Skip to main content

Designing Budget-Balanced Best-Response Mechanisms for Network Coordination Games

  • Conference paper
Book cover Algorithmic Game Theory (SAGT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8146))

Included in the following conference series:

  • 1243 Accesses

Abstract

Network coordination games (NCGs) have recently received a lot of attention since they model several kinds of interaction problems in social networks. However, the performance of these games at equilibrium may be very bad. This motivates the adoption of mechanisms for inducing a socially optimal state. Many settings are naturally dynamical and thus we believe it is worth to consider the design of incentive compatible best-response mechanisms (Nisan, Schapira, Valiant, Zohar, 2011) for NCGs. Specifically, we would like to assign to players special fees in order to induce the optimum profile of an NCG. Moreover, we would like the mechanism to be budget-balanced, i.e., implementable with no cost.

We show that a budget-balanced and incentive compatible best- response mechanism for inducing the optimal profile of a two-strategy NCG always exists. Moreover, for such a mechanism, we investigate other properties inspired by envy-freeness, collusion-resistance and fairness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jackson, M.O.: Social and Economic Networks. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  2. Nowak, M.A.: Evolutionary Dynamics: Exploring the Equations of Life. Harvard University Press (2006)

    Google Scholar 

  3. Galam, S., Walliser, B.: Ising model versus normal form game. Physica A: Statistical Mechanics and its Applications 389(3), 481–489 (2010)

    Article  MathSciNet  Google Scholar 

  4. Kempe, D., Kleinberg, J.M., Tardos, É.: Influential nodes in a diffusion model for social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Young, H.P.: The diffusion of innovations in social networks. Economics Working Paper Archive number 437, Johns Hopkins University, Department of Economics (2000)

    Google Scholar 

  6. Ferraioli, D., Goldberg, P.W., Ventre, C.: Decentralized dynamics for finite opinion games. In: Serna, M. (ed.) SAGT 2012. LNCS, vol. 7615, pp. 144–155. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. Computer Science Review 3(2), 65–69 (2009)

    Article  Google Scholar 

  8. Beckmann, M., McGuire, C., Winsten, C.: Studies in the economics of transportation. Yale University Press (1959)

    Google Scholar 

  9. Cole, R., Dodis, Y., Roughgarden, T.: Pricing network edges for heterogeneous selfish users. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC 2003, pp. 521–530. ACM (2003)

    Google Scholar 

  10. Korilis, Y., Lazar, A., Orda, A.: Achieving network optima using stackelberg routing strategies. IEEE/ACM Transactions on Networking 5(1), 161–173 (1997)

    Article  Google Scholar 

  11. Monderer, D., Tennenholtz, M.: k-implementation. In: ACM Conference on Electronic Commerce, pp. 19–28 (2003)

    Google Scholar 

  12. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. Theor. Comput. Sci. 410(36), 3327–3336 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nisan, N., Schapira, M., Valiant, G., Zohar, A.: Best-response mechanisms. In: Innovations in Computer Science (ICS), pp. 155–165 (2011)

    Google Scholar 

  14. Escoffier, B., Ferraioli, D., Gourvès, L., Moretti, S.: Designing frugal best-response mechanisms for social network coordination games, http://www.lamsade.dauphine.fr/~ferraioli/papers/paris_paper.pdf

  15. Shapley, L.S.: A value for n-person games. Contributions to the Theory of Games 2, 307–317 (1953)

    MathSciNet  Google Scholar 

  16. Biedl, T.C., Chan, T.M., Ganjali, Y., Hajiaghayi, M.T., Wood, D.R.: Balanced vertex-orderings of graphs. Discrete Applied Mathematics 148(1), 27–48 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Escoffier, B., Ferraioli, D., Gourvès, L., Moretti, S. (2013). Designing Budget-Balanced Best-Response Mechanisms for Network Coordination Games. In: Vöcking, B. (eds) Algorithmic Game Theory. SAGT 2013. Lecture Notes in Computer Science, vol 8146. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41392-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41392-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41391-9

  • Online ISBN: 978-3-642-41392-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics