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Abstract. Permission-based security models are common in smartphone
operating systems. Such models implement access control for sensitive
APIs, introducing an additional concern for application developers. It is
important for the correct set of permissions to be declared for an appli-
cation, as too small a set is likely to result in runtime errors, whereas
too large a set may needlessly worry users. Unfortunately, not all plat-
form vendors provide tools support to assist in determining the set of
permissions that an application requires.
We present a language-based solution for permission management. It
entails the specification of permission information within a collection of
source code, and allows for the inference of permission requirements for a
chosen program composition. Our implementation is based on Magnolia,
a programming language demonstrating characteristics that are favorable
for this use case. A language with a suitable component system supports
permission management also in a cross-platform codebase, allowing ab-
straction over different platform-specific implementations and concrete
permission requirements. When the language also requires any “wiring”
of components to be known at compile time, and otherwise makes de-
sign tradeoffs that favor ease of static analysis, then accurate inference
of permission requirements becomes possible.

Keywords: language-based security, platform security architectures, se-
curity management, software engineering

1 Introduction

Permission-based security models have become commonplace in real-world, con-
sumer-faced operating systems. Such models have been adopted mostly for mo-
bile OS platform security architectures, partly because smartphones are high-
utility personal devices with privacy and usage cost concerns (regulations and
business models have also driven adoption [21]). Smartphones are also natively
third-party programmable (by our definition), and the wide consumer awareness
of “app stores” has made it almost an expectation that applications (or “apps”)
are available for installation in large numbers. While some smartphone platforms



(such as iOS1 and Maemo) rely on app store maintainers to serve as gatekeepers
against malicious (or maliciously exploitable) apps, many others (such as An-
droid, BlackBerry 10, and Windows Phone) have permission-based security to
restrict the damage that such apps might cause. Sole reliance on gatekeepers has
the drawback that “side-loading” of apps from another source is then more likely
to be prevented by the platform vendor (as is the case with iOS2).

A number of different terms are being used for essentially the same concept
of a permission. By our definition a permission is something that is uniquely
named, and something that a program (or rather its threads of execution) may
possess. Possession is required for a program to be allowed to take certain actions
(typically to call certain system APIs), or perhaps even to be the target of
certain actions (e.g., an Android app may not receive certain system messages
without the appropriate permissions [15]). A common reaction to an attempt
to invoke an unallowed operation is to trigger a runtime error, although the
concrete mechanisms for reporting such errors vary between platforms.

By the term permission-based security model we simply mean a security
model in which access control is heavily based on permissions. We assume at
least API access control such that different permissions may be required for dif-
ferent operations; i.e., there is finer than “all or nothing” granularity in granting
access to protected APIs. With judiciously chosen restrictions for sensitive APIs
a permission-based security model can serve as a central platform integrity pro-
tection measure. Such a model can also help permission-savvy end users (even
if they are in the minority [16]) avoid leakage of private data and malicious
exploitation of functionality.

Users, operators, and regulators all get some genuine benefit from platform
security measures. Software developers, however, tend to only be inconvenienced
by them, unless their software specifically requires functionality that platform
security happens to provide. There are restrictions in what features can be had
in an app, and how apps can be deployed (during a test/debug cycle, or in the
field). This can even motivate the maintenance of multiple variants of an app [18]
depending on what permissions are grantable for which distribution channel.

For most platforms the permissions required by an application must be de-
clared. Writing the declaration may not in itself be difficult, but permission
requirements are sometimes poorly documented [15], and keeping permission
information up to date is an extra maintenance burden. The burden can be sig-
nificant particularly for applications [18] that both exercise many sensitive APIs,
and also have variants with different feature sets.

We present an approach for inferring permission requirements for programs
constructed out of a selection of components in a permission-annotated code-
base. While it takes effort to annote all sensitive primitives with permission
information, the up-front cost is amortized through reuse in new program com-

1 In iOS 6, there is a small set of privacy-related permissions with application-specific
settings. Developers need not declare the required permissions.

2 As of early 2013, end-user installation of iOS applications is only allowed from the
official vendor-provided App Store.



positions. We have implemented the approach as one use case for the research
language Magnolia, designed to be statically analyzable to the extreme. Mag-
nolia avoids dynamic features, but has extensive support for static “wiring” (or
linking) of components. We argue that these characteristics combine to facilitate
permission inference without undue restrictions on expressivity. Magnolia also
supports cross-platform code reuse, as its interface and implementation specifica-
tions allow for declaration of permission information in such a way that different
platform-specific concrete permissions can be handled in an abstract way.

Magnolia is source-to-source translated into C++, and hence can be used to
target platforms that are programmable in C++, including most smartphone
platforms.3 Translation to a widely deployable language is an important part of
the overall portability picture, and also a possibility to abstract over differences
in implementations of said language. Cross-platform libraries and Magnolia’s
support for interface-based abstraction help with the API aspect of portability.
A third aspect is support for integration with platform vendor provided tools,
which remains as future work in the case of Magnolia.

Maintaining permission information together with source code should result
in better awareness of possible runtime permission failures when programming,
and also allow for various automated analyses of the permission requirements of
programs and program fragments. Such analyses, particularly when used in ways
that affect the construction of software (e.g., due to analysis-based generation
of permission declarations, or even code modifications), could also aid in the
discovery of errors in app permission declarations or platform documentation.

While our focus is on permissions, some of the techniques presented apply
not only to right of access, but more generally ability of access. E.g., from the
point of view of error handling it matters little if a runtime failure is caused
by lack of camera hardware, or lack of permission to access it. There are plat-
form differences in whether requesting a permission will guarantee its runtime
possession, and also in whether it is possible to similarly declare a (software or
hardware) feature requirement so that availability of the feature will be guar-
anteed after successful installation. For instance, specifying ID_REQ_REARCAMERA
in the manifest of a Windows Phone 8 app will prevent installation on devices
without a back-facing camera [22]. Given the similarities between permissions
and feature requirements we sometimes use the term access capability to imply
access ability in a broader sense than that determined by permissions.

1.1 Contributions

The contributions of this paper are:

– We give a brief overview of permission-based security models of a number
of current smartphone OSes, and survey the associated tooling (if any) for
inferring required permission information for applications.

3 Magnolia is not a symbiotic language (i.e., a language designed to coexist with an-
other one), however, and there is nothing in Magnolia that would prevent its com-
pilation into other languages. Still, the current implementation only targets C++.



– We present a language-based solution for declaring permissions for APIs
and inferring permission requirements for programs. The solution allows for
cross-platform programming by exploiting the host language’s support for
interface-specification-level abstraction over different implementations.

– We discuss static analysis friendly language design choices that favorably
affect permission inference accuracy, and argue that some of the expressive-
ness cost of the resulting lack of “dynamism” can be overcome by flexible
static composition.

To evaluate the presented solution we have implemented it based on the
Magnolia language, and made use of it in a small cross-platform porting friendly
application that requires access to some sensitive APIs. We have organized the
app codebase to facilitate growing it to target multiple different platforms and
feature sets, probably with different permission sets for different configurations.

2 Permission-Based Security Models in Smartphone
Operating Systems

Below we list distinctive aspects of the permission-based security models of a
number of current smartphone OSes (more wholesome surveys of the permission
and security models of some of the same platforms exist [2, 21]). We also discuss
any permission inference or checking tools in the associated vendor-provided
developer offerings. We provide a side-by-side summary of permission-related
details of the platforms in Table 1. Due to the newness of Tizen (no devices
have been released as of early 2013) and the similarity of its and bada’s native
programming offerings, we opt to exclude Tizen (but not bada) from the table.

Android allows for the definition of custom “permissions”. Permissions have an
associated “protection level”, with permissions of the “dangerous” level pos-
sibly requiring explicit user confirmation; hence a developer defining such
a permission should also provide a description for it, localized to different
languages [1]. A “signature” level permission does not have that requirement
as it is automatically granted to apps signed with the same certificate as the
app that declared the permission. No tools for inferring permissions for an
app are included in the Android “SDK Tools” [1] as of revision 21.1. There are
two third-party permission checkers capable of statically analyzing the per-
mission requirements of Android apps. The tools are named Stowaway [15]
and Permission Check Tool [30], and they both report on over/underprivilege
wrt manifest-declared permissions. Their accuracy is discussed in Section 7.

bada 2.0 The Eclipse-based IDE of the bada SDK 2.0.0 [27] incorporates an
“API and Privilege Checker” [26] tool that checks the project for privilege
violations (an API requiring a privilege group is used, but the privilege group
is not declared in the manifest) and unused privileges automatically during
packaging, and optionally during builds. The tool is for checking privileges,
and does not generate privilege group declarations for the manifest.



BlackBerry 10 (BB10) is notable in that (upon first running an app) a user
may grant only a subset of the “permissions” requested in the corresponding
“application descriptor file” [13], and it is then up to the app to react sen-
sibly to any runtime failures caused by unpermitted operations. BB10 also
has limited support for running (repackaged) Android applications, with a
number of Android features and permissions being unsupported [12].

MeeGo 1.2 Harmattan access control makes use of traditional “credentials”
including predefined Linux “capabilities”, Unix UID and GID and supplemen-
tary groups, and file system permissions. Harmattan adds to these by intro-
ducing fine-grained permissions known as resource “tokens”, as supported
by the Mobile Simplified Security Framework (MSSF) [23]. Granting of cre-
dentials is policy-based, and consequently (as of early 2013 and Harmattan
version PR1.3) app credential information is not shown to the user, either
in the app Store or under installed Applications. The aegis-manifest tool
performs static analysis of binaries and QML source. It generates a manifest
file listing required credentials for a program, but may fail in exceptional
cases. Dynamically determined loading (e.g., via dlopen) or invocation (e.g.,
via D-Bus) of code are possible causes for the static scanner failing to detect
the full set of required credentials.

Symbian v9+ Symbian OS has had a “capability-based security model” since
version 9 [19]. It is unusual in that both executables and DLLs have “ca-
pabilities”. A process takes on the capabilities of its executable. Installation
requires code signing with a certificate authorizing all the capabilities listed
in any installed binaries; a self-signed certificate is sufficient for a restricted
set of capabilities. Any loaded DLLs must have at least the capabilities of
the process. There is a “Capability Scanner” plug-in for the Eclipse-based
Carbide.c++ IDE that ships with some native Symbian SDKs; the plug-in
is available starting with the Carbide.c++ release 1.3 [24]. The scanning
tool presents warnings about function calls in a project’s codebase for which
capabilities are not listed in the project definition file. The tool is only able
to estimate the required capabilities.

Tizen 2.0 The Tizen 2.0 SDK [29] release introduced a C++ based native ap-
plication framework, which appears to have bada-derived APIs. The per-
missions in Tizen are called “privileges”; the set of permissions (and their
naming) in Tizen differs from those of bada. Privileges are specified in a
manifest file in an installation package, and there is no tool support for au-
tomatically inferring and generating the privilege requests. However, as with
bada, the Tizen SDK includes an “API and Privilege Checker” [28] tool for
checking for potential inconsistencies between specified privileges and APIs
being used in an application. The tool may be enabled for automatic checks
during builds or code editing, and it may detect either under or overprivilege.

Windows Phone 8 (WP8) has a security model in which the kernel is in the
“Trusted Computing Base” “chamber”, and where OS components, drivers,
and apps are all in the “Least Privilege Chamber” (LPC) [20]. Software in the
latter chamber may only directly invoke relatively low-privilege operations,
and only when in possession of the appropriate “capabilities”. All capabilities
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Table 1. Smartphone platform permissions and tools support.

are user grantable, and the requested capability set of each app is disclosed
in Windows Phone Store; some capability requirements are displayed more
prominently than others. “Hardware requirements” may also be specified,
and an app is not offered for phone models not meeting the requirements.
The Windows Phone SDK 8.0 does not contain capability detection tools for
apps targeting WP84, nor (as of early 2013) are such apps programmatically
capability analyzed during Store submission [22].

3 The Magnolia Programming Language

Magnolia [7] is a research language that aims to innovate in the area of reusabil-
ity of software components. Safe composition of reusable components requires
4 Windows Phone SDK 8.0 has a Visual Studio IDE integrated “Store Test Kit” that
may be used to inspect a Windows Phone OS 7.1 targeting app and list the capabil-
ities required by it. Windows Phone OS 7.1 is not natively programmable by third
parties, and hence not a smartphone OS per our definition.



strict specification of component interfaces—sometimes referred to as APIs (ap-
plication programmer interfaces) if semantic content is implied. A description
of an API in Magnolia is given using the concept construct; a concept declara-
tion can be thought of as an incomplete requirements specification. It specifies
one or more abstract types, some operations on those types, and the behavior
of those operations (in the form of axioms). Each concept may have multiple
implementations that provide data structures and algorithms that satisfy its be-
havior. Each implementation, in turn, may satisfy multiple concepts.

One kind of operation that may be defined in Magnolia is a procedure. A
procedure has no return values, but may modify its arguments according to
specified parameter modes [6]. Legal parameter modes include obs (observe; the
argument is read-only), upd (update; the argument may be changed) and out
(output; the argument is write-only) [8]. A simple procedure that only outputs
to a single parameter may equivalently be defined in a more “sugary” form as
a function, and regardless of choice of declaration style, invocations to such
operations may appear in expressions.5 The keyword call is used to invoke an
operation as a statement. A predicate is a special kind of function yielding truth
values, and taking zero or more appropriately typed expressions as arguments.
A predicate application as well as TRUE and FALSE are predicate expressions, and
more complex predicate expressions are built using logical connectives.

The notion of partiality of an operation, meaning that the operation is not
valid for all values that its parameter types could take, is central to Magnolia.
Such a restriction can be specified for an operation. In the API it takes the
form of a guard [4] with a predicate expression, which may include invocations
to functions and predicates. The more fine-grained notion of alerts [5] is the
corresponding partiality notion in implementations. Alerts are an abstraction
over pre/postconditions and error reporting, and each partial function is tagged
with a list of alert names and the corresponding conditions that trigger the
alerts. The set of defined alert names is user extensible and partially ordered,
possible to organize as a directed acyclic graph.

alert CameraAccessAlert;
alert NoCamera <: CameraAccessAlert;
alert NoAccessToCamera <: CameraAccessAlert;

predicate deviceHasCamera() = Permission;
procedure takePicture(upd w : World, out p : Picture)
alert NoCamera unless pre deviceHasCamera()
alert NoAccessToCamera if throwing PermissionDenied
alert NoAccessToCamera if throwing CameraInUse;

Here the alert names NoCamera and NoAccessToCamera are specialisations of the
alert name CameraAccessAlert. The procedure takePicture has three possible er-
ror behaviors. The precondition test calling the predicate deviceHasCamera checks
whether the device has a camera; if not, it would not be meaningful to use the

5 In Magnolia, an expression always yields a single value; i.e., there are no multi-valued
expressions such as (values 1 2) in Racket.



procedure. The two other conditions have the same alert name, and are triggered
by the procedure implementation throwing one of two exceptions.6

A program is a special implementation in that its operations are made avail-
able as “entry points” to a piece of software that is composed in Magnolia. The
Magnolia compiler translates Magnolia code into C++ source code, and produces
a command-line interface wrapper for the program through which the exported
operations may be invoked.

Due to Magnolia’s explicit static linking of components (as declared in source
code), all data structures and algorithms corresponding to a program’s types and
operations (respectively) are known at compile time. Programs are statically
typed, and there is no subtyping or dynamic dispatch (as e.g. in the case of
C++ virtual functions). There are also no first-class functions (or even function
pointers) to pass by value for parameterizing operations at runtime; any such
parameterization must be done statically by specifying concrete operations used
to implement a concept.

The static nature of Magnolia means that the actual target of an operation
invocation appearing in program code is always statically known. Due to this it
is possible to tell whether calls to a given operation appear in a given program
composition, and any definitions for operations that have no invocations may
be dropped for purposes of optimization or full-program analysis. Still, even in
Magnolia’s case it is generally not possible to tell if an operation appearing in
a program actually gets invoked, as relevant facts about program runtime state
or how far execution gets to proceed are generally not known at compile time.

4 Language Support for Permissions

Here we design a way to model permissions (and more generally, access capabil-
ities) in Magnolia. As we prefer to keep Magnolia’s core language simple, again
for ease of analysis, we want to avoid feature-specific language extensions where
possible. In this case we can do so by mapping permissions onto the Magno-
lia alerts system. The syntax may not always be as convenient as it could be,
but that could be fixed through superficial syntactic transformations; we do not
consider alternative syntaxes here.

The execution of a program consists of operations on the program state, and
we want to be able to determine the permission requirements of all operations
appearing in Magnolia code. To allow for this the permissions must either be
declared, or it must be possible to infer them based on the implementation of
the operation (i.e., its body). Magnolia currently allows an operation to be im-
plemented either in Magnolia or in C++; for the former we can infer permissions
by examining the language, but not for the latter. Any permission requirements
for C++ operations will therefore have to be declared.

6 In real-world code we might want different alert names to distinguish between errors
of a transient (CameraInUse) and permanent (PermissionDenied) nature. On most
platforms application permissions are fixed at install time.



Permission-protected operations are associated with requirements, i.e., pre-
conditions, as dictated by the platform APIs. We can state the preconditions
as alerts with predicate expressions, noting that a permission restriction gives
us two separate concerns: (1) we want to know of the permission requirement
so that we can request the permission, and hence try to prevent runtime errors;
and (2) we want to be able to handle any related errors. For case (1) we want
platform-specific permission names, while for case (2) we would like abstract,
platform-agnostic error names, probably relating to the operation. The example
in Section 3 had the latter kind of names, namely NoCamera and NoAccessToCamera.

For storing platform-specific permissions we essentially just want to have
the predicate expressions as named properties of operations. Had we support
for convenient scripting of compiler-assisted queries we would not necessarily
require fixed, predefined naming, but might rather choose any descriptive name
to use as a search key to find the relevant expressions. The built-in support for
permission inference in Magnolia currently uses the name RequiresPermission for
this purpose (as suggested in Section 6, it might sometimes be desirable to use
other names). We use RequiresPermission to “tag” permission preconditions, and
each permission appearing in a precondition is defined as a “dummy” predicate.

As such predicates merely represent static properties, they are not intended to
actually trigger an alert at runtime. This can be ensured by treating Requires-
Permission as special and not inserting a precondition check for it. A more
general alternative is to define the predicates as TRUE, leaving any generated
check as dead code. On most platforms we can assume that the program is only
started if the declared permissions have been granted, but there may be reasons
for not requesting all inferred-as-required permissions. Permission-related pre-
condition violations are thus possible, and we want them trapped as declared for
their platform-agnostic alerts. It may be more efficient to capture any platform-
specific runtime “permission denied” error than to actually implement a sensible
predicate that checks for possession of the associated permission.

The Magnolia compiler supports scavenging a program for its operations
(which, as mentioned in Section 3, are known in Magnolia) and respective per-
mission requirements, provided the operations’ permissions are specified as sug-
gested above. (This approach also generalizes to other access capabilities, e.g.
Windows Phone hardware requirements.) The result is conservative, but can
only err on the side of too many permissions, assuming correct annotations. One
source of inaccuracy is the currently indiscriminate inspection of all operations.
Any dead code elimination done by the compiler happens later in the pipeline;
such optimization would be beneficial, particularly if data-flow sensitive.

The second source of inaccuracy comes from the way we build the result.
Perhaps the most accurate way to represent the result would have been as a
single predicate expression such as BLUETOOTH() && CAMERA() && (ACCESS_COARSE_
LOCATION() || ACCESS_FINE_LOCATION()), built as a collation of the relevant pred-
icate expressions. Currently, however, we just build a set of permissions such as
{BLUETOOTH, CAMERA, ACCESS_COARSE_LOCATION}. This may produce suboptimal re-



sults, as concrete choices must be made between logical alternatives. Our current
implementation produces a set, and picks the left choice from OR-ed permissions.

Platform-provided sensitive operations typically require a fixed set of permis-
sions, but there are many exceptions that motivate allowing the use of logical
expressions to at least specify permission requirements, even if we do not al-
ways make optimal use of the specification. Let us consider the LocationManager
class of Android OS. Its getLastKnownLocation(String) method requires either
ACCESS_FINE_LOCATION, or at least ACCESS_COARSE_LOCATION, depending on the “lo-
cation provider” specified as the sole argument. The NETWORK_PROVIDER supports
both coarse and fine grained positioning, and no SecurityException should get
thrown as long as either permission has been requested (and granted). If we
implement a network positioning specialized version of the operation—perhaps
named getLastKnownNetworkLocation—then we may declare:

procedure getLastKnownNetworkLocation(upd w : World, out l : Loc)
alert RequiresPermission unless pre ACCESS_COARSE_LOCATION() ||

ACCESS_FINE_LOCATION()
alert LocationAccessNotPermitted if throwing SecurityException
alert IllegalArgument if throwing IllegalArgumentException
alert NotFound if post value == null;

We are using a platform-agnostic LocationAccessNotPermitted alert to allow
permission failures to be handled portably. The Android-specific permissions
we are stating as a predicate expression tagged with RequiresPermission. Other
possible errors for the operation are also mapped to alerts to allow handling.

For other platforms we would probably require a different (native) imple-
mentation of the operation, also with different error-to-alert mappings declared
similarly to the above. E.g., on Windows Phone a UnauthorizedAccessException
typically gets thrown on permission errors, whereas on Symbian one can gener-
ally expect a Symbian-native leave (a form of non-local return) with the error
code KErrPermissionDenied. Interestingly, there are APIs (such as those of the Qt
cross-platform application framework) that have been ported to different plat-
forms, but which still necessarily have platform-specific permission requirements.
With such APIs one could have a single (native) implementation but multiple
Magnolia declarations (with different alert clauses).

5 Experience with Application Integration

For trying out the solution we created a small software project named Anyxporter
(Any Exporter) [11], with the goal of building a codebase that would serve as
a basis for creating various programs for exporting PIM (personal information
manager) data in different (probably textual) formats. We chose the PIM export-
ing theme for exercising permissions as: (1) there are a number of different data
sources, possibly requiring different permissions; (2) different storage/transmis-
sion options for exported data would likely require further permissions; and (3)
the idea of building a “suite” of programs should allow us to keep the permission
requirements of each individual program reasonably small, which may make a



user feel safer in installing a given variant (since the program does not ask for
permissions to do anything other than what the user wants done).

Anyxporter currently includes only one proper PIM data source, for reading
contact data. Its implementation requires the Qt Mobility Contacts API [25].
Said API is implemented [25] at least for Symbian (S60 3rd Edition FP1 and
later), Maemo 5, and Harmattan, and also for Qt Simulator for testing purposes
(without real contact data). For targets for which the API is not available, we
have also implemented a “mock” data source that yields fixed contact data, and
this data source has proved useful in testing other components of the software.

Of the targets supported by Qt Mobility Contacts, Symbian and Harmattan
have permission-based security models, and our discussion here focuses on them.
On Harmattan using the Qt API to read contact data requires the TrackerRead-
Access, TrackerWriteAccess, and GRP::metadata-users credentials, whereas on
Symbian only ReadUserData is required; clearly, the Symbian implementation of
the API is better in respecting the principle of least privilege.

The default output option is to save to a file, which for a suitably chosen
filesystem location requires no manifest-declared permissions either on Symbian
or Harmattan. Anyxporter also has initial support for HTTP POST uploads
of output files, implemented in terms of Qt 4.8 networking. Qt 4.8 is mostly
unavailable on our example platforms, but Internet access generally requires no
credentials on Harmattan, and the NetworkServices capability on Symbian.

Formatting of data for output is done using Lua scripts, and we currently
include an XML formatting option for contact data. A Lua virtual machine (VM)
instance is used as the intermediate representation (IR) between the different
input and output options; in principle, data of the same kind (e.g. contact data)
could have the exact same Lua object representation, regardless of concrete data
sources and output formatters. Through careful choice of enabled Lua libraries
we are preventing Lua code from doing anything other than “pure processing”;
it cannot access platform APIs or the file system, and hence should require no
permissions (or analysis for inferring permissions) on any platform.

The various library components of the app, such as file system interface,
contact data source and Lua script interface, are specified by concepts. The main
app code is programmed against these concepts, so that it is independent of the
target platform. The app code is unaware of the exact nature of the permissions,
though it may make use of and handle generic permission denied alerts.

Each library component has multiple implementations, one for each sup-
ported platform, with each implementation specifying platform-specific permis-
sions. For example, the plain streams-based file system interface uses the follow-
ing permission predicates:

predicate CXX_FILE_CREATE() = Permission;
predicate CXX_FILE_WRITE() = Permission;
predicate CXX_FILE_READ() = Permission;
predicate CXX_FILE_DELETE() = Permission;

A particular version of the app is built by composing the main app code with
the platform-specific library implementations:



Fig. 1. Hover information for a program in the IDE shows which permissions are en-
abled and disabled.

program CxxEngine = {
use Engine; // application logic
use CxxFileSys; // generic C++ versions of the library components
use CxxLuaState;
// use the ’mock’ data source
// the data source mapper will apply ’exportEntry’ to each data entry
use MockDataSourceMapper[map => mapDataSource, Data1 => File, Data2 =>

LuaState, f => exportEntry];
};

Our system collects all the permissions used by CxxEngine, defines the value of
the relevant predicates to be TRUE (and the predicates for the unused permissions
to be FALSE), and then outputs the permission list in a text file, together with
the C++ code for the program. Figure 1 shows an IDE display with the inferred
permission requirements.

6 Problematic Permission Requirements

It is a Magnolia philosophy that incomplete specifications are okay, and that
specifying as much as is convenient is likely to give a good return for effort.
Documented platform permission requirements are generally straightforward for
individual operations, and it is unfortunate if they do not directly translate
into code, as one must then expend effort to considering how to best specify
them without harmful inaccuracies. There are real-world permission require-
ments whose accurate and convenient specification challenges our design.

It is not uncommon for the permission requirements of a platform operation
to depend on its arguments. Such requirements can be specified as a predicate
expression for an alert, as shown by the example below. However, as argument
values are generally not statically known, the operation is no longer guarded
by a static predicate expression. Any permission analysis trying to determine
the permission requirements of a program will then require a policy regarding
how to translate such expressions to static ones without underprivilege or too
much overprivilege. Perhaps a better alternative is to (where possible) divide
the operation into multiple ones with static predicate expressions. We did so in
a similar example in Section 4 by defining a location provider specific operation
for a provider known to support coarse-grained positioning.



procedure getLastKnownLocation(upd w : World, out l : Loc,
obs p : Provider)

alert RequiresPermission unless pre ACCESS_FINE_LOCATION() ||
(supportsCoarse(p) && ACCESS_COARSE_LOCATION());

We have discussed declaring different permissions for different platforms,
but there are also permission differences between different releases of the same
platform. On Android, the permissions for some operations have changed over
time due to subtle and innocuous code changes [3] in their implementation. As
such changes tend to only affect relatively few APIs and operations, it may
be inconvenient to have to give separate implementation declarations in these
cases. One possible, pragmatic solution may be to give different alert clauses for
different platform releases. For example, we might generally specify AndroidPerm
alerts for Android, but in some [3] cases use release specific alerts:

alert AndroidPerm8 <: AndroidPerm; // Android 2.2 (API level 8)
alert AndroidPerm9 <: AndroidPerm; // Android 2.3 (API level 9)
procedure startBluetoothDiscovery(upd w : World)
alert AndroidPerm8 unless pre BLUETOOTH()
alert AndroidPerm9 unless pre BLUETOOTH() && BLUETOOTH_ADMIN();

7 Related Work

Most of the literature on permissions is focused on Android, while our approach
is to exploit the abstraction facilities of Magnolia in order to create platform-
agnostic solutions. In Section 2 we already mentioned Stowaway [15] and Permis-
sion Check Tool [30], tools for analyzing the permission requirements of Android
apps statically. As both tools are geared towards checking already declared per-
missions against code, the issue of deriving a concrete set of permissions to de-
clare is perhaps less prominent; as explained in Section 4, the Magnolia compiler
requires a policy for resolving logical permission expressions into sets.

Both Stowaway and Permission Check Tool resort to heuristics due to com-
plexities of language and execution environment; heuristics-demanding complex-
ities relating to language should not arise in the context of Magnolia. Stowaway’s
analysis appears more comprehensive than that of Permission Check Tool in that
it attempts to handle reflective calls and Android “Content Providers” and “In-
tents”. Magnolia has no reflective calls, and we propose that permissions be de-
clared for all external-facing interfaces. Permission Check Tool works by analyz-
ing source code using Eclipse APIs, whereas Stowaway takes Dalvik executable
(DEX) files as input; the Magnolia ideal is to have programmable language in-
frastructure for custom analyses of semantically rich source code.

The Stowaway authors tackled poor platform documentation by determining
Android 2.2 API permission requirements through API fuzzing. The PScout [3]
tool has been found to discover more complete Android OS permission informa-
tion. It performs a static reachability analysis between Android API operations
and permission checks to produce a set of required permissions for each op-
eration. Like our permission inferrer, PScout does path-insensitive analysis on



source code. PScout’s policy for “expression-to-set translation” is to take the
union of all appearing permissions, which is more conservative than ours.

PScout has been used to extract permission specifications for multiple ver-
sions of Android. We are not aware of such analyses for other OSes, and problems
of poor API documentation are compounded for cross-platform programming.
With a suitably accurate and complete permission map available for a platform,
one might imagine annotating a primitive with its set of sensitive operations
rather than its permission requirements, allowing for the latter to be inferred.

The kind of variability imposed by access capabilities is commonly handled
using feature models [9, 10]. As shown in Section 4, access capabilities are asso-
ciated with specific operations of an API, thus letting us use the alerts system
of Magnolia for modeling their variability.

nesC [17] is a prominent example of a programming language with a program-
ming model that is similarly restricted as that of Magnolia. Like Magnolia, nesC
does static wiring of components so that types and operations become known
at compile time; nesC even performs static component instantiation to avoid
the overhead of dynamic memory management. The static nature of the lan-
guage gives rise to a number of possibilities for accurate program analysis. E.g.,
the nesC compiler itself performs static whole-program analysis to detect data
races. As nesC code is amenable to such analyses and the language also features
interface-based abstraction support, we believe it would be a suitable substrate
for a cross-platform permission inference solution. However, permissions are not
applicable to TinyOS programming, which presently is nesC’s primary domain.

As demonstrated by tools such as VCC [14], even unsafe languages (such as
C) can be made static analysis (or verification) friendly with a suitably struc-
tured programming style and the addition of semantic information in the form of
annotations. Additional annotations could also be used for permissions. Anno-
tating an existing language is a valid implementation strategy for an analyzable
language, with the advantage of avoiding another, full language layer. Magnolia’s
ground-up design for analyzability is likely cleaner, and the language can also
be used merely as a tool for assembling programs out of C++ components.

8 Conclusion

Permissions are among the nuisances that software developers have to deal with.
Language-based technology cannot lift access control restrictions, but it can help
manage them, and reduce the chance of uncleanly handled permission errors oc-
curring. Appropriate tools support enables automated analyses for determining
a set of permissions that (if granted) will mean that no permission-caused run-
time failures will occur. Suitable language can also help handle runtime failures
in a portable manner, using abstract, concept or operation specific (not platform
specific) permission failure reports and handlers.

We have presented such language and tools support. Our design relies on
the base language taking care of: enforcing a programming style that does not
prevent accurate static reachability analysis; and encouraging interface-based



abstraction. Mere ability to declare permission information in a language is not
special, as many languages (e.g., Java and Python) even support annotations as
a way to attach custom attributes to declarations.

In Magnolia, the base language of our implementation, we can use core
language such as predicates and alerts to express permission conditionality
and errors. Cross-platform interfaces may be exposed as concepts, and different
implementations and/or alert declarations may be used to express platform dif-
ferences. Coupled with tooling, code analyses (and also transformations) can be
performed based on such declared information and what it implies.

In Magnolia, “dynamism” can only be allowed in a controlled way for cor-
rect permission analysis, and even then only outside the language. Analyzable,
“static” language can be sugar-coated with convenient syntax, but certain fa-
miliar constructs are not directly transferable to Magnolia; e.g. a “traditional”
higher-order map operation cannot be defined as functions cannot be passed as
(runtime) arguments. Magnolia therefore carries some cost to expressiveness and
developer familiarity, but offsets that by offering rich compile-time semantic in-
formation. Different language design tradeoffs could probably be made, while
still allowing for accurate cross-platform permission inference. We see value in
exploring awareness creating and preventative measures against potential soft-
ware failures, whether caused by access control restrictions or other reasons.
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