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Abstract.This paper presents design and simulation of a low cost and low false 
alarm rate method for improved cyber-state awareness of critical control sys-
tems - the Known Secure Sensor Measurements (KSSM) method. The KSSM 
concept relies on physical measurements to detect malicious falsification of the 
control systems state. The KSSM method can be incrementally integrated with 
already installed control systems for enhanced resilience. This paper reviews 
the previously developed theoretical KSSM concept and then describes a simu-
lation of the KSSM system. A simulated control system network is integrated 
with the KSSM components. The effectiveness of detection of various intrusion 
scenarios is demonstrated on several control system network topologies. 
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1 Introduction 

Resiliency and enhanced state-awareness are crucial properties of modern control 
systems. Especially critical infrastructures, such as energy production and industrial 
systems, would significantly benefit from being equipped with intelligent components 
for timely reporting and understanding of the status of the control system. This goal 
can be achieved via complex system monitoring, real-time system behavior analysis 
and timely reporting of the system state to the responsible human operators [1].  

In [2] a resilient control system was defined as follows: “… one that maintains 
state awareness and an accepted level of operational normalcy in response to disturb-
ances, including threats of an unexpected and malicious nature”. Here, the enhanced 
state-awareness is understood as a set of diverse performance criteria such as cyber or 
intelligent analysis that is used to maximize the adaptive capacity of the system to 
respond to threats. 

Falsification of physical system state can pose significant danger to the operation 
of a control system. During system state falsification, an intelligent adversary at-
tempts to deceive the operator with the intention to achieve desired manipulation of 
the control system without early detection. An intuitive way for achieving this task is 
modification of physical measurement values sent to the operators by injecting false 
information. Hence, protection of measurement values is of high importance. There 
exist crypto graphic techniques that provide sufficient level of information protection 
[3], [4]. However these techniques require increased computational cycles, increased 



power, and higher available network bandwidth, which might not be available on 
many currently deployed control systems. 

To address these issues, a novel low cost, low false alarm rate, and high reliability 
detection technique for identifying manipulation of critical physical process and falsi-
fication of system state was previously proposed [5], [6]. This technique, called 
Known Secure Sensor Measurements (KSSM), uses the idea of obtaining a randomly 
selected subset of encrypted (i.e. known secure) physical measurements that are sent 
in sequence after the plain-text (i.e. insecure and unencrypted) measurements used for 
control. The subsequent comparison of the randomly selected plain-text and the 
KSSM values reveals potential system falsification. By randomly modifying this se-
lected subset of KSSM sensors, a complex cyber-state awareness of the control sys-
tem and falsification of system state can be maintained while imposing as little addi-
tional computational and bandwidth cost as desired. Hence, by utilizing the physical 
measurements themselves for aiding cyber-security, the KSSM method differs from 
traditional approaches to network system security such as anomaly or signature detec-
tion systems [7]-[10]. 

This paper describes the design and simulation of the KSSM method. First, the 
overall architecture of the system is presented, followed by description of the two 
major components, Sensor Selector and Signal Analyzer. The Sensor Selector uses an 
algorithm to perform pseudo-random sensor selection based on multiple criteria. The 
Signal Analyzer contains a buffer of requested KSSM values and performs measure-
ment comparison and system state falsification detection. The designed KSSM system 
architecture was integrated with a virtual control system communication network. The 
performance of the system is demonstrated on several test scenarios. 

The rest of the paper is organized as follows. Section 2 reviews the previously pro-
posed KSSM concept, followed by description of the design and simulation of the 
KSSM enabled control system in Section 3. Experimental testing is presented in Sec-
tion 4 and the paper is concluded in Section 5. 

2 Known Secure Sensor Measurement Concept 

The concept of Known Secure Sensor Measurements was previously proposed in [5]. 
The KSSM technique constitutes a novel low cost, low false alarm rate, and high 
reliability detection technique for identifying malicious manipulation of critical phys-
ical processes and the associated falsification of system state. The fundamental idea of 
the method is to obtain a randomly selected subset of encrypted (known secure) phys-
ical measurements that are sent in sequence after the plain-text (unencrypted) meas-
urements used for control. The comparison of the randomly selected plain-text and 
KSSM values reveals potential falsification of system state. 

The developed KSSM concept was targeted for critical infrastructure control sys-
tems that lack robust crypto graphic techniques and have limited computational and 
communication bandwidth resources. It is important to note here that most critical 
infrastructures fit well within this targeted group. Hence, the KSSM method is widely 
applicable. 



The fundamental assumption of the KSSM method is that the intelligent attacker is 
able to compromise any of the components in the information layer of the control 
system. The information layer is a communication layer which communicates physi-
cal process measurements to the process control layer, where they are presented to the 
operator.  Fig. 1 depicts an exemplary hybrid energy production system with high-
lighted physical, information and process control layers. In addition, it is assumed that 
the attacker will not be detected in the system as long as no transmitted measurements 
values are modified or blocked. It is important to emphasize here that the KSSM con-
cept is intended not to detect anomalous process activity or whether the system func-
tions within its normal operation envelope. Instead, the KSSM concept is designed to 
verify the system state information presented to the operator and reject system state 
falsification due to adversarial sensor measurement value corruption. 

The main hypothesis of the KSSM concept is the idea that a small subset of sensor 
measurements, which are known to be secure (i.e. cannot be falsified in the physical 
layer), has the potential to significantly improve the observability of adversarial pro-
cess manipulation due to cyber-attack. Furthermore, randomly selecting this small 
subset of known secure sensors can harden the detection mechanism because which 

 
Fig. 1. Hybrid energy production facility [5]. 

  

 
Fig. 2. Schematic of a KSSM-enabled sensor [5]. 



sensor measurements are being secured at particular time cannot be predicted by the 
attacker. Finally, it is assumed that there is only limited communication bandwidth 
available and the size of the selected KSSM sensor subset can be selected such that 
the real-time control of the system is not disrupted. 

In order to allow protection against an intelligent adversary, it must be possible to 
trust specific components of the system. In the KSSM system a cryptographic sensor 
module constitutes this trusted component as depicted in Fig. 2. The cryptographic 
sensor may be KSSM enabled with software or hardware as a means to forward the 
plain-text measurement value Mi through a secure encryption module to produce a 
KSSM value Ei. If the particular sensor is part of the randomly selected subset of 
KSSM sensors, the encrypted measurement value Ei is sent to the control room after 
the plain-text measurement Mi. 

The KSSM control module resides in the control room of the plant. The module is 
responsible for performing selection of the random subset of KSSM-enabled sensors. 
In addition, the control module also compares the received KSSM values with the 
plain-text measurements in order to detect falsification of the system state. 

Fig. 3 schematically depicts the considered system state falsification scenarios and 
the counter-measures used by the KSSM system. The plain system state falsification 
is demonstrated in Fig. 3(a). Here, the sensor measurements Mi are potentially cor-
rupted by the attacker within the information layer. The falsified measurement values 
Ci reach the control operator. The basic idea of the KSSM system is depicted in Fig. 
3(b), where a subset of the KSSM-enabled sensors is requested to report encrypted 
measurement values Ei to the control room. In this specific example, there will be a 
mismatch between values Ci and the decoded value of Ei. Further, an attacker aware 
of the KSSM protection system might attempt to deceive the system by blocking the 
encrypted values Ei from reaching the control room, as shown in Fig. 3(c). However, 
the KSSM system randomly modifies the subset of KSSM-enabled sensors, thus mak-
ing it increasingly difficult for the attacker to design an attack with reliable detection 
delay. This is shown in Fig. 3(d), where the values C1 and E1 from the newly selected 

 (a) (b) (c) 
Fig. 3. Communication scenarios. 

  



KSSM-enabled sensor would produce a mismatch and indicate a presence of system 
state falsification. 

3 Known Secure Sensor Measurement System Simulation 

This section describes the design and simulation of the KSSM-equipped control sys-
tems. First the overall architecture is presented. Next its major components of Sensor 
Selector and Signal Analyzer are described in more detail. 

3.1 KSSM System Architecture 

The overall KSSM system architecture is depicted in Fig. 4. The system is com-
posed of two major parts, the KSSM control module and the communication network, 
which connects the control module with those sensors that are KSSM-enabled. The 
KSSM control module is composed of two main components, the Signal Analyzer and 
the Sensor Selector. All components monitor the network traffic in the control system 
and communicate among each other to perform effective system state falsification 
detection while minimizing the impact on the system’s communication bandwidth. 

 The Sensor Selector component is responsible for selecting a subset of 
KSSM-enabled sensors every time iteration. The sensor selection is performed using a 
tree-like sensor selection data structure, which resembles the known network topolo-
gy. The Sensor Selector uses several criteria, including subjective human input to 
calculate the selection weight of each sensor. A randomization algorithm is then ap-
plied to ensure representative sensor selection from the communication network. Eve-
ry time a subset of sensors is selected by the Sensor Selector a KSSM request is sent 
to the sensors and a KSSM record about the selection is stored in the Signal Analyzer. 

The Signal Analyzer is responsible for monitoring both the plain-text unencrypted 
and the KSSM encrypted network messages. Everytime a KSSM record about sensor 
selection is received from the Sensor Selector, the Signal Analyzer stores the record 
in a record buffer. Upon receiving the previously requested KSSM message from the 
network, the KSSM value is paired with its plain-text value stored in the record buffer 

 

 
Fig. 4. Architecture of the KSSM system. 



and their values are compared. The Signal Analyzer also keeps track of important 
network traffic statistics such as sensor availability and response latency, which are 
used for adjusting the sensor selection process. 

3.2 KSSM Sensor Selector 

The main task of the Sensor Selector is to perform randomized sensor selection 
every time iteration. To achieve this, the Sensor Selector contains an approximate 
model of the network topology in a form of a tree data structure. The root of the tree 
corresponds to the main communication node of the control system network. Branch-
es connect the root node to possibly multiple-levels of nodes. Each node corresponds 
to a sub-network in the real network system. Finally, leafs of the tree structure corre-
spond to individual KSSM-enabled sensors. It should be noted that it is not required 
for the tree structure to exactly match the real communication network topology. Ra-
ther, the branches of the tree should correspond to logical units in the control system 
network, in order to achieve evenly distributed sensor selection. 

The process of sensor selection is performed by randomly descending from the root 
of the tree to particular leaf. All branches in the selection tree emanating from particu-
lar node are assigned a specific selection probability, which guides the random de-
scending process. This method is repeated until the the new subset of KSSM enabled 
sensors has been selected. The branch selection probabilities are updated after selec-
tion of each sensor, so that more probability is distributed to the branches that were 
not assigned. The pseudo-code of this randomized sensor selection algorithm can be 
summarized as follows: 

 
Step 1: Initialize the sensor selection probabilities pij of each branch in the selec-

tion tree. 
 
Step 2: Repeat for all k KSSM sensors. 
 
Step 2.1: Set current node ni as root. 
 
Step 2.2: Repeat, until current node ni is a leaf. 
 
Step 2.2.1: Randomly select jth branch of current node ni based on branch selection 

probabilities pij. 
 
Step 2.2.2: If there exist unselected leafs in the sub tree connected to the jth branch 

descend to the jth children of current node ni. 
 
Step 2.3: Return the index of the sensor in the selected leaf. 
 
Step 2.4: Repeat until current node ni is a root 
 



Step 2.4.1: For all siblings of current node ni compute the new branch selection 
probability from their parent as: 

 

 

� �

��

�
�

�

�
	


�

�	�
�

ik
K

p
pp

ikpp
p ij

kjkj

kjkj

kj ,
)1(

,1
�
�

 (1) 

 
Step 2.4.2: Ascent to the parent of node ni. 
 
Coefficient� used in Step 2.4.1 controls the spatial diversification of the selected 

sensors. Values close to 1 will result in large spatial diversification (e.g. sensors sam-
pled in different areas of the network), while values closer to 0 will result in selected 
sensors being more likely to be close to each other (e.g. in the same sub-network). 
Parameter k denotes the cardinality of the selected KSSM sensor subset. 

This process of KSSM enabled sensor selection and selection weight updates is de-
picted in Fig. 5. Due to the re-distribution of branch selection weights, the subset of 
sensors is more likely to be distributed throughout the network. Hence, KSSM and 
plain text message loss rate due to random component failures in parts of the commu-
nication system can be reduced. 

After the subset of KSSM enabled sensors has been specified the Sensor Selector 
re-computes the initial branch selection probabilities in the selection tree to reflect the 
most current behavior of the communication system. These recomputed branch selec-
tion probabilities are used to initialize the tree parameters in Step 1. This process for 
computing the initial branch selection probabilities is composed of three parts: 1) 
sensor selection weight calculation, 2) bottom-up selection weight propagation, and 3) 
top-down selection probabilities normalization.  

The sensor selection weight is calculated for each KSSM-enabled sensor based on 
a weighted average of three parameters: availability, security and importance. The 
availability can be computed as the inverse value of the averaged time interval of 
obtaining the requested KSSM value from the particular sensor. When the sensor 

 
 (a) (b) 
Fig. 5. Sensor selection tree before (a) and after selection (b). The sensor selection  is de-
noted by red color.  



response time increases, its availability is decreased and the sensor will be selected 
less often to ease the work-load of the particular sensor and its part of the network.  

The security is computed as the averaged time-interval between receiving two 
mismatching KSSM-values and plain text values. Because random noise might cor-
rupt the KSSM messages, single mismatch should not immediately raise an alarm. 
However, when the frequency of mismatched messages is significantly increased the 
security is increased, which results in sensor being selected more often to quickly 
converge to final detection. Here, a significant increase is considered to be an increase 
above the normal frequency of mismatched measurement values due to ordinary 
communication noise. 

Finally, the importance attributed to a sensor is a subjective value provided by the 
operator, which can help to fine-tune the selection algorithm (e.g. some sensors might 
be more important for the control and thus should be sampled more often). In addi-
tion, the operator can specify the weighting coefficients for the weighted average of 
these attributes. 

 The bottom-up selection weight propagation proceeds in a recursive manner and 
its purpose is to propagate the sensor selection weights up the tree. The algorithm 
reads the selection weight from all children into their common parent, the weights are 
summed and recursively propagated to the higher level until the root node is reached. 

In the final stage, the selection weights need to be converted into branch selection 
probabilities. This is achieved by descending from the tree root to individual leafs and 
normalizing the selection weights for all branches emanating from each node. The 
normalization procedure ensures that all branch selection probabilities sum up to 1 for 
each node. 

3.3 KSSM Signal Analyzer 

The main task of the Signal Analyzer is to monitor the network traffic and detect 
potential falsification of system state. Every time a KSSM request is sent to a particu-
lar sensor a record about this is stored in the record buffer in the Signal Analyzer. 
Upon receiving the KSSM measurement value, the corresponding plain-text meas-
urement is looked up in the record buffer. The KSSM measurement is decrypted and 
compared to the plain-text value. A measurement mismatch can be used to indicate a 
potential presence of an intelligent adversary in the information layer of the system. 

The intelligent adversary who is aware of the KSSM system might attempt to avoid 
detection by preventing the KSSM values from reaching the Signal Analyzer. For this 
reason, the record buffer contains an upper limit on the number of active KSSM rec-
ords. When a KSSM message is blocked its plain-text counterpart will not be re-
moved from the record buffer and the capacity of the buffer will be decreased. When 
this capacity reaches the specified threshold, an indication of potential attempt to 
falsify the system can be reported. 

The Signal Analyzer also gathers important network traffic attributes, which are 
used to adapt the KSSM system to the specifics of the current network traffic. First, 
the time interval of requesting and receiving a KSSM value is computed for each 
sensor. This information is used to calculate the availability of individual KSSM-



enabled sensors. Next, the time interval between obtaining two mismatched plain-text 
and KSSM values for each sensor is being monitored. This information is used to 
calculate the security of individual sensors and used for sensor selection. Finally, the 
Signal Analyzer stores the response time of obtaining the plain-text measurements, 
which can be used to monitor and adjust the appropriate size of the requested KSSM 
sensor subset so that the response of the control system is not affected. This adaptive 
mechanism is explained below. 

The Signal Analyzer monitors the maximum response time of any plain-text sen-
sors and compares that to the requested allowed response time. For example, if the 
sensor values should be reported to the control room once every second than the max-
imum allowed response time can be set to 0.8 seconds to create a safety buffer. The 
difference between maximum and the allowed response time creates a feedback signal 
that could be used to adjust the number of sampled KSSM sensors so that the real-
time system response is not affected. When the maximum response time is below the 
allowed threshold for a certain period of time, the number k of sampled KSSM sen-
sors is increased by one. Similarly, when the maximum response time is above the 
allowed threshold for certain amount of time, the number k of sampled KSSM sensors 
is decreased in order to preserve the real-time response of the system. 

4 Simulation Results 

This section first describes the implemented virtual communication network used as 
an experimental test-bed. Next, a set of testing scenarios is used to demonstrate the 
performance of the proposed KSSM system. 

4.1 Network Emulator 

In order to validate the performance of the designed KSSM system a virtual com-
munication network was implemented. The network simulator models packet-based 
traffic in control system communication networks. The network is composed of 
communication nodes and sensor nodes. The communication nodes are equipped with 
packet buffers and routing tables. The packet buffer dispatches packets on first-in 
first-out basis. The sensor nodes can generate the plain-text measurement value as 
well as its encrypted version upon request.  

The network simulator can simulate various deterministic as well as stochastic 
properties of the network. For example, the desired through-put can be set for indi-
vidual network nodes as well as stochastic packet loss rates or packet corruption rates. 

The KSSM Control module is connected to the communication network interface, 
where KSSM requests can be passed into the network and plain-text and KSSM mes-
sages can be received. 

For the purpose of experimental testing a simple control system communication 
network has been constructed. The network gathers measurements from 9 sensors, 
which are grouped into 3 sub-networks as depicted in Fig. 6.  



4.2 Sensor Selection 

The purpose of the first testing scenario was to demonstrate the automatic adapta-
tion of the sensor selection algorithm to reflect the current behavior of the observed 
network traffic. In this scenario, the control system is run for 10,000 seconds and the 
sensor data are gathered once every second. In addition, k=2 KSSM values are re-
quested every second. The communication network is initialized with uniformly dis-
tributed time delay and packet loss and corruption rates throughout the entire network. 
Also, all of the selection criteria for individual sensors are weighted equally. Three 
events are used to simulate various changes of the environment to demonstrate the 
adaptation mechanism of the Sensor Selector. 

Event 1: At time t = 2500s a possible cyber-attack is simulated on sensor 9. This 
attack is implemented as an increased packet corruption rate for the communication 
node of sensor 9, leading to increased number of mismatched plain-text and KSSM 
messages from sensor 9. 

Event 2: At time t = 5000s the network traffic in sub-network 1 becomes congest-
ed, which is implemented as decreased through-put of particular communication 
nodes. Hence, the availability of sensors 1-3 is decreased. 

Event 3: At time t = 7,500s the operator decides to adjust the sensor selection 
mechanism via the HMI by assigning weight 1.0 to the importance attribute and de-
creasing the weight of the security and availability attributes to 0.1. In addition, the 
operator subjectively increases importance of sensor 5 to its maximum value of 1.0. 

Event 1 affects the security of sensor 9. The increased probability of obtaining an 
incorrect KSSM message from sensor 9 causes the time interval of receiving two 
mismatching plain-text and KSSM messages from sensor 9 to decrease. Hence, the 
security of this sensor is increased. This fact can be clearly observed in Fig. 7(a). 

Event 2 affects the availability of sensors 1-3. After the time delay for messages 
from sub-network 1 was increased, the response time of the KSSM messages from 
sensors 1-3 were increased. This resulted in decreased availability of sensors 1-3 as 
shown in Fig. 7(b). 

 
Fig. 6. Testing network topology.  



Fig. 8 shows the evolution of the sensor selection weight for individual sensors. It 
is apparent how the sensor selection weights are converging to a uniform distribution 
during the first 2,500s of the simulation. The diverse selection weights at the start of 
the simulation are due to the stochastic sampling process, which must be first aver-
aged over certain amount of time to obtain good initial results. Next, it is apparent that 
the increased security of compromised sensor 9 when event 1 occurs leads to its in-
creased selection weight. It can also be seen that the decreased availability of sensors 
1-3 when event 2 occurs leads to their lower selection weight.  

Finally, Event 3 at time 7,500s can be observed when the operator overrides the se-
lection criteria importance and modifies the selection weight, which increases the 
weight of sensor 5 due to its higher importance. 

To verify the influence of the sensor selection weight on the KSSM sensor sam-
pling process, Fig. 9 shows histograms of sensor selection for the four quarters of the 
simulation. It can again be observed that the increased value of the security parameter 
leads to more frequently selecting sensor 9 in Fig. 9(b) and the decreased availability 
of sensors 1-3 leads to their less frequent selection in Fig. 9(c). Finally, the higher 
importance of sensor 5 results in its more frequent sampling together with sensor 9, 
which was likely compromised by an attacker, as shown in Fig. 9(d). In summary, 
Fig. 9 demonstrates that the KSSM system adjusts the sensor selection algorithm to 
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Fig. 8. KSSM values mismatch period (a) and average time response for various KSSM sen-
sors (b). 

 

Fig. 7. Selection weight for different sensors during the test scenario. 
  



obtain more samples from likely compromised sensors and to obtain less samples 
from congested parts of the network. 

4.3 Variable network bandwidth 

The following test scenario was designed to demonstrate the automatic update of 
the number k of sampled KSSM messages. The essential property of the KSSM sys-
tem is that it should use the available communication bandwidth in the control system 
network without compromising its real-time response. In this scenario, the identical 
communication network as shown in Fig. 6 was used. The network was simulated for 
1,000s and the sensor measurements have been reported once every second. 

In order to achieve the requested real-time response of obtaining sensor measure-
ments once every second, a maximum desired response for plain-text measurement 
was set to 0.8s. For the initial 300s, the network was simulated with low average 
time-delay for individual network nodes (0.05s average latency of network node per 
packet). At time 300s the average time delay on the network nodes was increased to 
0.1s. Finally, at time 600s the average time delay was increased to 0.15s. Note that the 
actual time delay for a specific packet was computed using a uniform distribution 
with standard deviation of 0.02s centered at the average time delay value. 

Fig. 10 demonstrates this behavior of the system. First, Fig. 10(a) depicts the max-
imum observed response time of the plain-text measurements. It is apparent how this 
maximum response time increases at times 300s and 600s. Next, Fig. 10(b) shows the 
number k of selected KSSM sensors. The algorithm starts with k=0 KSSM sensors 
and first observes the maximum response time of the plain-text measurements. When 
this maximum response time is found to be below the desired threshold of 0.8s, the 

 
Fig. 9. Sensor selection histograms for different intervals of the simulation. 

  

 

 
 (a) (b) 
Fig. 10. Maximum response time of plain-text measurements (a) and the number of selected 
KSSM values (b). 



number k of selected KSSM messages is incrementally increased up to the maximum 
value of all 9 sensors sending encrypted messages. 

The first increase in time-delay at time 300s increased the maximum response time 
(~0.6s) but did not yet exceed the desired performance. However, when the time-
delay was again increased at time 600s, some of the plain-text measurements were not 
reported in the desired time and the KSSM system quickly decreased the number k of 
KSSM sensors, in order not to compromise the real-time response of the control sys-
tem. Next, the KSSM control module attempted to increase the number of KSSM 
samples and observe its impact on network response time. Eventually, the number of 
KSSM values stabilized at k=2, which provided the maximum level of cyber-state 
awareness given the available communication bandwidth. 

5 Conclusion 

This paper presented a design and simulation of a low cost, low false and high relia-
bility alarm rate method for improved cyber-state awareness of critical control sys-
tems - the Known Secure Sensor Measurements mechanism. The KSSM method re-
lies on the physical measurements to detect malicious falsification of the control sys-
tem’s state. The KSSM technique can be incrementally integrated with already in-
stalled control systems for enhanced resilience.  

First, the previously developed theoretical KSSM concept was reviewed and then 
its simulation was described. A virtual control system communication network was 
used to demonstrate the performance of the system. It was shown that the KSSM sys-
tem can adapt its parameters to specific network behavior including the operator’s 
request. Furthermore, it was demonstrated that the number of selected KSSM sensors 
can be automatically adapted to provide the maximum amount of cyber-state aware-
ness while minimizing the impacts on the real-time performance of the control sys-
tem. 

The presented work constitutes a first step towards successful demonstration of the 
feasibility of the KSSM concept. The future work will be focused on additional exper-
imental testing and implementation of the KSSM concept and on improving the sen-
sor selection algorithm via computational intelligence techniques. 
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