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Unconditionally stable schemes for

non-stationary convection-diffusion equations

Nadezhda Afanasyeva, Petr Vabishchevich, Maria Vasil’eva

Abstract

Convection-diffusion problem are the base for continuum mechan-

ics. The main features of these problems are associated with an indef-

inite operator the problem. In this work we construct unconditionally

stable scheme for non-stationary convection-diffusion equations, which

are based on use of new variables. Also, we consider these equations

in the form of convection-diffusion-reaction and construct uncondi-

tionally stable schemes when explicit-implicit approximations are used

with splitting of the reaction operator.

1 Introduction

Convection-diffusion equation are basic in the mathematical modelling of the
problems of continuum mechanics. The main features of these problems are
connected with the nonseldadjoint property of elliptic operator and dom-
ination of convective transport. When considering compressible media, an
operator of convection-diffusion problem is indefinite. In this case, given pro-
cess can be nondissipative, i.e. norm of the homogeneous problem solutions
does not decrease with time. This behavior of the norm solutions need to
pass on the discrete level in choosing of approximations in time.

In the numerical solution of non-stationary problems for convection-diffusion
equations the most widely used two- and three-layer scheme. Investigation
of the stability and convergence of approximate solutions can be performed
using the general theory Samarskii A. A. of stability (correctness) of operator-
difference schemes [3, 4]. Must be kept in mind that for convection-diffusion
problems direct application of the general stability criteria can be difficult
due to non-selfadjoint operators. Note also that, in view of indefinite operator
of problem we need to oriented ̺-stable (̺ > 1) operator-difference schemes.
In the solution non-stationary problems of long periods of time preference
should be given asymptotically stable schemes [5]. For these schemes ensures
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the correct behavior of the solutions with the release of the fundamental
solutions for large time and damping of others.

In this paper, we construct unconditionally stable scheme for the approxi-
mate solution of non-stationary convection-diffusion problems. Such schemes
can be applied to other problems with an indefinite operator. The study con-
ducted by the example of a model two-dimensional boundary-value problem
in a rectangle. Used the simplest approximation of the operators of diffusive
and convective transfer on a uniform rectangular grid. Constructed uncondi-
tionally ̺-stable difference scheme based on the introduction of new variables
and the explicit-implicit approximation.

2 The convection-diffusion problem

We consider the Neumann problem in a rectangle for the non-stationary
convection-diffusion equation. For simplicity, assume that the coefficient of
diffusion transport is a constant (independent of time, but depends on the
point of the computational domain). The coefficient of convective transport
is natural to consider the variables both in space and time.

In the rectangle

Ω = {x | x = (x1, x2) , 0 < xα < lα, α = 1, 2}.

We consider the non-stationary convection-diffusion equation with the con-
vective transport in divergent form,

∂u

∂t
+

2
∑

α=1

∂

∂xα
(vα (x, t)u)

−

2
∑

α=1

∂

∂xα

(

k(x)
∂u

∂xα

)

= f (x, t) , x ∈ Ω, 0 < t ≤ T,

(1)

in the standard assumptions k1 ≤ k (x) ≤ k2, k1 > 0, T > 0 . This equation
is supplemented by Neumann boundary conditions

k (x)
∂u (x, t)

∂n
= 0, x ∈ ∂Ω, 0 < t ≤ T. (2)

For the unique solvability of the nonstationary problem the initial condition
is given

u (x, 0) = u0(x), x ∈ Ω. (3)
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On the set of functions u (x, t), which satisfy the boundary conditions (2),
non-stationary convection-diffusion problem written in the form of differential-
operator equation

du

dt
+Au = f(t), A = C(t) +D, 0 < t ≤ T. (4)

The diffusion operator D is defined by

Du = −

2
∑

α=1

∂

∂xα

(

k (x)
∂u

∂xα

)

and convection operator C

Cu =
2

∑

α=1

∂

∂xα

(vα (x, t)u) .

Cauchy problem is considered for the evolution equation (4):

u (0) = u0. (5)

For convection operator we have the following representation

C = C0 +
1

2
div vE , C0u =

1

2

2
∑

α=1

(

vα (x, t)
∂u

∂xα
+

∂

∂xα
(vα(x, t)u)

)

,

where E — the identity operator and C0 -the operator of convective transport
in a symmetric form.

For arbitrary functions u(x) и w(x), we define the Hilbert space H =
L2 (Ω) with inner product and norm

(u, w) =

∫

Ω

u (x)w (x) dx, ‖u‖ = (u, u)1/2 .

Diffusion operator D on the set of functions satisfying (2), is self-adjoint
and positive define

D = D∗ ≥ 0. (6)

The operator of convective transport is considered under the assumption that
the normal component of the medium velocity v = (v1, v2) on the boundary
is zero:

vn(x) = v n = 0, x ∈ ∂Ω, (7)

where n — outward normal to ∂Ω. In H the convection operators have the
following properties:

C0 = −C∗

0 . (8)

Also useful upper estimates for convective transport operator C:

|(Cu, u)| ≤ δ‖u‖2, δ =
1

2
‖div v‖C(Ω). (9)
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3 The differential-difference problem

For an approximate solution of the non-stationary convection-diffusion prob-
lem we use a uniform grid in the area Ω:

ω = {x | x = (x1, x2) , xα =

(

iα +
1

2

)

hα,

iα = 0, 1, ..., Nα, (Nα + 1)hα = lα, α = 1, 2}.

We define the Hilbert space H = L2 (ω) for grid functions, where the inner
product and norm are defined as follows:

(y, w) ≡
∑

x∈ω

y (x)w (x)h1h2, ‖y‖ ≡ (y, y)1/2 .

For the difference operator of the diffusion transfer D is used additive
representation

D =

2
∑

α=1

D(α), α = 1, 2, x ∈ ω, (10)

here D(α), α = 1, 2 is associated with the corresponding differential operator
in one direction.

The difference operator of diffusion transport (10) in H is self-adjoint and
positive definite [3]

D = D∗ ≥ 0. (11)

The convective terms are approximated with second-order, using the cen-
tral difference derivatives and shifted grids to specify the velocity compo-
nents. For the difference operator of convective transport are also using
additive representation

Cy =
2

∑

α=1

C(α). (12)

For the case of sufficiently smooth velocity components and solutions of
the differential problem, for example, we can assume,

bα(x) = vα(x), x ∈ Ω, 0 < xα < lα,

bα(x) = 0, xα = 0, xα = lα, α = 1, 2.

Difference operator of convective transport in symmetric form have the
following basic property:

C∗

0 = −C0. (13)
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We also [5] have the grid analogue of inequality (9):

|(Cy, y)| ≤ δ‖y‖2 (14)

with a constant

δ =
1

2
max
x∈ω

∣

∣

∣

∣

b(1) (x1 + 0.5h1, x2)− b(1) (x1 − 0.5h1, x2)

h1

+

+
b(2) (x1, x2 + 0.5h2)− b(2) (x1, x2 − 0.5h2)

h2

∣

∣

∣

∣

.

Therefore, from the equation (4) we arrive at the differential-operator
equation

dy

dt
+ Ay = φ (t) , A = A (t) = C +D, 0 < t ≤ T, (15)

on the set of grid functions y(t) ∈ H with the initial condition

y (0) = y0. (16)

Difference convection and diffusion operators in the differential-difference
problem inherit the basic properties of differential operators.

4 Unconditionally stable schemes

For simplicity, we restrict ourselves to a uniform grid in time

ω̄τ = ωτ ∪ {T} = {tn = nτ, n = 0, 1, ..., N, τN = T}.

For an approximate solution of (15), (16) commonly used two-layer weighted
scheme, which have a following restrictions on the time step τ < τ0 =

1
σδ

.
To construct the unconditionally stable schemes for the solution of the

differential problem (15), (16) with A ≥ −δE, δ > 0 we define a new function
w:

y = exp(δt)w. (17)

Substitution of (17) in (15), (16) with homogeneous right-hand side gives the
following problem for the w:

dw

dt
+ Ãw = 0, Ã = A + δE, 0 < t ≤ T, (18)

w (0) = y0. (19)
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Under this transformation, operator Ã is a nonnegative (Ã ≥ 0).
To solve the problem (18), (19) we use a two-layer weighted difference

scheme, which is unconditionally stable for standard restrictions σ ≥ 0.5.
We write the scheme for the grid function yn

exp(−δτ)yn+1 − yn

τ
+ (A+ δE)

(

σ exp(−δτ)yn+1 + (1− σ) yn
)

= 0, (20)

y0 = u0, tn ∈ ωτ , . (21)

In contrast to the non-standard schemes considered in [6], the positive effect
is achieved not only through the use of a new approximation of the time, but
also by correcting the problem operator.

Theorem 1. The difference scheme (20), (21) with σ ≥ 0.5 unconditionally
̺-stable in H with

̺ = exp(δτ), (22)

with the a priori estimate for solutions

‖yn+1‖ ≤ ̺‖yn‖. (23)

Proof. We rewrite the scheme (20), (21) in form

exp(−δτ)yn+1 − yn

τ
+ Ãpn+1 = 0, tn ∈ ωτ , (24)

where

pn+1 = σ exp(−δτ)yn+1+(1− σ) yn = τ

(

σ −
1

2

)

rn+1+
1

2

(

exp(−δτ)yn+1 − yn
)

,

rn+1 =
exp(−δτ)yn+1 − yn

τ
.

Multiplying the scalar equation (24) by pn+1, we obtain the equality

τ

(

σ −
1

2

)

(

rn+1, rn+1
)

+ Ã
(

pn+1, pn+1
)

+
1

2τ

((

exp(−δτ)yn+1, exp(−δτ)yn+1
)

− (yn, yn)
)

= 0

From this equation, under the condition σ ≥ 0.5 and Ã ≥ 0, yields the
estimate of stability (23),(22).
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Equation (1) can be written in the form of convection-diffusion-reaction
equation with the convective terms in the symmetric form

∂u

∂t
+ C0u+Du+Ru = f(x, t), x ∈ Ω, t > 0. (25)

where

Ru = r(x, t)y, r(x, t) =
1

2
div v.

For the reaction operator we have the estimate

R = R∗, −δE ≤ R ≤ δE. (26)

To construct the unconditionally stable scheme without the assumption
of nonnegativity operator of problem we will use the explicit-implicit ap-
proximation for the equation (25). The problem is generated by the reaction
operator therefore we split it into two:

R = R+ +R−, R+ = R∗

+, R− = R∗

−
, 0 ≤ R+ ≤ δE, −δE ≤ R− < 0.

(27)
When using the two-layer explicit-implicit schemes, we can only count

on first-order accuracy in time. Therefore it is natural oriented to purely
implicit approximation of the basic terms of the operator and define following
difference scheme

yn+1 − yn

τ
+ (Cn +D +Rn

+)y
n+1 +Rn

−
yn = 0, n = 0, 1, ..., N − 1. (28)

Theorem 2. Explicit-implicit difference scheme (28), (21) unconditionally
̺-stable in H with

̺ = 1 + δτ (29)

for the numerical solution we have the estimate:

‖yn+1‖ ≤ ̺‖yn‖, n = 0, 1, ..., N − 1. (30)

It is important to note that, in contrast to the ordinary weighted scheme,
stability is obtained without restrictions on the time step. The transition to
a new time layer associated with the solution of the grid problem

(E + στ(A + δE))yn+1 = χn (31)

for scheme (20) and

(E + τ(C +D +R+))y
n+1 = rn (32)

for scheme (28).
Equation (31) and (32) is a system of linear algebraic equations with

a positive definite nonselfadjoint matrix. For solutions that can apply the
standard iterative methods.
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