adaptive spreading strategy when initial
preferences of all areas arep. The expected number of adopters is exactlynp if all areas
decide independently. We demonstrate that in the presence of network influences, the
expected number of adopters is greater/less thannp if initial acceptance probabilityp
is greater/less than12 . These results have a bold message:The influence propagation
is an amplifier for an appealing idea and an attenuator for an unappealing idea.
Chierichetti, Kleinberg, and Panconesi [8] studied the problem on an arbitrary graph
with only one type. They proved the number of adopters is greater/less thann2 if initial
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acceptance probabilityp is greater/less than12 . Theorem 1 improves their result fromn2
to np in our setting. All missing proofs are in the full version of the paper.

Theorem 1. Consider an arbitrary non-adaptive spreading strategyπ in the full prop-
agation setting. Assume all initial acceptance probabilities are equal top. If p ≥ 1

2 ,
then the expected number of adopters is at leastnp. Furthermore, Ifp ≤ 1

2 , then the
expected number of adopters is at mostnp.

Chierichetti, Kleinberg, and Panconesi [8] studied the problem of designing an op-
timum spreading strategy in the partial propagation setting. They design an approxima-
tion algorithm for the problem when the planner has the same prior knowledge about
all areas, i.e., all areas have the same type. We study the same problem with more than
one type. We first consider the problem in the full propagation setting. One approach
is to consider a non-adaptive spreading strategy with a constant number of switches
between different types. The planner has the same prior knowledge about areas with
the same type. It means areas with the same type are identicalfor the planner. Thus
any spreading strategy can be specified by types of areas rather than areas themselves.
Let τ(i) be the type of areai andτ(π) be the sequence of types for spreading strategy
π. For a given spreading strategyπ a switch is a positionk in the sequence such that
τ(π(k)) 6= τ(π(k + 1)). As an example consider a society with4 areas. Areas1 and2
are of type1. Areas3 and4 are of type2. Then spreading strategyπ1 = (1, 2, 3, 4)with
τ(π1) = (1, 1, 2, 2) has a switch at position2 and spreading strategyπ2 = (1, 3, 2, 4)
with τ(π2) = (1, 2, 1, 2) has switches at positions1, 2, and3.

Theorem 2. A σ-switch spreading strategy is a spreading strategy with at most σ
switches. For any constantσ, there exists a society with areas of two types such that
noσ-switch spreading strategy is optimal.

We construct a society withn areas withn
2 areas of type1 and n

2 areas of type
2. We demonstrate an optimal non-adaptive spreading strategy should switch at least
Ω(n) times. It means no switch-based non-adaptive spreading strategy can be optimal.
We prove Theorem 2 formally in Appendix B.

On the positive side, we analyze the problem when thresholdsare drawn indepen-
dently from an unknown distribution and initial acceptanceprobabilities are arbitrary
numbers. We characterize the optimal non-adaptive spreading strategy in this case.

Theorem 3. Assume that the planner’s prior knowledge about all values of ci’s is the
same, i.e., allci’s are drawn independently from the same but unknown distribution.
Let initial acceptance probabilities be arbitrary numbers. Then, the best non-adaptive
spreading strategy is to order all areas in non-increasing order of their initial accep-
tance probabilities.

We also study the problem of designing the optimum spreadingstrategy in the par-
tial propagation setting with more than one types. We show itis hard to determine
the expected number of adopters for a given spreading strategy. Formally speaking,
we show it is#P -complete to compute the expected number of adopters for a given
spreading strategyπ in the partial propagation setting with more than one type. This
is another evidence to show the influence propagation is morecomplicated with more
than one type. We prove Theorem 4 based on a reduction from a variation of thenetwork
reliability problem in Appendix C.
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Theorem 4. In the partial propagation setting, it is#P -complete to compute the ex-
pected number of adopters for a given non-adaptive spreading strategyπ.

We also present a polynomial-time algorithm to compute the expected number of
adopters for a given non-adaptive spreading strategy in a full propagation setting. We
design an algorithm in order to simulate the amount of propagation for a given spreading
strategy in Appendix D.

Theorem 5. Consider a full propagation setting. The expected number ofadopter can
be computed in polynomial time for a given non-adaptive spreading strategyπ.

At last we study the problem of designing the best adaptive spreading strategy. We
overcome the hardness of the problem and design a polynomial-time algorithm to find
the best adaptive marketing strategy in the following theorem. We describe the algo-
rithm precisely in Appendix E.

Theorem 6. A polynomial-time algorithm finds the best adaptive spreading strategy
for a society with a constant number of types.

2 Notation and Preliminaries

In this section we define basic concepts and notation used throughout this paper. We
first formally define the spread of influence through a networkas a stochastic pro-
cess and then give the intuition behind the formal notation.We are given a graph
G = (V,E) with thresholds,cv ∈ Z>0, ∀v ∈ V and initial acceptance probabilities
pv ∈ [0, 1], ∀v ∈ V . Let |V | = n. Let dv be the degree of vertexv. Let N(v) be the
set of neighboring vertices ofv. Let c be the vector(c1, . . . , cn) andp be the vector
(p1, . . . , pn). Given a graphG = (V,E) and a permutationπ : V 7→ V , we define a
discrete stochastic process,IS (Influence Spread) as an ordered set of random variables
(X1, X2, . . . , Xn), whereXt ∈ Ω = {−1, 0, 1}n, ∀t ∈ {1, . . . , n}. The random vari-
ableXt

v denotes decision of areav at timet. If it has not yet been scheduled,Xt
v = 0.

If it accepts the idea thenXt
v = 1, and if it rejects the idea thenXt

v = −1. Note that

Xt
v = 0 iff t < π−1(v). LetD(v) =

∑

u∈N(v) X
π−1(v)
u be the sum of decision’s ofv’s

neighbors. For simplicity in notation, we denoteXn
v byXv.

We now briefly explain the intuition behind the notation. Theinput graph models
the influence network of areas on which we want to schedule a cascade, with each
vertex representing an area. There is an edge between two vertices if two corresponding
areas influence each others decision. The influence spread process models the spread of
idea acceptance and rejection for a given spreading strategy. The permutationπ maps
a position in spreading strategy to an area inV . For example,π(1) = v implies thatv
is the first area to be scheduled. Once the areav is given a chance to accept or reject

the idea at timeπ−1(v), Xπ−1(v)
v is assigned a value based onv’s decision and at all

timest afterπ−1(v), Xt
v = X

π−1(v)
v . The random variableXv denotes whether an area

v accepted or rejected the idea. We note thatXt
v = Xv, ∀t ≥ π−1(v). The random

variableXt is complete snapshot of the cascade process at timet. The variableD(v) is
the decision variable forv. It denotes the sum of decisions ofv’s neighbors at the time
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v is scheduled in the cascade and it determines whetherv decides to follow the majority
decision or whetherv decides based on its initial acceptance probability. The random
variableIt is the sum of decisions of all areas at timet. Thus,In is the variable we are
interested in as it denotes the difference between number ofpeople who accept the idea
and people who reject the idea.

Let v = π(t). GivenXt−1, Xt is defined as follows:

– Every area decides to accept or reject the idea exactly once when it is scheduled
and its decision remains the same at all later times. Therefore∀i 6= π(t):

• Xt
i = Xt−1

i

– Decision of areav is based on decision of previous areas if its threshold is reached.

• Xt
v = 1 if D(v) ≥ cv

• Xt
v = −1 if D(v) ≤ −cv

– If threshold of areav is not reached, then it decides to accept the idea with proba-
bility pv, its initial acceptance probability, and decides to rejectit with probability
1− pv.

In partial propagation setting, we represent such a stochastic process by tupleIS =
(G, c,p, π). For full propagation setting, the underlying graph is a complete graph and
hence we can denote the process by(c,p, π). Whenc andp are clear from context, we
denote the process simply by spreading strategy,π. We define random variableIt =
∑

v∈V Xt
v. We denote byqv = 1 − pv the probability thatv rejects the idea based on

initial preference. We denote byPr(A; IS), the probability of eventA occurring under
stochastic processIS. Similarly, we denote byE(z; IS), the expected value of random
variablez under the stochastic processIS.

3 A Bound on Spread of Appealing and Unappealing Ideas

Lets call an idea unappealing if its initial acceptance probability for all areas isp for
somep ≤ 1

2 . We prove in this section, that for such ideas, no strategy can boost the
acceptance probability for any area abovep. We note that exactly the opposite argument
can be made whenp ≥ 1

2 is the initial acceptance probability of all areas, i.e., any
spreading strategy guarantees that every area accepts the idea with probability of at
leastp.

Theorem 1. Consider an arbitrary non-adaptive spreading strategyπ in the full prop-
agation setting. Assume all initial acceptance probabilities are equal top. If p ≥ 1

2 ,
then the expected number of adopters is at leastnp. Furthermore, Ifp ≤ 1

2 , then the
expected number of adopters is at mostnp.

Proof. We prove this result for the case whenp ≤ 1
2 . The other case (p ≤ 1

2 ) follows
from symmetry. To avoid confusion, we letp0 = p and usep0 instead of the real
numberp throughout this proof. If we prove that any given area accepts the idea with
probability of at mostp0, then from linearity of expectation, we are done. Consider an
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areav scheduled at timet + 1. The probability that the area accepts or rejects the idea
is given by

Pr(Xv = 1) =p0(1− Pr(It ≥ cv)− Pr(It ≤ −cv)) + Pr(It ≥ cv),

P r(Xv = −1) =(1− p0)(1 − Pr(It ≥ cv)− Pr(It ≤ −cv)) + Pr(It ≤ −cv).

SincePr(Xv = 1) + Pr(Xv = −1) = 1, if we prove that Pr(Xv=1)
Pr(Xv=−1) ≤

p0

1−p0
, then

we havePr(Xv = 1) ≤ p0. We have

Pr(Xv = 1)

Pr(Xv = −1)
=

p0(1 − Pr(It ≥ cv)− Pr(It ≤ −cv)) + Pr(It ≥ cv)

(1 − p0)(1− Pr(It ≥ cv)− Pr(It ≤ −cv)) + Pr(It ≤ −cv)
.

We have:

p0(1− Pr(It ≥ cv)− Pr(It ≤ −cv))

(1− p0)(1 − Pr(It ≥ cv)− Pr(It ≤ −cv))
=

p0

1− p0
.

We know that for anya, b, c, d, e ∈ R>0, if a
b
≤ e and c

d
≤ e then

a+ c

b + d
≤ e. (1)

Therefore, if we prove thatPr(It≥cv)
Pr(It≤−cv)

≤ p0

1−p0
, we are done. Thus, we can prove this

theorem by proving thatPr(Ik≥x)
Pr(Ik≤−x) ≤

p0

1−p0
for all x ∈ {1 . . . k}, k ∈ {1 . . . n}. We

prove this by induction on number of areas. If there is just one area, then that area
decides to accept with probabilityp0 (as all initial acceptance probabilities are equal to
p0). Assume if the number of areas is less than or equal ton, then Pr(Ik≥x)

Pr(Ik≤−x) ≤
p0

1−p0

for all x ∈ {1 . . . k}, k ∈ {1 . . . n}. We prove the statement when there aren+1 areas.
Let par(n, x) : N × N 7→ {0, 1} be a function which is0 if n andx have the same
parity,1 otherwise. Letv be the area scheduled at timen + 1. Let ν = par(n, x). We
now consider the following three cases.
Case 1:1 ≤ x ≤ n − 2. The eventIn+1 ≥ x + 1 is the union of the following two
disjoint events:

1. In ≥ x+ 2, and whatever thenth area decides,In+1 is at leastx+ 1.
2. In = x+ ν andn+ 1th area decides to accept.

Similarly, the eventIn+1 ≤ −x − 1 is the union of the eventIn ≤ −x − 2 and the
event —In = −x− ν and then+1th area rejects the idea. We note that we require the
par function because only one of the eventsIn = x andIn = x + 1 can occur w.p.p.
depending on parities ofn andx. Thus

Pr(In+1 ≥ x+ 1) =Pr(In ≥ x+ 2) + Pr(Xv = 1|In = x+ ν)Pr(In = x+ ν),

P r(In+1 ≤ −x− 1) =Pr(In ≤ −x− 2) + Pr(Xv = −1|In = −x− ν)Pr(In = −x− ν).

Now, if x+ν ≥ cv, thenPr(Xv = 1|In = x+ν) = Pr(Xv = −1|In = −x−ν) = 1,
otherwisePr(Xv = 1|In = x + ν) = p0 < 1 − p0 = Pr(Xv = −1|In = −x − ν).



Scheduling a Cascade with Opposing Influences 9

Therefore,Pr(Xv = 1|In = x+ν) ≤ Pr(Xv = −1|In = −x−ν). Letβ = Pr(Xv =
−1|In = −x− ν). Using the above, we have

Pr(In+1 ≥ x+ 1) ≤Pr(In ≥ x+ 2) + βPr(In = x+ ν),

P r(In+1 ≤ −x− 1) =Pr(In ≤ −x− 2) + βPr(In = −x− ν).

From above, we have

f(β) =
Pr(In ≥ x+ 2) + βPr(In = x+ ν)

Pr(In ≤ −x− 2) + βPr(In = −x− ν)
≥

Pr(In+1 ≥ x+ 1)

Pr(In+1 ≥ −x− 1)
. (2)

The functionf(β) is either increasing or decreasing and hence has extrema at end
points of its range. The maxima is≤ max{ Pr(In≥x+2)

Pr(In≤−x−2) ,
Pr(In≥x+2)+Pr(In=x+ν)

Pr(In≤−x−2)+Pr(In=−x−ν)}

becauseβ ∈ [0, 1]. Now Pr(In ≥ x + 2) + Pr(In = x + 1) + Pr(In = x) =
Pr(In ≥ x) andPr(In ≤ −x− 2) + Pr(In = −x− ν) = Pr(In ≤ −x). Thusf ≤
max{ Pr(In≥x+2)

Pr(In≤−x−2) ,
Pr(In≥x)
Pr(In≤−x)} ≤

p0

1−p0
(from induction hypothesis). From above and

(2), Pr(In+1≥x+1)
Pr(In+1≤−x−1) ≤

p0

1−p0
.

Case 2:x = 0. If n is odd thenPr(In+1 ≥ 1) = Pr(In+1 ≥ 2) andPr(In+1 ≤
−1) = Pr(In+1 ≤ −2) and this case is the same asx = 1 and hence considered
above. Thus, assume thatn is even. Thus

Pr(In+1 ≥ 1) = Pr(In ≥ 2) + Pr(Xv = 1|In = 0)Pr(In = 0), (3)

Pr(In+1 ≤ −1) = Pr(In ≤ −2) + Pr(Xv = −1|In = 0)Pr(In = 0). (4)

Since, ifIn = 0, then areas decide based on the initial acceptance probability. We have
Pr(Xv = 1|In = 0) = p0 andPr(Xv = −1|In = 0) = 1 − p0. Using this fact ,by
dividing (3) and (4), we have

Pr(In+1 ≥ 1)

Pr(In+1 ≤ −1)
≤

Pr(In ≥ 2) + p0Pr(In = 0)

Pr(In ≤ −2) + (1 − p0)Pr(In = 0)
.

From induction hypothesis,Pr(In≥2)
Pr(In≤−2) ≤

p0

1−p0
. Thus, we concludePr(In+1≥1)

Pr(In+1≤−1) ≤
p0

1−p0
based on (1).

Case 3:x ∈ {n − 1, n}. In this casePr(In ≥ x + 2) = 0, since the number of
adopters can never be more than the number of total areas. Also, In+1 cannot be equal
to n becausen andn + 1 don’t have the same parity. Therefore,Pr(In+1 ≥ n) =
Pr(In+1 ≥ n+ 1) andPr(In+1 ≤ −n) = Pr(In+1 ≤ −n− 1). Thus, it is enough to
analyze the casex = n. We have

Pr(In+1 ≥ n+ 1) = Pr(Xv = 1|In = n)Pr(In = n),

P r(In+1 ≤ n+ 1) = Pr(Xv = −1|In = −n)Pr(In = −n).

Since either both decisions are made based on thresholds with probability1 or both
are made based on initial probabilities and initial acceptance probability is less than
the initial rejection probability, We know thatPr(Xv = 1|In = n) ≤ Pr(Xv =

−1|In = −n). ThereforePr(In+1≥n+1)
Pr(In+1≤n+1) ≤

Pr(In=n)
Pr(In=−n) . Now, sincePr(In = n) =

Pr(In ≥ n) andPr(In = −n) = Pr(In ≤ −n), from induction hypothesis, we have
Pr(In+1≥n+1)
Pr(In+1≤n+1) ≤

p0

1−p0
and we are done.
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4 Non-adaptive Marketing Strategy with Random Thresholds

We consider the problem of designing a non-adaptive spreading strategy when the
thresholds are drawn independently from the same but unknown distribution. We show
the best spreading strategy is to schedule areas in a non-increasing order of initial ac-
ceptance probabilities. We prove the optimality of the algorithm using a coupling argu-
ment. First we state the following lemma which will be usefulin proving Theorem 3.
The proof is in Appendix F.1.

Lemma 1 Let π andπ′ be two spreading strategies. If∃k ∈ Z>0, such thatπ(i) =
π′(i), ∀i ≥ k andPr(Ik ≥ x;π) ≥ Pr(Ik ≥ x;π′), ∀x ∈ Z, thenE(In;π) ≥
E(In;π

′).

Theorem 3. Assume that the planner’s prior knowledge about all values of ci’s is the
same, i.e., allci’s are drawn independently from the same but unknown distribution.
Let initial acceptance probabilities be arbitrary numbers. Then, the best non-adaptive
spreading strategy is to order all areas in non-increasing order of their initial accep-
tance probabilities.

Proof. Let π′ be a spreading strategy where areas are scheduled in an orderthat is not
non-increasing. Thus, there existsk such thatpπ′(k) < pπ′(k+1). We prove that if a new
spreading strategyπ is created by exchanging position of areasπ′(k) andπ′(k + 1),
then the expected number of people who accept the idea cannotdecrease. It means the
best spreading strategy is non-increasing in the initial acceptance probabilites.

To prove the theorem, we will prove thatPr(Ik+1 ≥ x;π) ≥ Pr(Ik+1 ≥ x;π′)
and the result then follows from Lemma 1. Since, the two spreading strategies are
identical till time k − 1 and therefore the random variableIk−1 has identical distri-
bution under both the strategies, we can prove the above by proving thatPr(Ik+1 ≥
Ik−1 + y|Ik−1;π) ≥ Pr(Ik+1 ≥ Ik−1 + y|Ik−1;π

′) for all y ∈ Z. We note that the
only feasible values fory are in{−2, 0, 2}. Hence, ify > 2 then both sides of the above
inequality are equal to1 and the inequality holds. Similarly, ify <= −2 both sides of
the inequality are equal to1 and the inequality holds. Thus, we only need to analyze the
valuesy = 0 andy = 2.

Now we define some notation to help with rest of the proof. Letu = π′(k + 1),
v = π′(k), andqi = 1−pi. It meanspv < pu. Letχ(i, j) be the event wherei andj are
indicators of decision of areas scheduled at timek andk + 1 respectively, e.g.,χ(1, 1)
means that areas scheduled at timek andk + 1 accepted the idea, whereasχ(1,−1)
implies that area scheduled at timek accepted the idea, while the area scheduled at time
k + 1 rejected the idea. LetB(y) be the eventIk+1 ≥ Ik−1 + y|Ik−1 = z for some
arbitraryz ∈ Z. We consider the casesIk−1 > 0, Ik−1 < 0 andIk−1 = 0 separately.
Case 1:Ik−1 = z, z > 0. We have,B(0) = χ(1, 1) ∪ χ(1,−1) ∪ χ(−1, 1) which is
equal to the complement ofχ(−1,−1). Since we assumez > 0, the thresholds−cu
and−cv cannot be hit. Thus,χ(−1,−1) occurs only when both areas decide to reject
the idea based on their respective initial acceptance probabilities. Thus, from chain rule
of probability, it is the product of following four terms:

1. Pr(z < cu), i.e, the threshold rule does not apply andu decides based on initial
acceptance probabilities.
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2. u rejects the idea based on initial probability of rejection,qu.
3. Pr(z − 1 < cv). Given u rejected the idea,D(v), the decision variable forv

becomesz − 1 and the threshold rule does not apply andv decides based on initial
acceptance probabilities.

4. v rejects the idea based on initial probability of rejection,qv.

Therefore,Pr(χ(−1,−1)) = Pr(z < cu)quPr(z − 1 < cv)qv. Thus,Pr(B(0);π) =
1 − Pr(z < cu)quPr(z − 1 < cv)qv. Since,cu andcv are i.i.d random variables, we
can write any probability of formPr(z R cu) or Pr(z R cv) asPr(z R x), wherex
is an independent random variable with the same distribution ascu andcv. Thus

Pr(B(0);π) = 1− Pr(z < x)quPr(z − 1 < x)qv . (5)

Now,Pr(χ(1, 1)) = Pr(Xu = 1|Ik−1 = z)Pr(Xv = 1|Ik = z + 1). EventXu = 1
is the union of following two non-overlapping events:

1. z ≥ cu; u accepts the idea because of the threshold rule.
2. z < cu andu accepts the idea based on initial acceptance probability,pu.

Thus,Pr(Xu = 1|Ik−1 = z) = Pr(z ≥ cu) + Pr(z < cu)pu. Similarly,Pr(Xv =
1|Ik = z + 1) = Pr(z + 1 ≥ cv) + Pr(z + 1 < cv)pv. Therefore

Pr(B(2);π) =(Pr(z ≥ x) + Pr(z < x)pu)

× (Pr(z + 1 ≥ x) + Pr(z + 1 < x)pv). (6)

where we have replacedcu andcv by x because they are i.i.d. random variables. We
can obtain corresponding probabilities for processπ′ by exchangingpu andpv. Thus,
Pr(B(0);π) = Pr(B(0);π′) = 1 − Pr(z < x)quPr(z − 1 < x)qv. We can write
Pr(B(2);π′) as follows.

Pr(B(2);π′) =(Pr(z ≥ x) + Pr(z < x)pv)

× (Pr(z + 1 ≥ x) + Pr(z + 1 < x)pu). (7)

On the other handPr(z < x) ≥ Pr(z + 1 < x) andPr(z + 1 ≥ x) ≥ Pr(z ≥ x).
Comparing (6) and (7) along with these facts thatpv < pu andPr(z < x)Pr(z + 1 ≥
x) ≥ Pr(z ≥ x)Pr(z + 1 < x), we getPr(B(2);π) ≥ Pr(B(2);π′).
Case 2:Ik−1 = −z, z > 0. By a similar analysis, we have

Pr(B(2);π) =Pr(z < x)Pr(z − 1 < x)pupv = Pr(B(2);π′), (8)

Pr(B(0);π) =1− (Pr(z ≥ x) + Pr(z < x)qu),

× (Pr(z + 1 ≥ x) + Pr(z + 1 < x)qv), (9)

Pr(B(0);π′) =1− (Pr(z ≥ x) + Pr(z < x)qv),

× (Pr(z + 1 ≥ x) + Pr(z + 1 < x)qu). (10)



12 MohammadTaghi Hajiaghayi, Hamid Mahini, and Anshul Sawant

Comparing (9) and (10), we havePr(B(0);π) ≥ Pr(B(0);π′).
Case 3:Ik−1 = 0. We have

Pr(B(2);π) =pu(Pr(x > 1)pv + Pr(x = 1)), (11)

Pr(B(0);π) =pu + quPr(x > 1)pv, (12)

Pr(B(2);π′) =pv(Pr(x > 1)pu + Pr(x = 1)), (13)

Pr(B(0);π′) =pv + qvPr(x > 1)pu. (14)

By comparing (11) with (13) and (12) with (14), we see thatPr(B(2);π) ≥ Pr(B(2);π′)
andPr(B(0);π) ≥ Pr(B(0);π′) respectively. Thus,Pr(Ik+1 ≥ Ik−1+x|Ik−1;π) ≥
Pr(Ik+1 ≥ Ik−1 + x|Ik−1;π

′), ∀x ∈ Z.
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A Examples

Example 1.Consider a society with3 areas and3 types. The planner prior is as follows.
Initial acceptance probabilities of areas1, 2, and3 are0.2, 0.5, and0.8 respectively.
Thresholds of areas1, 2, and3 are1, 2, and3 respectively (See Figure 1). Consider
spreading strategyπ = (1, 2, 3). People in area1 accept the idea with probabilityp1 =
0.2. Threshold of area2 is 2. It means people in area2 decide based on initial rule and
accept the idea with probabilityp2 = 0.5. Threshold of area3 is 3. Thus, people in area
3 decide based on initial rule as well and accept the idea with probability p3 = 0.8.
Therefore, the expected number of adopters for spreading strategyπ is p1 + p2 + p3 =
1.5. In order to see the impact of an optimal spreading strategy consider spreading
strategyπ′ = (3, 1, 2). People in area3 accept the idea with probabilityp3 = 0.8.
Threshold of area1 is 1. It means the decision of people in area1 is correlated to the
decision of people in area3. In other word, people in area1 follow the decision of people
in area3. Thus, there are two possible scenarios. First, both areas3 and1 accept the
idea. The probability of this scenario isp3 = 0.8. The second scenario is that both areas
3 and1 reject the idea. The probability of the second scenario is1 − p3 = 0.2. In both
scenario the threshold of area2 is hit. Hence, area2 will accept the idea with probability
p3 = 0.8. Therefore, the expected number of adopters for spreading scheduleπ′ is
3p3 = 2.4.

p2 = 0.5

c2 = 2

2

p1 = 0.2

c1 = 1

1

p3 = 0.8

c3 = 3
3

Fig. 1. A society with3 areas. The expected number of adopters for spreading strategy π =
(1, 2, 3) is 1.5. The expected number of adopters for spreading strategyπ′ = (3, 1, 2) is 2.4.
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Example 2.At the first glance, it seems a greedy approach leads us to find the best
non-adaptive spreading strategy. The greedy approach is tofirst schedule a node with
the highest probability of adopting. We find a counter-example for this greedy approach
with a society with3 areas.

Consider a society with3 areas and3 types. Area1 has threshold1 and areas2 and3
have threshold2. Initial acceptance probabilities arep1 > p2 > p3 = 0 (See Figure 2).
The greedy approach leads us to spreading strategyπ = (1, 2, 3). Assume the planner
uses spreading strategyπ. The probability that people in area1 accept the idea isp1.
The threshold for area2 is 2. Hence, they decide based on initial rule. It means the
probability that people in area2 accept the idea isp2. At last, if both area1 and2 accept
the idea then people in area3 accept the idea with probabilityp1p2 based on threshold
rules . Otherwise, they reject it becausep3 = 0, i.e., area3 has an initial preference of
N for sure. Thus, the expected number of adopter isp1 + p2 + p1p2. Now, assume the
planner uses spreading strategyπ′ = (2, 1, 3). Area2 accepts the idea with probability
p2. The threshold of area1 is 1. It means area1 is a follower of area2 under spreading
strategyπ′. Hence, there are two possibilities. Both areas1 and2 accept the idea with
probability p2 or both areas1 and2 reject the idea with probability1 − p2. In both
cases area3 decides based on the threshold rule. Therefore, there are3 adopters with
probabilityp2 or all areas reject the idea with probability1 − p2. Hence, the expected
number of adopter is3p2 for spreading strategyπ′. One can check spreading strategy
π′ is better thatπ for various probabilitiesp1 andp2, e.g.,p1 = 0.4 andp2 = 0.3 or
p1 = 0.8 andp2 = 0.7.

p2

c2 = 2

2

p1

c1 = 1

1

p3 = 0

c3 = 2
3

Fig. 2. A society with3 areas. The expected number of adopters for spreading strategy π =
(1, 2, 3) is p1+p2+p1p2. The expected number of adopters for spreading strategyπ′ = (2, 1, 3)
is 3p2.

Example 3.The result of Theorem 1 leads us to the following conjecture for the partial
propagation setting.

“Consider an arbitrary non-adaptive spreading strategy inthe partial propaga-
tion setting. If all initial acceptance probabilities are greater/less than12 , then
adding an edge to the graph helps/hurts promoting the new product.”.
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This conjecture has several consequences, e.g., a completegraph is the best graph for
spreading a new idea when initial acceptance probabilitiesare greater than12 . This
eventuates directly Theorem 1. Surprisingly, this conjecture does not hold. We present
an example with the same initial acceptance probabilities of less than12 such that adding
a relationship between two areas increases the expected number of adopters.

Consider a society with4 areas and only one type. Initial acceptance probabili-
ties and thresholds for all areas arep and1 respectively. Consider spreading strategy
π = (1, 2, 3, 4) and a society which is represented by graphG (See Figure 3). Areas1,
2, and3 decide about the idea independently and accept it with probability p. Threshold
of area4 is 1. Hence, people in area4 accept the idea if there are at least two adopters
so far. Therefore, area4 accept the idea with probability3p2(1 − p) + p3 and the ex-
pected number of adopters is3p+ 3p2(1− p) + p3. Assume influences also propagate
between area1 and2. In this case the society is represented by graphG′ (See Figure 3).
Threshold of area2 is 1. Hence, area2 is a follower of area1 under spreading strategy
π. Thus, there are two possibilities when area2 is scheduled. Both area1 and2 accept
the idea with probabilityp or both reject it with probability1 − p. Area3 decide inde-
pendently and accept the idea with probabilityp. Threshold of area4 is 1. Thus, area
4 is also a follower of both area1 and2. Therefore, the expected number of adopter is
4p in this case. One can check3p + 3p2(1 − p) + p3 is greater than4p if and only if
0.5 < p < 1. It means whenp < 0.5 (resp.,p > 0.5) the number of adopters increases
(resp., decreases) by adding a relation to the society.

42

3

1

G

⇒ 42

3

1

G′

e

Fig. 3. This figure represents a partial propagation setting with4 areas. All Thresholds are equal
to 1 and all initial acceptance probabilities arep. The expected number of adopters for spreading
strategyπ = (1, 2, 3, 4) is 3p+ 3p2(1− p) + p3 for a society which is represented by graphG.
The expected number of adopters for spreading strategyπ = (1, 2, 3, 4) is 4p for a society which
is represented by graphG′. Note that3p2(1−p)+p3 is greater thanp if and only if 0.5 < p < 1

B Type Switching Approach

Consider a society with a constant number of types. One approach that might work
is an algorithm that finds an optimal spreading strategy allowing for only a constant
number of switches between types in a spreading strategy. Wenote that areas of the
same type are identical from point of view of scheduling a cascade. Thus, any non-
adaptive spreading strategy can be specified by specifying types of areas rather than the
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areas themselves. Letτ be the mapping between an area and its type. That isτ(i) is the
type of areai. Let λ be sequence of types for a given spreading strategy. Specifically,
λ is a vector whosekth component,λ(k) = τ(π(k)). A switch is any positionk in the
sequenceλ such thatλ(k) 6= λ(k+1). As an example, consider a society with four areas
with two areas of type1 and two areas of type2. Then the type sequenceλ = (1, 1, 2, 2)
has a switch at position2 whereasλ2 = (1, 2, 1, 2) has switches at positions1, 2 and3.
We define aσ-switch spreading strategy as a non-adaptive spreading strategy that has
at mostσ switches, whereσ is a constant independent of input size. We now prove that
no algorithm whose output is aσ-switch spreading strategy can be optimal.

Theorem 2. A σ-switch spreading strategy is a spreading strategy with at most σ
switches. For any constantσ, there exists a society with areas of two types such that
noσ-switch spreading strategy is optimal.

Proof. The proof outline is as follows. We construct an instance of problem with2n
areas with two types, the number of areas of both types beingn, for which an optimal
spreading strategy alternates between these types. Lets call this instanceS and lets call
this strategyπ. We prove that the expected number of adopters achieved by this optimal
strategy is upper bound on number of acceptors for any input instance with areas of
these two types, whatever be the number of areas of both types, given that total number
of areas is2n, e.g., the number of areas of one type can ben1 and the other type2n−n1

for any integern1 between0 and2n and no strategy for this instance can exceed the
expected number of adopters achieved byπ for the instance of problem withn areas of
each type. We then show that anyσ-switch strategy for instanceS of problem can be
improved by changing type of one of the areas. Since, the optimal value achieved by
this new strategy cannot be greater than strategyπ on instanceS, noσ-switch strategy
can be optimal.

Consider an instance with two typesγ1 = (P, 1) andγ2 = (P, 2) whereP > 1
2 ,

the total number of areas is2n and the number of areas of typesγ1 andγ2 is n each.
Let π be a spreading strategy for which the type sequence of areas is given byλ =
(γ1, γ2, . . . , γ1, γ2), i.e., every area at odd position is of typeγ1 and every area at even
position is of typeγ2. Let the expected number of areas which accept the idea for this
spreading strategy beα. Now consider an instance where the total number of areas is the
same but the number of areas of typeγ1 isn1 and number of areas of typeγ2 is 2n−n1

for some arbitrary natural numbern1 such that0 ≤ n1 ≤ n2. For this instance, let the
expeted number of areas which accept the idea given an optimal spreading strategy be
β. We now prove thatα ≥ β. If we have no restriction on the number of areas of each
type, then for anyt = 0 mod 2, the areas to be scheduled at timet + 1 andt+ 2 can
be of types(γ1, γ1), (γ1, γ2), (γ2, γ1) or (γ2, γ2). We prove thatα ≥ β by proving that
it is better to schedule areas of typeγ1 andγ2 at timest + 1 andt + 2 respectively. If
|It| ≥ 2, then we are indifferent between all spreading strategies because in this case
all the areas will decide based on the threshold rule. Thus, if we can prove that(γ1, γ2)
is a best choice for types at timest+1 andt+2 when|It| < 2, we are done. Sincet is
even, the only feasible value of|It| ≤ 2 is It = 0. Thus, this is the only case we need
to analyze. Letρ be the tuple of types of areas scheduled at timest + 1 andt + 2. Let
χ be the tuple indicating decisions of areas scheduled at times t+1 andt+ 2. Now we
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analyze the probabilties with which the four possible values ofχ are realized for each
of the four possible values ofρ whenIt = 0. Let number of areas to be scheduled after
time t bem.
Case 1:ρ = (γ1, γ1) or (γ2, γ1)
In this case, the first area decides based on its initial acceptance probability and the
second area follows the decision of the first area.

Pr(χ = (1, 1)) = P

Pr(χ = (1,−1)) = 0

Pr(χ = (−1, 1)) = 0

Pr(χ = (−1,−1)) = 1− P

The expected number of areas which accept the idea after timet in this case ismP , as
all areas follow the decision of area scheduled at timet+ 1.
Case 2:ρ = (γ1, γ2) or (γ2, γ2)
In this case, both the areas decide based on their initial acceptance probability.

Pr(χ = (1, 1)) = P 2 (15)

Pr(χ = (1,−1)) = P (1 − P ) (16)

Pr(χ = (−1, 1)) = P (1 − P ) (17)

Pr(χ = (−1,−1)) = (1 − P )2 (18)

From (15), with probabilityP 2, all areas after timet will accept the idea. If for any time
t′, we are given thatIt′ = 0, then we can treat the subsequent areas as the starting point
of a new spreading strategy. Thus, ifIt+2 = 0, then from Theorem 1 (given thatP > 1

2 ),
the expected number of adopters for any future spreading strategy is at least(m− 2)P .
Hence, from (16) and (17), with probability2P (1 − P ) the expected number of areas
that will accept after timet is at least1+(m−2)P . Therefore, in this case, the expected
number of areas that accept after timet is at leastmP 2 + 2P (1− P )(1 + (m− 2)P ).
Thus, we are done if we prove thatmP 2 + 2P (1− P )(1 + (m− 2)P ) is greater than
mP .

mP 2 + 2P (1− P )(1 + (m− 2)P )−mP = P (1− P )(−m+ 2(1 + (m− 2)P ))

Thus, it is enough to prove that2(1 + (m− 2)P )−m > 0. We have:

2(1 + (m− 2)P )−m = (2P − 1)(m− 2)

SinceP > 1
2 , 2P − 1 > 0. Thus, for allm > 2, it is strictly better to schedule an

area of typeγ2 at timet+ 2. If an area of typeγ2 is scheduled at timet + 2, then it is
equivalent to schedule an area of either type at timet + 1. Thus, given that there is at
least one more area to follow at timet + 3, it is best to schedule areas of typeγ1 and
γ2 respectively at timest+ 1 andt+ 2 at any arbitrary timet = 0 mod 2. Also, such
a schedule is strictly better, all other things begin same, than the schedule where, areas
of typeγ1 are scheduled at timest+ 1 andt + 2. This fact is important as we use this
later in the proof. If there are no more areas to follow, then we are indifferent to all the
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four options. Hence, the expected number of adopters achieved byπ is an upper bound
on number of acceptors for any input instance with areas of these two types whatever
be the number of areas of both types

The final part of this proof is by contradiction. Let the the number of areas in the
input instance of problem be2n with n areas each of typesγ1 = (P, 1) andγ2 = (P, 2).
Consider aσ-switch strategy. Choosen ≥ 4(σ + 1). Thus, everyσ-switch strategy
will have at least four consecutive areas of typeγ1. Let a σ-switch strategy,π′, be
an optimal one. Therefore, there will exist a timet in π′ such thatt = 0 mod 2,
τ(π′(t + 1)) = γ1, τ(π′(t + 2)) = γ1 and at least one more area will be scheduled
after timet + 2. As explained earlier, the expected number of adopters in this case is
strictly less than expected number of adopters if we schedule an area of typeγ2 at time
t+2, which, as proved above, is at most the expected number of adopters for a strategy
with type sequence(γ1, γ2, . . . , γ1, γ2). Therefore, strategyπ is not optimal. This is a
contradiction and noσ-switch strategy can be optimal for the given instance.

C Hardness Result

We prove that problem of computing expected number of adopters for a given spreading
strategy in the partial propagation setting is#P -complete. This result applies even
when the input graphs are planer with a maximum degree of3 and have only4 different
types of vertices. We prove this by reduction from a version of the network reliability
problem that is known to be#P -complete ([18]). In the network reliability problem,
a directed graphG and probability0 ≤ p ≤ 1 are given. Nodes fail independently
with probability1 − p. Therefore, each node is present in the surviving subgraph with
probability p. We achieve the reduction by simulating thes − t network reliability
problem by designing an instance of cascade scheduling problem where, probability of
an areav accepting an idea is exactly equal to a path existing in the surviving sub-graph
from the source to vertexv. Before proceeding to details of the proof, we give some
definitions below.

Definition 1 Given a directed graphG with sources, terminal t, and a probability
1 − p, 0 ≤ p < 1 of nodes failing independently, the(s, t)-connectedness reliabilityof
G, R(G, s, t; p), is defined as the probability that there is at least one path from s to t

such that none of the vertices falling on the path have failed.

Definition 2 AST is the problem of computingR(G, s, t; p) whenG is an acyclic di-
rected(s, t)-planar graph with each vertex having degree at most three. We denote an
instance of AST on graphG asAST (G, s, t, p).

Definition 3 Given an influence spread process,S = (G, c,p, π) onG with a source
nodes and a target nodet, IST is the problem of computingPr(Xt = 1;S) given that
π(1) = s andPr(Xs = 1) = 1. We denote an instance of IST byIST (G, c,p, π, s, t).

We will reduce an instance of AST to an instance of IST (Probability of Influence
Spread to T).
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Given an instance of AST,AST (G = (V,E), s, t, p) we now construct an instance
of IST, IST (G′ = (V ′, E′), c,p, π, s, t) for whichR(G, s, t; p) = Pr(Xt = 1). Let
dinv be the indegree ofv ∈ V in G. For every vertexv ∈ V −{s}, we add three vertices
to graphG′. Lets denote them bybv, the blocking vertex ofv, fv, the forwarding vertex
for v andv′, which corresponds to the original vertexv. The rationale for nomenclature
will become apparent later. For every edge(u, v) in E, we add an edge{u′, bv} in E′.
In addition, we add edges{bv, v′} and{fv, v′} toE′. The acceptance probabilities and
thresholds are set as follows:pv′ = 0, pfv = p, pbv = 1 ∀v ∈ V − {s}, ps′ = p.
cv = 2, cbv = dinv ∀v ∈ V − {s}. Thresholdcs′ is irrelevant and can be any arbitrary
value greater than0 since it is the first vertex to be scheduled. Thresholdscfv can also
be any arbitrary value greater than0 since no neighbor offv is scheduled beforefv. Let
π′ : V 7→ V be any topological ordering onV where,s is the first node andt is the last
node. Thenπ is constructed as follows:

π−1(s′) =1

π−1(v′) =3π′−1(v)− 2 ∀v ∈ V − {s}

π−1(bv) =3π′−1(v)− 4 ∀v ∈ V − {s}

π−1(fv) =3π′−1(t)− 3 ∀v ∈ V − {s}

The above construction ofπ can be interpreted as follows. Source remains the first
vertex to be scheduled. A vertexv is split into three vertices —v′, bv andfv. In place
of v, these three vertices are consecutively scheduled in orderbv, fv andv′, e.g., if
π′ = (s, v, t), thenπ = (s′, bv, fv, v

′, bt, ft, t
′).

Let IS be the influence spread process(G′, c,p, π). Now, we prove the following
lemmas which relate the probability of existence of a path ofoperative vertices between
s andv in G and the probability that areav accepts the idea in the influence spread
processIS.

v

ud

u2

u1

v

fv

bv

ud

u2

u1

fud

bud

fu2

bu2

fu1

bu1

Fig. 4. Reduction from Network Reliability on a DAG to Computing Expected Number of Influ-
enced Nodes – The diagram on left is a part of DAG with probability of failure of each node equal
to (1−p). The diagram on right is corresponding part of graph that represents an influence spread
stochastic process the models the given network reliability problem wherepbv = 1, cbv = d,
pfv = p,pv′ = 0, andcv′ = 2.
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We first prove that computing the expecte number of vertices in graph to whichs
has a path with operating vertices is#P -complete. We then use this to prove the main
theorem.

Lemma 2 Consider an instance of AST,AST (G = (V,E), s, t, p). Then computing
the expected number of vertices in graph to whichs has a path with operating vertices
is#P -complete.

Proof. Let a(G, s) be the expected number of vertices in the graph to whichs has a
path with operating vertices inG. Let b(G, s, t) be probability that there is a path of
operating vertices froms to t in G. We note thatt has no outgoing edges. Lets assume
thata(G, s) can be computed in time polynomial in|G|. Let G′ = G − {t}. Deletion
of t does not change probability of survival of any path whose destination is nott.
Thereforea(G′, s) =

∑

u∈V −{t} b(G, s, u). Thus,a(G, s) − a(G′, s) = b(G, s, t).
This is a contradiction because this implies thatb(G, s, t) can be computed in time
polynomial in|G|.

The proof of the main theorem of this section is organized as follows. We first prove
that the probability of an areav′ accepting an idea is exactly equal to probability of a
path existing froms to v. Then, we use this fact along with Lemma 2 to prove the main
result.

Theorem 4. In the partial propagation setting, it is#P -complete to compute the ex-
pected number of adopters for a given non-adaptive spreading strategyπ.

Proof. Let AST (G = (V,E), s, t, p) be an instance of AST problem. LetS(G′ =
(V ′, E′), c,p, π) be an influence spread process withG′, cv, pv andπ as defined above.
Then an areav 6= s, t accepts the idea with probabilityp iff at least one of its predeces-
sors inG also accepts the idea.

Let P (v) be the set of predecessors ofv in G. We note that inIS, by construction
of π andG′, vertices inP (v) are exactly the neighbors ofbv that are scheduled before
bv. Areabv is immediately followed byfv andfv by v. Also, by construction ofG′, bv
andfv are neighbors ofv andv has no other neighbors. Areafv ’s only neighbor isv.

If no vertex inP (v) accepts the idea, thenD(bv) = −dinv = −cbv and thus,
Pr(bv = −1| no vertex inP (v) accepts the idea) = 1 and therefore,bv rejects the
idea. Since, threshold ofv is cv = 2, v decides based on threshold if and only if both
its neighbors either accept or reject the idea. Therefore ifbv rejects the idea, then iffv
accepts the idea, thenv does not accept the idea because it decides to reject the idea
based on its initial acceptance probability aspv = 0. If Xfv = −1, then alsov does
not accept the idea because it reject the idea based on threshold rule, because both its
neighbors rejected this idea. Thus, if none of the vertices in P (v) accept the idea then
v does not accept the idea.

If any area inP (v) accepts the idea then−cbv = −dinv < D(bv) < dinv = cbv
andbv accepts the idea because its initial acceptance probability, pbv = 1. Now, if fv
accepts the idea thenv also accepts becausecv = 2 and if fv rejects the idea, thenv
does not accept the idea because it decides to reject it on basis of its initial acceptance
probability,pv = 0. Since, no neighbor offv is scheduled beforefv, fv accepts the idea
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independently at random with its initial acceptance probability pfv = p. Therefore,
given that at least one vertex in setP (v) accepts the idea,v accepts the idea with
probabilityp.

Now, by principal of deferred decisions, process of finding apath of operating ver-
tices froms to t in the network reliability problem, can be simulated as follows. Letπ
be any topological ordering on vertices ofG. LetL(i) be theith layer (excluding layer
containing just the source vertex,s) in topologically sortedG. Then probability that a
path tou ∈ L(1) exists isp because we let each vertex in this layer fail independently
with probability1 − p. For vertexv in any subsequent layer, if there exists a path to
any of vertices inP (v), the set of predecessors ofv, then we letv fail independently
with probability1 − p. If no path to any of predecessors ofv exists, then no path tov
can exist and it is immaterial whetherv fails or not. Thus, we letv fail with probability
1. As explained above, this is exactly the process simulated by IS(G′, cv, pv, π). Thus,
computingPr(Xt = 1) is#P -complete.

However, we need to prove hardness of computingΛ =
∑

u∈V ′ Pr(Xu = 1). If
we can prove that fromΛ we can compute the expected number of vertices in graph to
whichs has a path, sayα =

∑

v∈V Pr(Xv′ = 1), then from Lemma 2, we are done.
Since∀v ∈ V, Pr(Xv′ = 1) = Pr(Xbv = 1) · Pr(Xfv = 1) = Pr(Xbv = 1) · p

andPr(Xfv ) = p, we have:

Λ =
∑

v∈V

(Pr(Xv′ = 1) + Pr(Xbv = 1) + Pr(Xfv = 1)) =
∑

v∈V

(Pr(Xv′ = 1) +
Pr(Xv′ = 1)

p
+ p)

From above, we can easily computeα. Hence, the claim follows.

We note that AST is#P -complete even when degrees of vertices of the input graph
is constrained to be3. Thus, indegree of a node (through which a path froms to t can
pass) has to be1 or 2. If p is the survival probability of a vertex in the AST problem
instance, then the possible types of areas in the corresponding instance of IST are in
{(1, 1), (1, 2), (p, 1), (0, 2)}, where the first two types correspond to blocking nodes in
G, the forwarding nodes are of type(p, 1) and the vertices corresponding to original ver-
tices are of type(0, 2). Thus, IST is hard on graphs with maximum degree constrained
to 3 and number of types constrained to4.

D Computing Expected Number of Adopters

Here we give an algorithm to computeE(In), given a spreading strategyπ with thresh-
olds given by vectorc and initial probabilities of acceptance given by vectorp. Let Yk

be the number of1 decisions among vertices in{π(1), π(2), . . . , π(k)}. We note that
Ik = 2Yk−k. SinceE(In) =

∑

i∈{1...n} xPr(In = x), we are interested in computing
Pr(In = x), ∀x ∈ {−n . . . n}.

Theorem 5. Consider a full propagation setting. The expected number ofadopter can
be computed in polynomial time for a given non-adaptive spreading strategyπ.
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Let A be an × (2n + 1) matrix whereA[k, x] = Pr(Ik = x), k ∈ {1 . . . n}, x ∈
{−n . . . n}. Let v = π(k). The following recurrence might be used to arrive at a dy-
namic programming formulation:

A[k, x]← Pr(Xk
v = 1)A[k − 1, x− 1] + Pr(Xk

v = −1)A[k − 1, x+ 1]

However, one needs to be careful when computingPr(Xk
v = 1) because it is dependent

of Ik−1. Thus, in the correct recurrence we must havePr(Xk
v = 1|Ik−1 = x− 1) and

Pr(Xk
v = −1|Ik+1 = x+ 1) instead ofPr(Xk

v = 1) andPr(Xk
v = −1) respectively.

Below we derive the dynamic program keeping this subtelty inmind. Letv = π(k+1).
We have:

Pr(Ik+1 = x+ 1|Ik = x) =











pv if − cv < x < cv

1 if x ≥ cv

0 otherwise

Pr(Ik+1 = x− 1|Ik = x) =1− Pr(Ik+1 = x+ 1|Ik = x)

We have:

Pr(Ik+1 = x) =Pr(Ik+1 = x|Ik = x− 1)Pr(Ik = x− 1)

+ Pr(Ik+1 = x|Ik = x+ 1)Pr(Ik = x+ 1)

The above relation suggests a dynamic program for computingE(In). The matrixA
is initialized with A[1, 1] = pπ(1), A[1,−1] = 1 − A[1, 1], A[1, 0] = 0, A[k, x] =
0, ∀x > k,A[k, x] = 0, ∀x < −k. When|x| < n, k > 1, then anyA[k, x] depends on
A[k − 1, x+ 1] andA[k − 1, x+ 1] and we get the recurrence:

A[k, x]←Pr(Ik = x|Ik−1 = x− 1)A[k − 1, x− 1]

+ Pr(Ik = x|Ik−1 = x+ 1)A[k − 1, x+ 1]

FromA, E(In) can be computed as follows:

E(In) =
∑

i∈{1...n}

xPr(In = x) =
∑

i∈{1...n}

iA[n, i]

E Adaptive Marketing Strategy

In this section we propose a dynamic program for computing best adaptive spreading
strategy and thus, prove Theorem 6. Here we give dynamic program when there are two
types of areas. This can be extended to any constant number oftypes. LetB(n1, n2, k)
be the expected number of areas that adopt the product for a best ordering wheren1 is
number of areas of type1 andn2 is the number of areas of type2 in the marketk is sum
of decisions of vertices that have been scheduled so far. We note that deployment num-
berk is equal to difference of number of yes decisions and no decisions. Let thresholds
and initial acceptance probabilities for vertices of typei beci andpi. At any given time
in the strategy, letBi be the best possible result if an area of typei is scheduled next.
Depending on value ofk, we have the following cases (cases 2 and 4 will not occur if
c1 = c2):
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1. n1 = 0 ∨ n2 = 0: If all areas are of the same type, then all spreading strategies
are equivalent and we can choose any arbitraty spreading strategy for the remaining
areas.

2. c1 ≤ k < c2: In this case, areas of type1 will accept the ideaw.p. 1. Areas of type
2 will accept the idea with probabilityp2 and reject it with probability1− p2.

B1 =1 +B(n1 − 1, n2, k + 1)

B2 =p2 + p2B(n1, n2 − 1, k + 1) + (1 − p2)B(n1, n2 − 1, k − 1)

B(n1, n2, k) =max{B1, B2}

3. −c1 < k < c1: In this case, both types of areas will decide to accept or reject the
idea on basis of initial acceptance probabilities. Therefore:

B1 =p1 + p1B(n1 − 1, n2, k + 1) + (1 − p1)B(n1 − 1, n2, k − 1)

B2 =p2 + p2B(n1, n2 − 1, k + 1) + (1 − p2)B(n1, n2 − 1, k − 1)

B(n1, n2, k) =max{B1, B2}

4. −c2 < k ≤ −c1: In this case, areas of type1 will reject the idea with probability1
and areas of type2 will accept the idea with probabilityp2.

B1 =B(n1 − 1, n2, k + 1)

B2 =p2 + p2B(n1, n2 − 1, k + 1) + (1 − p2)B(n1, n2 − 1, k − 1)

B(n1, n2, k) =max{B1, B2}

5. k ≤ −c2: In this case, both types of areas will reject the idea. Therefore:

B(n1, n2, k) = 0

6. k ≥ cc2: In this case, both types of areas will reject the idea. Therefore:

B(n1, n2, k) = n1 + n2

This can easily be extended to any constant number of types. The time complexity with
t types isO(nt+1).

F Missing Proofs

F.1 Proof of Lemma 1

Proof. We prove this lemma by proving that:

Pr(Ik+t ≥ x;π) ≥ Pr(Ik+t ≥ x;π′), ∀t ∈ {1 . . . n− k} (19)

We note that the above impliesE(In;π) ≥ E(In;π
′). We prove that ifPr(Ik ≥

x;π) ≥ Pr(Ik ≥ x;π′) thenPr(Ik+1 ≥ x;π) ≥ Pr(Ik+1 ≥ x;π′) for all x ∈ Z.
This argument can be successively applied to prove (19). Letπ(k+ 1) = v. Xv will be
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1 iff either Ik ≥ cv andv accepts idea based on threshold rule or−cv < Ik < cv andv
decides to accept the idea based on initial acceptance probability pv. Thus:

Pr(Xv = 1) =Pr(Ik ≥ cv) + Pr(−cv < Ik < cv)pv

SubstitutingPr(−cv < Ik < cv) = Pr(Ik ≥ −cv + 1)− Pr(Ik ≥ cv), we have:

Pr(Xv = 1) =Pr(Ik ≥ cv) + (Pr(Ik ≥ −cv + 1)− Pr(Ik ≥ cv))pv

By rearranging the terms, we get:

Pr(Xv = 1) =Pr(Ik ≥ cv)(1− pv) + Pr(Ik ≥ −cv + 1)pv (20)

We are given thatPr(Ik ≥ x;π) ≥ Pr(Ik ≥ x;π′), ∀x ∈ Z. From this and from (20),
we have,Pr(Xv = 1;π) ≥ Pr(Xv = 1;π′). Thus,Pr(Ik+1 ≥ x;π) ≥ Pr(Ik+1 ≥
x;π′), ∀x ∈ Z.


	Scheduling a Cascade with Opposing Influences
	1 Introduction
	1.1 Related Work
	1.2 Our Results

	2 Notation and Preliminaries
	3 A Bound on Spread of Appealing and Unappealing Ideas
	4 Non-adaptive Marketing Strategy with Random Thresholds
	A Examples
	B Type Switching Approach
	C Hardness Result
	D Computing Expected Number of Adopters
	E Adaptive Marketing Strategy
	F Missing Proofs
	F.1 Proof of Lemma ??



