Skip to main content

Evaluation of Association Rule Quality Measures through Feature Extraction

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8207))

Abstract

The practical success of association rule mining depends heavily on the criterion to choose among the many rules often mined. Many rule quality measures exist in the literature. We propose a protocol to evaluate the evaluation measures themselves. For each association rule, we measure the improvement in accuracy that a commonly used predictor can obtain from an additional feature, constructed according to the exceptions to the rule. We select a reference set of rules that are helpful in this sense. Then, our evaluation method takes into account both how many of these helpful rules are found near the top rules for a given quality measure, and how near the top they are. We focus on seven association rule quality measures. Our experiments indicate that multiplicative improvement and (to a lesser extent) support and leverage (a.k.a. weighted relative accuracy) tend to obtain better results than the other measures.

This work has been partially supported by project BASMATI (TIN2011-27479-C04) of Programa Nacional de Investigación, Ministerio de Ciencia e Innovación (MICINN), Spain, and by the Pascal-2 Network of the European Union.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: Buneman, P., Jajodia, S. (eds.) SIGMOD Conference, pp. 207–216. ACM Press (1993)

    Google Scholar 

  2. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI/MIT Press (1996)

    Google Scholar 

  3. Balcázar, J.L.: Formal and computational properties of the confidence boost in association rules. To appear in ACM Transactions on KDD (2013), http://www.lsi.upc.edu/~balqui/

  4. Balcázar, J.L., Dogbey, F.K.: Feature extraction from top association rules: Effect on average predictive accuracy. In: 3rd EUCogIII Members Conference and Final Pascal Review Meeting (2013), http://www.lsi.upc.edu/~balqui/

  5. Bayardo, R., Agrawal, R., Gunopulos, D.: Constraint-based rule mining in large, dense databases. In: ICDE, pp. 188–197 (1999)

    Google Scholar 

  6. Borgelt, C.: Efficient implementations of Apriori and Eclat. In: Goethals, B., Zaki, M.J. (eds.) FIMI, CEUR Workshop Proceedings, vol. 90. CEUR-WS.org (2003)

    Google Scholar 

  7. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30(7), 1145–1159 (1997)

    Article  Google Scholar 

  8. Brin, S., Motwani, R., Ullman, J.D., Tsur, S.: Dynamic itemset counting and implication rules for market basket data. In: Peckham, J. (ed.) SIGMOD Conference, pp. 255–264. ACM Press (1997)

    Google Scholar 

  9. Ceglar, A., Roddick, J.F.: Association mining. ACM Comput. Surv. 38(2) (2006)

    Google Scholar 

  10. Fawcett, T.: ROC graphs: Notes and practical considerations for researchers. Pattern Recognition Letters 27(8), 882–891 (2004)

    Article  Google Scholar 

  11. Frank, A., Asuncion, A.: UCI machine learning repository (2010), http://archive.ics.uci.edu/ml

  12. Freitas, A.A.: Understanding the crucial differences between classification and discovery of association rules - a position paper. SIGKDD Explorations 2(1), 65–69 (2000)

    Article  Google Scholar 

  13. Fürnkranz, J., Flach, P.A.: ROC ’n’ rule learning—towards a better understanding of covering algorithms. Machine Learning 58(1), 39–77 (2005)

    Article  MATH  Google Scholar 

  14. Garriga, G.C., Kralj, P., Lavrac, N.: Closed sets for labeled data. Journal of Machine Learning Research 9, 559–580 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: A survey. ACM Comput. Surv. 38(3) (2006)

    Google Scholar 

  16. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal of Machine Learning Research 3, 1157–1182 (2003)

    MATH  Google Scholar 

  17. Lavrač, N., Flach, P.A., Zupan, B.: Rule evaluation measures: A unifying view. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 174–185. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  18. Lenca, P., Meyer, P., Vaillant, B., Lallich, S.: On selecting interestingness measures for association rules: User oriented description and multiple criteria decision aid. European Journal of Operational Research 184(2), 610–626 (2008)

    Article  MATH  Google Scholar 

  19. Liu, B., Hsu, W., Ma, Y.: Pruning and summarizing the discovered associations. In: Proc. Knowledge Discovery in Databases, pp. 125–134 (1999)

    Google Scholar 

  20. Luxenburger, M.: Implications partielles dans un contexte. Mathématiques et Sciences Humaines 29, 35–55 (1991)

    MathSciNet  Google Scholar 

  21. Mutter, S., Hall, M., Frank, E.: Using classification to evaluate the output of confidence-based association rule mining. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol. 3339, pp. 538–549. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Piatetsky-Shapiro, G.: Discovery, analysis, and presentation of strong rules. In: Proc. Knowledge Discovery in Databases, pp. 229–248 (1991)

    Google Scholar 

  23. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)

    Google Scholar 

  24. Tan, P.N., Kumar, V., Srivastava, J.: Selecting the right objective measure for association analysis. Information Systems 29(4), 293–313 (2004)

    Article  Google Scholar 

  25. Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A.F.M., Liu, B., Yu, P.S., Zhou, Z.H., Steinbach, M., Hand, D.J., Steinberg, D.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)

    Article  Google Scholar 

  26. Yin, X., Han, J.: CPAR: Classification based on predictive association rules. In: Barbará, D., Kamath, C. (eds.) SDM. SIAM (2003)

    Google Scholar 

  27. Zimmermann, A.: Objectively evaluating interestingness measures for frequent itemset mining. In: Li, J., Cao, L., Wang, C., Tan, K.C., Liu, B., Pei, J., Tseng, V.S. (eds.) PAKDD 2013 Workshops. LNCS, vol. 7867, pp. 354–366. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balcázar, J.L., Dogbey, F. (2013). Evaluation of Association Rule Quality Measures through Feature Extraction. In: Tucker, A., Höppner, F., Siebes, A., Swift, S. (eds) Advances in Intelligent Data Analysis XII. IDA 2013. Lecture Notes in Computer Science, vol 8207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41398-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41398-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41397-1

  • Online ISBN: 978-3-642-41398-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics