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Abstract. We present a constraint-based approach to interactive product configuration.
Our configurator tool FdConfig is based on feature models for the representation of the
product domain. Such models can be directly mapped into constraint satisfaction problems
and dealt with by appropriate constraint solvers. During the interactive configuration pro-
cess the user generates new constraints as a result of his configuration decisions and even
may retract constraints posted earlier. We discuss the configuration process, explain the
underlying techniques and show optimizations.

1 Introduction

Product lines for mass customization [22] allow to fulfill the needs and requirements of the individ-
ual consumer while keeping the production costs low. They enhance extensibility and maintainance
by re-using the common core of the set of all products.

Product configuration describes the process of specifying a product according to user-specific
needs based on the description of all possible (valid) products (the search space). When done
interactively, the user specifies the features of the product step-by-step according to his require-
ments, thus, gradually shrinking the search space of the configuration problem. This interactive
configuration process is supported by a software tool, the configurator.

In this paper, we present an approach on interactive product configuration based on constraint
programming techniques. Building on constraints enables us to equip our interactive product
configurator FdConfig with functionality and expressiveness exceeding traditional approaches but
at the cost of performance penalty which must be dealt with in turn.

The paper is structured as follows: In Sect. 2 we briefly review the area of interactive configura-
tion methods and discuss related work. Section 3 introduces important notions from the constraint
paradigm as needed for the discussion of our approach. We present the constraint-based interac-
tive product configurator FdConfig in Sect. 4. There, we introduce FdFeatures, a language for the
definition of feature models, it’s transformation into constraint problems, and the configuration
process using FdConfig . Furthermore, we discuss optimizations and improvements by analyses and
multithreading. Section 5 draws a conclusion and points out directions of future research.

2 Interactive Configuration Methods

An interactive product configurator is a tool which allows the user to specify a product according
to his specific needs based on the common core of the set of all products of a product line. This
process can be done interactively, i.e. in a step-wise fashion, thus gradually shrinking the search
space of the configuration problem.

For the sake of applicability and user-friendliness, a configurator requires a number of properties
like backtrack-freeness, completeness, order-independent retraction of decisions, short response
times and others. These strongly depend on the method1 underlying the configurator system.
Cost optimization and arithmetic constraints are a desired functionality too, but these are seldom
supported or only provided in a very restricted form.

1 For a discussion of the solutions methods see below.
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While completeness ensures that no solutions are lost, backtrack-freeness [7,20] guarantees that
the configurator only offers decision alternatives for which solutions remain. Thus, the user can
always generate a valid solution from the current configuration state and does not need to unwind
a decision (i.e. he does not need to backtrack). The Calculate Valid Domains (CVD) function [7]
of a configurator realizes this latter property.

Feature models are particularly used in the context of software product line engineering to sup-
port the reuse when building software-intensive products. However, they are of course applicable
to many other product line domains. They stem from the feature oriented domain analysis method-
ology (FODA) [14].

A feature model describes a product domain by a combination of features, i.e. specific aspects
of the product which the user can configure by instantiation and further constraints. A product
line is given by the set of possible combinations of feature alternatives.

The semantics of feature models is typically mapped to propositional logics [11] and can ac-
cordingly be mapped onto a restricted class of constraint satisfaction problems (cf. Sect. 3), namely
constraints of the Boolean domain. While many approaches in the literature (e.g. [7,8,12]) only
consider constraints of the Boolean domain (including equality constraints), Benavides et.al. [1]
discuss the realization of arithmetic computations and cost optimization in a feature model (by
so-called ”extra-functional features”) which can be represented by general constraint problems.

Solution techniques applied to the interactive configuration problem have been compared by
Hadzic et.al. [7,8] and Benavides et.al. [2]. They mainly distinguish approaches based on proposi-
tional logic on the one hand and on constraint programming on the other hand.

When using propositional logic based approaches, configuration problems are restricted to
logic connectives and equality constraints (see e.g. [7,21]). Arithmetic expressions are excluded
because of the underlying solution methods. These approaches perform in two steps. First, the
feature model is translated into a propositional formula. In the second step the formula is solved
(satisfiability checking, computation of solutions) by appropriate solvers, in particular SAT solvers
(as in [12]) and BDD-based solvers (see e.g. [8,20]). BDD-based solvers translate the propositional
formula into a compact representation, the BDD (binary decision diagram). While many operations
on BDDs can be implemented efficiently, the structure of the BDD is crucial as a bad variable
ordering may result in exponential size and, thus, in memory blow up. Therefore the compilation
of the BDD is done in an offline phase, so a suitable variable ordering can be found and the BDD’s
size becomes reasonably small.

Feature models can be naturally mapped into constraint systems, in particular into CSPs.
There are some approaches [1,21] using this correspondence to deal with interactive configuration
problems. These typically work as follows: The feature model is translated into a constraint satis-
faction problem (CSP, see Definition 1 below) and afterwards analysed by a CSP solver. Using this
approach, no pre-compilation is necessary. In general it is possible to use predicate logic expres-
sions and arithmetic in the feature definitions, even if this is not realized in the above mentioned
approaches.

Transformations of feature models into programs of CLP languages (i.e. Prolog systems with
constraints) have been shown recently in [15,17]. However, beside the transformation target bee-
ing different from ours, these approaches do not focus on using these methods for interactive
configuration.

Since our FdConfig tool aims primarily at the software engineering community as the main
users of feature models, we decided in favour of a Java-implementation, which would make later
integration with common software development infrastructure like Eclipse more easy.

Benavides et.al. [2] elaborately compare the approaches sketched above, particularly with re-
spect to performance and expressiveness or supported operations, resp. They point out that
CSP-based approaches, in contrast to others, can allow extra functional features [1,14] and, in ad-
dition, arithmetic and optimization. Furthermore, they state that ”the available results suggest”



that constraint-based and propositional logic-based approaches ”provide similar performance”, ex-
cept for the BDD-approach which ”seems to be an exception as it provides much faster execution
times”, but with the major drawback of BDDs having worst-case exponential size.

Extended feature models with numerical attributes, arithmetic, and optimization are denomi-
nated as an important challenge in interactive configuration by Benavides et.al. [2]. Our approach
aims at this challenge. The main idea is to follow the constraint-based approach while using the
combination of different constraint methods and concurrency to deal with the computational cost.
At this, a major challange is to support the user when making and withdrawing decisions in an
interactive process.

3 Constraint Programming

Feature models can directly be mapped into corresponding constraint problems. We will discuss
this approach more detailed in Sect. 4.1 but introduce the necessary notions from the constraint
paradigm here.

Constraints are predicate logic formulae which express relations between the elements or ob-
jects of the problem. They are classified into constraint domains (see [9,18]), e.g. linear constraints,
Boolean constraints and finite domain constraints. This partitioning is due to the different appli-
cable constraint solution algorithms implemented in so-called constraint solvers (see below).

Considering feature models as constraint problems, the domains of the involved variables are a
priori finite.2 Thus, we consider a particular class of constraints: finite domain constraints. Finite
domain constraint problems are given by means of constraint satisfaction problems.

Definition 1 (CSP). A Constraint Satisfaction Problem (CSP) is a triple P = (X,D,C), where
X = {x1, . . . , xn} is a finite set of variables, D = (D1, . . . , Dn) is an n-tuple of their respective
finite domains, and C is a conjunction of constraints over X.

Definition 2 (solution). A solution of a CSP P is a valuation ς : X →
⋃

i∈{1,...,n} Di with

ς(xi) ∈ Di which satisfies the constraint conjunction C.

A CSP can have one solution or a number of solutions, or it can be unsatisfiable. Optimization
functions may also be given which specify optimal solutions.

Example 1. Consider a CSP P = (X,D,C) with the set X = {Cost, Color,Band} of variables and
their respective domains D = (DCost, DColor, DBand) with DColor = {Red,Gold,Black,Blue},
DCost = {0, ..., 1400}, and DBand = {700, 800, 1000}.

C = (Band = 700→ Color = Blue) ∧ (Cost = Band + 500) is a conjunction of constraints
over the variables from X.

Solutions of the CSP P are e.g. ς1 with ς1(Cost) = 1200, ς1(Color) = Blue, and
ς1(Band) = 700 which is also denoted by ς1 = {Cost/1200, Color/Blue,Band/700} and
ς2 = {Cost/1300, Color/Red,Band/800}.

Constraint solvers are sets or libraries of tests and operations on constraints, which are able
to check the satisfiability of constraints and to compute solutions and implications of constraints.

CSPs are typically solved by narrowing the variable’s domains using search nested with consis-
tency techniques (e.g. node, arc, and path consistency). Given a CSP, in the first step consistency
techniques are applied. Such consistency checking algorithms work on n-ary constraints and try
to remove values from the variables domains which cannot be elements of solutions. Afterwards,
search is initiated, e.g. using backtracking, where we assign domain values to variables and per-
form consistency techniques to narrow the other variable’s domains again. This search process is
controlled by heuristics on variable and value ordering (for the complete process, see [18]).

2 An extension to infinite domains would be possible, in general.



There are some finite domain constraint solver libraries available, for example the Java-libraries
Choco [3] as well as JaCoP [10] and the C++-library Gecode [6]. We decided in favor of the
freely available Choco library which is under continuous development.

Additionally, we need the notions of global consistency and of valid domains.

Definition 3 (global consistency, see [18]). A CSP is i-consistent iff given any consistent
instantiation of i − 1 variables, there exists an instantiation of any ith variable such that the i
values taken together satisfy all of the constraints among the i variables. A CSP P = (X,D,C) is
globally consistent, if it is i-consistent for every i, 1 ≤ i ≤ n, where n is the number of variables
of C.

Definition 4 (valid domains). Given a CSP P , the valid domains of P is an n-tuple Dvd =
(Dvd,1, . . . , Dvd,n) such that each Dvd,i ⊆ Di contains exactly the values which are elements of
solutions of P .

So, if a CSP is gobally consistent, then its domains are valid domains.

Example 2. (continuation of Example 1) The valid domains of the CSP P is Dvd =
({1200, 1300}, DColor, {700, 800}).

4 The Interactive Configurator FdConfig

Our approach on interactive configuration consists of two phases: In the first phase a feature model
is analysed and then transformed into a CSP and passed to the Choco solver. Afterwards the
interactive configuration phase follows.

Figure 1 illustrates the analysis and transformation phase. FdConfig uses FdFeatures files
as input. FdFeatures is a textual domain specific language for extended feature models which
supports integer feature attributes and arithmetic constraints. An FdFeatures parser reads the
input-file and creates the feature model which is transformed into a Choco CSP. Section 4.1
describes the language FdFeatures and the transformations in greater detail. Additionally, a quick
pre-calculation of the variable’s domains is performed. It generates redundant constraints which,
nevertheless, help to improve the solver’s performace.3 This domain analysis is covered in Sect. 4.2.

In the second phase, the generated CSP is passed to the Choco solver which reads the model
and creates an internal representation from it: the solver model. Then the solver is started to
perform an initial calculation of consequence decisions that yield from the constraints in the
FdFeatures model. Afterwards, the user can start with the interactive configuration. The imple-
mentation of this process is explained in Sect. 4.3. Section 4.4 describes the reduction of response
times by using multithreading.

4.1 FdFeatures Models and CSPs

FdConfig provides FdFeatures as a language for the definition of feature models based on the
approach of [5]. FdFeatures borrows from the Textual Variability Language (TVL, [4]) but
was adapted for our needs (e.g. including support for the realization of the user interface, certain
detailed language elements and syntactic sugar). FdFeatures has been implemented using Xtext
[23].

An FdFeatures feature model in general has a tree structure, i.e. there is a distinguished root
feature which stands for the item to be configured, but apart from this behaves like any other

3 In constraint programming, the generation of redundant constraints from a given constraint problem
is a frequently used method which helps to speed up the solver (see [18], Sect. 12.4.5). Note that the
elimination of verification-irrelevant features and constraints (i.e. ”redundant relationships”, [24]) from
feature models with the aim of reducing the problem size is a different concept.
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Fig. 1. Transformations performed before the user can start configuring

feature. The model may have additional constraints between (sub-)features and their attributes
which, in fact, makes the tree a general graph. Nevertheless, the tree structure is dominant.

A feature may consist of sub-features and attributes (both in general optional), where, following
the approach of [5], the sub-features can be organized in feature groups. A feature group allows to
describe whether one, some, or all of the sub-features must be included in the configured product.

With similar effects, features can be specified to be mandatory or optional. Furthermore,
features may exclude or require other features.

Example 3. Consider the cut-out of a feature model of events organized by an event agency in
Listing 4.1.4 For an event (the root feature) we can optionally order a band and a stage, but we
must order a carpet (e.g. for a film premiere or a wedding) and colored balloons. These are all
modeled as sub-features (which are not organized in a feature group here). Ordering a band makes
a stage necessary, expressed by the requires-statement in Line 11.

FdFeatures supports three kinds of feature attributes: integers, enumerations, and Boolean
values.

Example 4. (continuation of Example 3) The feature Carpet is determined by several attributes,
including an enumeration attribute Color, whose domain elements must be given explicitly and a
Boolean attribute SlipResistance.5

Length and Breadth are integer attributes. While Breadth is specified by an interval, Length is
unbounded. As we can see by the attributes of ColoredBalloons, the domain of an integer attribute
can also be specified by a finite set (Amount, Line 20) or even by an arithmetic formula (Cost,
Line 25). The definition of Boolean attributes is also possible using Boolean expressions (but is
left out in our example).

The domain definition of PriceReduction.Coupon (Lines 22, 23) uses Guards to define the
attribute domain depending on the configuration state (ifIn and ifOut correspond to selected

4 The description of certain features and attributes, which are not necessary for the understanding of this
example and the concepts behind, is left out and represented by ”...” in the program.

5 Note that the domain values of an enumeration may be assigned to integer values as e.g. done for the
attribute Band.Type in Line 12.



Listing 4.1 Feature model of an event organized by an event agency (cut-out)

1 root feature Event {

2 enum Discount in {Gold = 8 , S t a f f = 3 , None = 0} ;

3 feature Carpet {
4 int Length ;
5 int Breadth in [ 5 0 . . 3 0 0 ] ;
6 enum Color in {Red , Gold , Black , Blue } ;
7 bool S l i p R e s i s t a n c e ;
8 int Cost i s . . .
9 }

10 feature Band : optional {
11 requires Stage ;
12 enum Type in {C l a s s i c = 1000 , Blues =700 , Rock=900};
13 }

14 feature Stage : optional { . . . }

15 constraint BluesOnBlueCarpet
16 Band i s selected and Band . Type = Blues −>
17 Carpet . Color = Blue
18 }

19 feature ColoredBal loons {
20 int Amount in {500 , 1000 , 2500 , 5000 , 10000} ;

21 feature PriceReduct ion {
22 int Coupon i f In : i s 1000
23 ifOut : i s 0 ;
24 }
25 int Cost i s Amount ∗ 3 − PriceReduct ion . Coupon ;
26 }

27 int Overa l lCos t i s Carpet . Cost + Band . Type + . . . +
28 ( ColoredBal loons . Cost + . . . ) ∗ (100−Discount )/100 ;
29 }



and deleted, resp.) of the feature (here PriceReduction). Furthermore, it is possible to define
constraints on attributes and features, also accessing the configuration state of a feature as shown
in Line 15. This constraint makes sure that the Blues-band plays in an adequate ambiance.

The transformation into a Choco CSP is straightforward, for details see [19]. In general, our
transformation is similar to these of [15,17]. Differences come from the fact that the transformation
target of these approaches are CLP languages and they aim at feature model analysis in contrast
to interactive configuration, as does FdConfig . We show an example of the generated CSP in a
mathematical notation and leave out the Choco constraint syntax for reasons of space limitations.

Example 5. The following CSP is generated from Listing 4.1 (where CBal stands for
ColoredBalloons, PRed for PriceReduction, and SRes for SlipResistance resp.). Note that we
do not enumerate the set of variables X explicitely and give the domains D by means of element
constraints CDomains.

CSP = CDomains ∧ C with

CDomains = Event, Carpet,Band, Stage, CBal ∈ {False, True} ∧
CBal.PRed,Carpet.SRes ∈ {False, True} ∧
Discount ∈ {0, 3, 8} ∧ Band.Type ∈ {700, 900, 1000} ∧
Carpet.Length ∈ [−231, 231 − 1] ∧ Carpet.Breath ∈ [50, 300] ∧
Carpet.Color ∈ [0, 3] ∧ Carpet.Cost = ... ∧
CBal.Amount ∈ {500, 1000, 2500, 5000, 10000} ∧
CBal.Cost ∈ [−231, 231 − 1] ∧
CBal.PRed.Coupon ∈ [−231, 231 − 1] ∧
OverallCost ∈ [−231, 231 − 1] and

C = (Carpet ∨Band ∨ Stage ∨ CBal→ Event) ∧
(CBal.PRed→ CBal) ∧ (Band→ Stage) ∧
((Band ∧Band.Type = 700)→ Carpet.Color = 3) ∧
(CBal.PRed→ CBal.PRed.Coupon = 1000) ∧
(¬ CBal.PRed→ CBal.PRed.Coupon = 0) ∧
(CBal.Cost = CBal.Amount ∗ 3− CBal.PRed.Coupon) ∧ . . .

4.2 Domain Analysis

In FdFeatures the specification of an attribute’s base domain is optional. If no domain is given by
the user, as e.g. for Carpet.Length or ColoredBalloons.Cost in Listing 4.1, it is set by default to the
maximal possible domain of the corresponding attribute type. For example, for integer attributes
the maximal domain is [−231, 231 − 1] which we denote by MAXDOM in the following.

When the Choco solver computes the valid domains of the CSP in the second phase of
our approach (cf. Sect. 4.3), this may become time consuming. The solver must establish global
consistency. Thus, up to 4.3 ∗ 109 values must be checked for every attribute (or its corresponding
variable, resp.) with MAXDOM . Of course, we cannot require the user to specify attribute domains
just big enough to contain all solutions, in particular, because a manual estimation of the base
domain can be very difficult for complex feature models. Thus, we apply an automatic pre-analysis
to the feature model which is merged with the CSP generated from the model.

Our domain analysis aims at an approximate yet quick pre-calculation of the base domains of
variables using knowledge about the feature model’s structure. We only consider integer attributes,
as enumerated attributes will in general have small domains. The analysis is based on interval
arithmetics [16] which allow a fast approximation of the variable’s minimum and maximum values
by calculating with intervals instead of single domain values.

The domain DOM FM of an attribute in FdFeatures can be specified directly by giving a
single value or a set or interval, resp. of values. Additionally, it is possible to specify particular



sub-domains depending on the configuration state, i.e. IN FM and OUTFM in case the attribute is
selected or deleted, resp. Furthermore, arithmetic expressions can be used to specify the domain or
sub-domains. We determine DOM FM , IN FM , and OUTFM in form of intervals from the attribute
expressions, where enumarations are handled as intervals, too.

Starting from these domains, we calculate the narrowed base domain BASEDOM , and new
sub-domains IN and OUT as follows (where we take arithmetic expressions into consideration):

BASEDOM = (IN FM ∪OUTFM ) ∩DOM FM (1)

IN = BASEDOM ∩ IN FM (2)

OUT = BASEDOM ∩OUTFM (3)

The intervals for the incorporated arithmetic expressions are determined by traversing their
formula tree. The leafs are either elementary expressions or references to other attributes, in case
of which the domain of the referenced attribute must be calculated first. The analysis of cyclic
formulae is interrupted and MAXDOM is used instead, leaving domain narrowing to the Choco
solver, which uses accurate but time consuming consistency techniques.

Cost

-

ref: Coupon

3ref: Amount

=[1500,30000]

=[3,3]=[500,10000]

* =[0,1000]

=[500,30000]

Amount = [500,10000]

MAXDOM MAXDOM [500,10000]

⋃ ⋂(INFM OUTFM) DOMFM

MAXDOM MAXDOM

⋃ ⋂(INFM OUTFM) DOMFM

Coupon = [0,1000]

[1000,1000] [0,0] MAXDOM

⋃ ⋂(INFM OUTFM) DOMFM

Fig. 2. Domain analysis of BASEDOM of the attribute ColoredBalloons.Cost

Example 6. Consider the pre-calculation of the base domain BASEDOM of the attribute Colored-
Balloons.Cost (Line 25 of Listing 4.1). Figure 2 illustrates the calculation.

For the attribute under consideration, only the set DOM FM is specified by means of an arith-
metic expression, while IN FM and OUTFM both default to MAXDOM . During the analysis, the
formula tree of the arithmetic expression is traversed. Dashed arrows depict the domain analysis
of a referenced attribute which is shown in it’s own box.

In the beginning the analysis moves to the first leaf: a reference to the attribute Amount. The
determination of the base sets is trivial as only DOM FM is defined as an enumeration of integers



which yields an interval [500, 10000] using Equation 1. The right operand of the multiplication is
a constant value, which is turned into the point interval [3, 3] resulting in the intermediate result
[500, 10000] ∗ [3, 3] = [1500, 30000]. The analysis of the attribute Coupon yields BASEDOM =
[0, 1000] from IN FM = [1000, 1000], OUTFM = [0, 0] and DOM FM = MAXDOM (again using
Equation 1). Finally, the analysis returns to the root attribute ColoredBalloons.Cost and performs
the subtraction with result BASEDOM = [1500, 30000]− [0, 1000] = [500, 30000].

From the BASEDOM intervals of the attributes the respective sub-domains IN and OUT can
be inferred by means of the Equations 2 and 3 (not shown in the figure).

Example 7. (continuation of Examples 5 and 6) The domain analysis yields the following domain
constraints as an update on the generated CSP of our event feature model.

C ′
Domains = . . . ∧

CBal.Cost ∈ [500, 30000] ∧
CBal.PRed.Coupon ∈ {0, 1000} ∧ . . .

Note, that for computed intervals we finally build intersections in case the domain was initially
given by enumerations or single values. This yields the two-element set for CBal.PRed.Coupon.

4.3 The Configuration Phase

The second phase of our approach, i.e. the configuration phase, starts with the initialization of
FdConfig before the user can start with the interactive configuration process.

Model pre-processing. The solver reads the CSP-model and performs a feasibility check (e.g. by
finding the first solution). If successful, the configurator computes the valid domains as initial
model consequences that derive from the CSP. The calculation of these model consequences is
performed in the same way as the user consequences are calculated later on in the interactive user
configuration phase (see below). However, once the model consequences have been computed, they
are immutable during the interactive configuration as they don’t depend on the user decisions.

The current, global consistent state of the solver is recorded. To this ground level state the
solver can be reset when, after a retraction of user constraints, a re-computation of the valid
domains becomes necessary.

User configuration. The user starts a configuration step by executing a configuration action.
This is either a configuration decision, i.e. limiting the domain of a feature- or attribute variable
which manifests as a user constraint or the retraction of a decision made earlier. In this case the
corresponding user constraint is removed from the constraint system. User decisions are posted by
FdConfig to the solver as user constraints.

Now, the solver is activated to establish global consistency and to find all solutions of the
constraint system. These are evaluated to derive the valid domains. Since the valid domains define
the configuration options available to the user in the next configuration step, the constraint system
always remains feasible after a user decision.

After the user consequences have been computed, the user interface is updated accordingly
and the user can perform the next configuration action.

In the usual modus operandi for FD solvers, a CSP is once declared and then read by the
solver which computes and returns solutions. In contrast, for interactive configuration we need
to re-calculate sets of solutions again and again because a sub-set of the constraints (the user
constraints) keeps changing over time as a result of the user making configuration decisions.

As the solver maintains a heavyweight internal representation of the constraint system and
reading the CSP-model as well as establishing consistency are time consuming, the option of re-
creating the solver for every user decision is inapplicable. Therefore we control the solver from
outside by utilizing its backtracking infrastructure and reset the solver into the aformentioned
ground level state in case a user decision has been retracted.



4.4 Improving the User Experience by Multithreading

When computing the valid domains of the variables, the constraint solver must establish global
consistency, and thus, potentially find all solutions of the CSP. This calculation may be time
consuming depending on the size and complexity of the feature model (and the CSP it was trans-
formed into, resp.). Furthermore, the GUI would not be updated or process user input during this
calculation. The program would appear to be frozen.

Therefore we introduced multithreading with the solver running in a background thread, thus,
allowing the GUI to be updated and accept user input during a long running computation. How-
ever, as the user would still have to wait for the calculation to complete before he can enter another
configuration decision, the multithreading structure has been extended as follows:

The elements of the valid domains are collected gradually with the computation of the set
of solutions still in progress. Whenever new elements have been found, they are immediately
displayed in the GUI and made available for configuration decisions. Elements, that did not yet
occur in a solution, are greyed out and disabled for user decisions. If the user makes a decision,
the background calculation is interrupted and restarted with the changed set of user decisions.

In the sequential model the valid domains were calculated in one go and then evaluated to
generate consequence decisions if necessary. If, for example, the valid domain of a feature A was
found to be Dvd,A = {true} this resulted in a consequence decision forcing the feature to be
selected6.

With multithreading we have to re-evaluate the valid domains whenever new elements are found
during the calculation process. This results in changing consequence decisions while the compu-
tation has not finished. For example, the valid domain of feature A can become Dvd,A = {true}
during the computation process at first, creating the consequence decision that A must be selected.
However, as the result of new solutions the valid domain might later become Dvd,A = {true, false},
thus making the consequence decision disappear again. Attributes are handled similarly, as single
value domains (interpreted as consequence decisions to select this particular value) may become
multi-value domains later on. The GUI flags these consequence decisions as incomplete, so the
user can see that further configuration options might become available. On the completion of the
computation process, this flag is removed.

Start
(empty Dvd)

Selected
(Incomplete)

Removed
(Incomplete)

UndecidedSelected Removed

true
found

false
found

true
found

false
found

Computation
completed

Computation
completed

Start
(empty Dvd)

Single Value 
Domain

(Incomplete)

Single Value
Domain

first value found

Multi Value 
Domain

Computation
completed

Features Attributes

more values
found

Fig. 3. Intermediate states of valid domains for features and attributes with multithreading

6 Likewise Dvd,A = {false} results in a removed feature and Dvd = {true, false} in the undecided state,
where the user can decide.



Figure 3 illustrates the different states for feature and attribute domains, resulting from the
multithreading approach. Consequence decisions are drawn in bold typeface. Furthermore Fig. 4
shows a screenshot of the FdConfig tool during a long running calculation of the valid domains.
Incomplete consequence decisions are visible, i.e. for the attribute ColoredBalloons.Cost, whose
valid domain has exactly one element (14990) at the moment. The other elements were either
eliminated by the user or have not yet occurred in a solution (displayed in grey).

User eliminated 
domain element

Enum attribute

Domain element not yet found in a solution

Incomplete 
consequence decision

(Cost=14990)

User decisionConsequence decision

Int attribute

Fig. 4. Screenshot of FdConfig during a CVD calculation

First experiments show that this multithreading approach leads to a smoother, more fluent
user experience when performing product configuration. Since reaching the goal of calculating
the valid domains in under 250 msec7 is currently not realistic with the underlying solvers, this
enhancement is a good compromise as configuration options will become available very quickly.

5 Conclusion and Future Work

In this paper we discuss an approach on interactive product configuration based on constraint
techniques, which was implemented in our configurator tool FdConfig . We gave an overview of the
product configuration domain, feature models, and constraint programming in this context and
introduced our approach.

7 A response time of about this duration is considered desirable, as this still gives the user the impression
to work in real time [7].



In FdConfig we employ a finite domain constraint solver that enables us to deal with integer
attributes and arithmetic constraints in extended feature models. These constraints are usually
not supported in traditional approaches (e.g. SAT, BDDs) or only in restricted forms. However,
this enhanced expressiveness comes at the cost of performance penalties. We deal with this by
applying a preliminary domain analysis in order to relief the solver of unnecessary computation
time for establishing consistency. Furthermore, we use a multithreading approach to enhance the
user experience. This allows the user to continue configuring in a limited way, even if the overall
computation has not yet finished.

Future work will include the further development of the multithreading approach. We plan
to incorporate multiple solvers that might use different computation strategies. For example, the
feature model element with the current GUI focus could be taken into account. This focus-based
computation strategy could additionally improve user friendliness: Domain elements, that the
user might want to configure most likely, would become available more quickly for configuration
decisions.

Also a more subtle handling of the non-chronological retraction of constraints promises im-
provement but needs further investigation.

In order to improve the overall performance we consider adding support for compilation-based
approaches (i.e. BDDs). These could be integrated with the solver in the form of custom constraints
to speed up the search. If a pre-compiled version of a feature model is available, the implementation
of these constraints could access the BDD. Otherwise the regular solution methods would be
applied.

Transformation-based optimizations should be investigated, too. E.g. [13] use a clustering opti-
mization to reduce the number of constraint-variables and constraints. Using feature models ([13]
directly use constraints) may support or even inherently realize a form of clustering.

Another optimization is presented in [17]. The authors discuss the improvement of efficiency
when solving CSPs as transformation results due to a reformulation of particular boolean con-
straints into arithmetic constraints. While this representation is available in our approach too, the
examination of similar optimizations may be worth considering in the future. In the approach of
[17] the structure of feature models is not preserved. This holds optimization potential as well,
but must be done sensitive to retain a mapping to the feature model to allow an interactive
configuration process as needed in our approach.
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