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Abstract. Answer set programming (ASP) is a paradigm for declaratredlpm solving where prob-
lems are first formalized as rule sets, i.e., answer-setranog, in a uniform way and then solved by
computing answer sets for programs. The satisfiability fmtheories (SMT) framework follows a
similar modelling philosophy but the syntax is based onmsitens of propositional logic rather than
rules. Quite recently, a translation from answer-set @ogr into difference logic was provided—
enabling the use of particular SMT solvers for the compotetif answer sets. In this paper, the trans-
lation is revised for another SMT fragment, namely that Hasefixed-width bit-vector theories. Thus,
even further SMT solvers can be harnessed for the task of wiimgpanswer sets. The results of a
preliminary experimental comparison are also reporte@y®uggest a level of performance which is
similar to that achieved via difference logic.

1 Introduction

Answer set programming (ASP) is a rule-based approach tam@ive problem solving [15, 22, 24]. The
idea is to first formalize a given problem as a set of rules adled ananswer-set progranso that the
answer sets of the program correspond to the solution of thklgm. Such problem descriptions are
typically devised in ainiformway which distinguishes general principles and constsaifthe problem in
guestion from any instance-specific data. To this end, temmables are deployed for the sake of compact
representation of rules. Solutions themselves can thenlwwlfout bygroundingthe rules of the answer-
set program, and by computing answer sets for the resultiogngl program using an answer set solver.
State-of-the-art answer set solvers are already veryafticearch engines [7, 11] and have a wide range
of industrial applications.

The satisfiability modulo theories (SMT) framework [3] fmNs a similar modelling philosophy but
the syntax is based on extensions of propositional logleerathan rules with term variables. The SMT
framework enriches traditional satisfiability (SAT) chéak[5] in terms of background theories which are
selected amongst a number of alternativ@arallel to propositional atoms, alieeory atomsnvolving
non-Boolean variabl@san be used as references to potentially infinite domaireoijratoms are typically
used to express various constraints such as linear cartstrdifference constraints, etc., and they enable
very concise representations of certain problem domains/fach plain Boolean logic would be more
verbose or insufficient in the first place.

As regards the relationship of ASP and SMT, it was quite rdgeshown [20, 25] that answer-set
programs can be efficiently translated into a simple SMT rfragt, namelydifference logic(DL) [26].
This fragment is based on theory atoms of the farm y < k formalizing an upper bound on the
differenceof two integer-domain variablesandy. Although the required transformation is linear, it is not
reasonable to expect that such theories are directly wiitjehumans in order to express the essentials of
ASP in SMT. The translations from [20, 25] and their impletta¢ion calledLP2DIFF® enable the use of
particular SMT solvers for the computation of answer sets. €perimental results [20] indicate that the
performance obtained in this way is surprisingly close tat thf state-of-the-art answer set solvers. The

* This paper appears in the Proceedings of the 19th Intemat@onference on Applications of Declarative Program-
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2 However, variables in SMT are syntactically represente¢finyctional) constants having a free interpretation over
a specific domain such as integers or reals.
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results of the third ASP competition [7], however, sugghat the performance gap has grown since the
previous competition. To address this trend, our curredtfature agendas include a number of points:

— We gradually increase the number of supported SMT fragnveimish enables the use of further SMT
solvers for the task of computing answer sets.

— We continue the development of new translation techniguoes ASP to SMT.

— We submit ASP-based benchmark sets to future SMT comp&i®MT-COMPs) to foster the effi-
ciency of SMT solvers on problems that are relevant for ASP.

— We develop new integrated languages that combine featiES®and SMT, and aim at implementa-
tions via translation into pure SMT as initiated in [18].

This paper contributes to the first item by devising a tramsigrom answer-set programs into theories
of bit-vector logic. There is a great interest to developcédfit solvers for this particular SMT fragment
due to its industrial relevance. In view of the second itemgeneralize an existing translation from [20] to
the case of bit-vector logic. Using an implementation oftileev translation, vizLP2BvV, new benchmark
classes can be created to support the third item on our agEidaly, the translation also creates new
potential for language integration. In the long run, ruéséd languages and, in particular, the modern
grounders exploited in ASP can provide valuable machinarihfe generation of SMT theories in analogy
to answer-set programs: Theurce codef an SMT theory can be compacted using rules and term vasabl
[18] and specified in a uniform way which is independent of aagcrete problem instances. Analogous
approaches [2, 14, 23] combine ASP and constraint progragptachniques without a translation.

The rest of this paper is organized as follows. First, thécmefinitions and concepts of answer-set pro-
grams and fixed-width bit-vector logic are briefly reviewadiection 2. The new translation from answer-
set programs into bit-vector theories is then devised irti@@8. The extended rule types 8fMODELS
compatible systems are addressed in Section 4. Such exttersan be covered either by native transla-
tions into bit-vector logic or translations into normal grams. As part of this research, we carried out a
number of experiments using benchmarks from the second A8Ppetition [11] and two state-of-the-art
SMT solvers, vizBOOLECTORandz3. The results of the experiments are reported in Sectioinalli
we conclude this paper in Section 6 in terms of discussiomssaflts and future work.

2 Preliminaries

The goal of this section is to briefly review the source angdtformalisms for the new translation devised
in the sequel. First, in Section 2.1, we recall normal logimgpams subject to answer set semantics and the
main notions exploited in their translation. A formal acnbaf bit-vector logic follows in Section 2.2.

2.1 Normal Logic Programs

As usual, we define aormal logic programP as a finite set ofulesof the form
a$byy...,bp,~c1, .. ~em (1)

wherea, by, ..., b,, andey, . .., ¢, are propositional atoms and denoteslefault negationTheheadof
a ruler of the form (1) ishd(r) = a whereas the part after the symhel forms thebodyof r, denoted
by bd(r). The bodybd(r) consists of the positive pattd®(r) = {b1,...,b,} and the negative part
bd™(r) = {c1,...,cm} sothabd(r) = bd™ (r) U{~c| c € bd~(r)}. Intuitively, a ruler of the form (1)
appearing in a prograrf is used as follows: the heédl(r) can be inferred by if the positive body atoms
in bd ™ (r) are inferable by the other rules &, but not thenegative body atomia bd ™~ (r). The positive
part of the ruley* is defined asd(r) < bd™(r). A normal logic program is calledositiveif r = r*
holds for every rule- € P.



SemanticsTo define the semantics of a normal progr&nwe let At(P) stand for the set of atoms that
appear inP. An interpretationof P is any subsef C At(P) such that for an atom € At(P), a istruein

I, denoted | q, iff a € I. For any negative literakc, I |= ~ciff I [~ ciff ¢ ¢ I. Aruler is satisfied in
I, denoted = r, iff T = bd(r) impliesI = hd(r). An interpretatior! is aclassical modebf P, denoted
I = P,iff, I = r holds for every € P. AmodelM = P is aminimal modebf P iff there is noM’ = P
such thatM’ C M. Each positive normal prograii has a unique minimal model, i.e., thmast model
of P denoted byLM(P) in the sequel. The least model semantics can be extended &sbérary normal
programP by reducingP into a positive progran®™ = {r*+ | r € P andM Nnbd ™~ (r) = 0} with respect
to M C At(P). Thenanswer setsalso known astable model§l6], can be defined.

Definition 1 (Gelfond and Lifschitz [16]). An interpretationM C At(P) is ananswer sebf a normal
programP iff M = LM(PM).

Example 1.Consider a normal prograi [20] consisting of the following six rules:

a<+b,c. a <+ d. b+ a,~d.
b« a,~c. c 4 ~d. d + ~c.

The answer sets dP are M; = {a,b,d} and M, = {c}. To verify the latter, we note tha®?> = {q <
b,c; b + a; ¢ +; a + d} for which LM(P*2) = {c}. On the other hand, we have"s = P for
M3 = {a,b,c} sothatMs ¢ AS(P). [ ]

The number of answer sets possessed by a normal prdgian vary in general. The set of answer sets
of a normal progranP is denoted byAS(P). Next we present some concepts and results that are relevant
in order to capture answer sets in terms of propositionatlagd its extensions in the SMT framework.

CompletionGiven a normal prograr® and an atona € At(P), thedefinitionof a in P is the set of rules
Defp(a) = {r € P | hd(r) = a}. Thecompletionof a normal progran?, denoted byComp(P), is a
propositional theory [8] which contains

a <> \/ ( /\ b A /\ —|c) (2)

r€Defp(a) bebdt(r) c€bd™(r)

for each atomu € At(P). Given a propositional theory and its signaturé\t(7"), the semantics df is
determinedbYM(T') = {M C At(T) | M [= T'}. Itis possible to relat€M (Comp(P)) with the models
of a normal progran® by distinguishingsupported modelfl] for P. A modelM | P is a supported
model of P iff for every atoma € M thereisarule € P suchthahd(r) = a andM = bd(r). In general,
the set of supported modedsppM (P) of a normal progranP coincides withCM(Comp(P)). It can be
shown [21] that stable models are also supported modelsabuatessarily vice versa. This means that in
order to capturé\S(P) usingComp(P), the latter has to be extended in terms of additional coinssras
done, e.g., in [17, 20].

Example 2.For the progranP of Example 1, the theor@omp(P) has formulas « (b Ac¢)Vd, b +
(a A —=d) V (a A —e), ¢ + —d, andd < —c. The models ofComp(P), i.e., its supported models, are
M, ={a,b,d}, My = {c}, andM3 = {a, b, c}. [ |

Dependency Graph$hepositive dependency graphia normal progran®, denoted bypG ™ (P), is a pair
(At(P), <) whereb < a holdsiiff there is arule € P such thahd(r) = a andb € bd™ (r). Let<* denote
thereflexiveandtransitiveclosure of<. A strongly connected compond&CC) of DG (P) is a maximal
non-empty subset C At(P) such thata <* b andb <* a hold for eachu,b € S. The set of defining
rules is generalized for an SCELby Def p(S) = (J,. g Def p(a). This set can be naturally partitioned into
setsExtp(S) = {r € Defp(S) | bd*(r) NS = 0} andIntp(S) = {r € Defp(S) | bd™ (r) N S # 0} of
externalandinternalrules associated with, respectively. Thufef p(S) = Extp(S) U Intp(S) holds in
general.

Example 3.In the case of the prograi from Example 1, the SCCs &G ' (P) areS; = {a,b}, S =
{c}, andS3 = {d}. For Sy, we haveExtp(S1) = {a + d}. |



2.2 Bit-Vector Logic

Fixed-width bit-vectotheories have been introduced for high-level reasoningiaigital circuitry and
computer programs in the SMT framework [27, 4]. Such thexii® expressed in an extension of proposi-
tional logic where atomic formulas speak about bit vectortgims of a rich variety of operators.

Syntax As usual in the context of SMT, variables are realized astamits that have a free interpretation
over a particular domain (such as integers or réals)the case of fixed-width bit-vector theories, this
means that each constant symbalepresents a vectar{1 ... m] of bits of particular widthm, denoted
by w(x) in the sequel. Such vectors enable a more compact représanté structures like registers
and often allow more efficient reasoning about them. A spemtation is introduced to denote a bit
vector that equals ta, i.e., 7 provides a binary representation of We assume that the actual width
m > logy(n + 1) is determined by the context where the notatioe used. For the purposes of this paper,
the most interesting arithmetic operator for combininguaittors is the addition of twan-bit vectors,
denoted by the parameterized function symbg] in an infix notation. The resulting vector is also-bit
which can lead to an overflow if the sum exce@ds— 1. Moreover, we use Boolean operatets, and
< With the usual meanings for comparing the values of twit vectors. Thus, assuming thatandy
arem-bit free constants, we may write atomic formulas like=,,, y andz <,,, y in order to compare the
m-bit values ofr andy. In addition to syntactic elements mentioned so far, we c@ntbe primitives of
propositional logic to build more complexell-formed formula®f bit-vector logic. The syntax defined for
the SMT library contains further primitives which are skighin this paper. A theory' in bit-vector logic

is a set of well-formed bit-vector formulas as illustratgatibe following example.

Example 4.Consider a system of two processes, say A and B, and a theery{a — (z <2 y), b —
(y <2 x)} formalizing a scheduling policy for them. The intuitive diag of a (resp.b) is that process A
(resp. B) is scheduled with a higher priority and, thus, $thstart earlier. The constantsandy denote the
respective starting times of A and B. Thus, exgs» y means that process A starts before process .

SemanticsGiven a bit-vector theory’, we write At(T") andFC(T') for the sets of propositional atoms and
free constants, respectively, appearind@’irfiTo determine the semantics’Bf we definenterpretationgor

T as pairs(I, ) whereI C At(T) is a standard propositional interpretation anis a partial function
that maps a free constante FC(T') and an indext < i < w(z) to the set of bits{0,1}. Givenr, a
constantr € FC(T') is mapped onte (z) = Zfz(”f)(f(a:, i) - 2¥(®)=%) and, in particularr(7) = n for any

n. To cover anywell-formed term¢; andt, involving +,, andm-bit constants from"C(T"), we define
T(t1 +m t2) = 7(t1) + 7(t2) mod 2™ andw(t1 +., t2) = m. Hence, the value(t) can be determined
for any well-formed ternt which enables the evaluation of more complex formulas andtized below.

Definition 2. LetT be a bit-vector theory; € At(T') a propositional atom¢; and¢, well-formed terms
overFC(T') such thatw(t1) = w(t2), and¢ and« well-formed formulas. Given an interpretatidf, )
for the theoryl’, we define

,TYEa < acl,
T) Et =m te = 7(t1) = 7(t2),
, T ):tl <imm ta <= T(t1)<7'(t2),

Fovy < (1) E¢or{l,7) =,
Fo—=¢ = (I,7)Fgor{l,7) =1, and
E¢oo o < (I,7) =E¢ifandonlyif(l,7) E .

The interpretation !, 7) is a model off, i.e.,(I,7) &= T,iff (I,7) = ¢forall ¢ € T.

ogrwnE

(I,7)
(I,7)
(I,7)
<I’T> ):j(b — <Iv7—>l7£¢a
(I,7)
(I,7)
(I,7)

~

4 We use typically symbols;, y, z to denote such free (functional) constants and symbdisc to denote proposi-
tional atoms.

® The constants and operators appearing in a well-formed tema based on a fixed width. Moreover, the width
w(z) of each constant € FC(T') must be the same throughdlit



It is clear by Definition 2 that pure propositional theorésire treated classically, i.€., ) = T iff
I = T in the sense of propositional logic. As regards the thdofyom Example 4, we have the sets of
symbolsAt(T') = {a,b} andFC(T) = {z,y}. Furthermore, we observe that there is no modél’ aff
the form({a, b}, 7) because it is impossible to satisfy<s, y andy <, 2 simultaneously using any partial
function. On the other hand, there aenodels of the form{{a}, ) because: < y can be satisfied in
3+ 2+ 1 = 6 ways by picking different values for the 2-bit vectarandy.

3 Translation

In this section, we present a translation of a logic progfamto a bit-vector theor3BV (P) that is similar
to an existing translation [20] into difference logic. As firedecessor, the translatiBV (P) consists of
two parts. Clark’s completion [8], denoted BYC(P), forms the first part oBV(P). The second part, i.e.,
R(P), is based omanking constraintsrom [25] so thaBV (P) = CC(P) U R(P). Intuitively, the idea is
that the completio©C(P) capturesupported modelsf P [1] and the further formulas iR (P) exclude
the non-stable ones so that any classical modB\o6fP) corresponds to a stable model®f

The completionCC(P) is formed for each atom € At(P) on the basis of (2):

1. If Defp(a) = 0, the formula—a is included to capture the corresponding empty disjundtiqg).

2. If there isr € Defp(a) such thabd(r) = @, then one of the disjuncts in (2) is trivially true and the
formulaa can be used as such to capture the definition of

3. If Defp(a) = {r} foraruler € P with n +m > 0, then we simplify (2) to a formula of the form

a <+ /\ b A /\ —c. )
bebdt (r) cebd™(r)
4. Otherwise, the s@ef p(a) contains at least two rules (1) with+ m > 0 and

avr \/ bd, (4)

re€Defp(a)

is introduced using a new atohl,. for eachr € Def p(a) together with a formula

L A AN A A ()

bebd™t(r) cebd™(r)

The rest of the translation exploits the SCCs of the posid&pendency graph d? that was defined in
Section 2.1. The motivation is to limit the scope of rankiranstraints which favors the length of the
resulting translation. In particular, singleton compas&tCC(a) = {a} require no special treatment if
tautologicalrules witha € {b1,...,b,} in (1) have been removed. Plain completion (2) is sufficient f
atoms involved in such components. However, for each atamAt(P) having a non-trivial component
SCC(a) in DGT(P) such thatSCC(a)| > 1, two new atomsxt, andint, are introduced to formalize
theexternalandinternal support fora, respectively. These atoms are defined in terms of equivaten

ext, &+ \/ b, (6)
reExtp(a)
int, < \/ [bd, A /\ (Tb <m Ta)] (7)
relntp(a) bebdt (r)NSCC(a)

wherez, andz;, are bit vectors of widthn = [log,(|SCC(a)| 4 1)] introduced for all atoms involved in
SCC(a). The formulas (6) and (7) are calledcakranking constraints and they are accompanied by

a — ext, Vint,, (8)
—ext, V nint,. 9

Moreover, wherExtp(a) # @ and the atona happens to gain external support from these rules, the value
of z, is fixed to0 by including the formula

exty = (Tq =m 0). (10)



Example 5.Recall the progran® from Example 1. The completiodC(P) is:

a <> bdl \/bd2 bdl ~ bAc. bd2 < d.

b bds Vbdy. bds < aA-d. bdy < ah—c
c < —d.

d + —c.

SinceP has only one non-trivial SCC, i.e., the compon®@t(a) = SCC(b) = {a, b}, the weak ranking
constraints resulting iR (P) are

exty <> bda. int, <> bdy A (zp <2 x4).
exty < L.
inty < [bdg A (xa <2 xb)] V [bd4 A (xa <92 Ib)]

In addition to these, the formulas

a — exty Vint,. —ext, V —int,. ext, — (x, =2 0).
b — exty Vint,. —exty V —inty.

are also included iR (P). |

Weak ranking constraints are sufficient whenever the gdalismpute only one answer set, or to check
the existence of answer sets. However, they do not guarant&e-to-one correspondence between the
elements oAS(P) and the set of models obtained for the translaBdh(P). To address this discrepancy,
and to potentially make the computation of all answer setsoonting the number of answer sets more
effective,strongranking constraints can be imported from [20] as well. Aiyughere are two mutually
compatible variants of strong ranking constraints:

bd, — \ (2 +m T <m Ta) (12)
bebd ™ (r)NSCC(a)

int, — \/ [bd, A \/ (Ta =m Tp +m 1)) (12)
ré€lntp(a) bebdt (r)NSCC(a)

Thelocal strong ranking constraint (11) is introduced for each Intp(a). It is worth pointing out that
the condition-(zy +,, T <., z,) is equivalent tac, 4+, T >,, x,. ® On the other hand, thglobal variant
(12) covers the internal support @fentirely. Finally, in order to prune copies of models of thenslation
that would correspond to the exactly same answer set of thmalprogram, a formula

—a = (4 =m 0) (13)

is included for every atom involved in a non-trivial SCC. We writR!(P) andR# (P) for the respective
extensions oR(P) with local/global strong ranking constraints, aRt¥ (P) obtained using both. Similar
conventions are applied 8V (P) to distinguish four variants in total. The correctness ektntranslations
is addressed next.

Theorem 1. Let P be a normal program anB8V (P) its bit-vector translation.

1. If S'is an answer set aP, then there is a modélM, 7) of BV(P) such thatS = M N At(P).
2. If (M, 1) isamodel oBV(P), thenS = M N At(P) is an answer set aP.

Proof. To establish the correspondence of answer sets and modelsyalized above, we appeal to the
analogous property of the translationffnto difference logic (DL), denoted here BYL(P). In DL, theory
atomsz < y + k constrain the difference of two integer variableandy. Models can be represented as
pairs(I,7) wherel is a propositional interpretation andmaps constants of theory atoms to integers so
that(l,7) Exz <y+k < 7(z) < 7(y) + k. The rest is analogous to Definition 2.

® However, the form in (11) is used in our implementation, sing,, and <., are amongst the base operators of the
BOOLECTORSYystem.



( = ) Suppose thab is an answer set aP. Then the results of [20] imply that there is a model
(M, ) of DL(P) such thatS = M N At(P). The valuation is condensed for each non-trivial SGof
DG™(P) as follows. Let us partitio into SoLI. . . LIS,, such that (i) (z,) = 7(z;) for each0 < i < n
anda,b € S;, (i) 7(x,) = 7(2)’ for eacha € Sy, and (iii) for each) < i < j < n,a € S;, andb € S,
7(zq) < 7(x). Then define”’ for the bit vectorr,, associated with an atome S; by settingr’(x,, j) = 1
iff the j*0 bitof 7 is 1, i.e.,7/(x,) = i. It follows that(I, 7) |= 2, < x4 — 1iff (I,7) = 23 <, x, fOr
anya,b € S. Moreover, we havéM, 7) = (2, < 24 0) A (2 < z, + 0) iff (M,7') E 2, =5, 0 for any
a € S. Due to the similar structures &fL(P) andBV(P), we obtain(M, 7) = BV(P) as desired.

(<= ) Let (M, ) be a model oBV(P). Then define’ such that'(z) = SV (r(z, ) - 2¥(@) %)

wherez on the left hand side stands for the integer variable coomding to the lzaitlvector on the right
hand side. It follows thatl, 7) = xp <, z, iff (I,7") =z, < x4, — 1. By settingr’(z) = 0, we obtain
(M, 7) E x4 =, 0ifand only if (M, 7') = (z, < 2+ 0) A (2 < x, + 0). The strong analogy present in
the structures oBV (P) andDL(P) implies that(M, 7’) is a model ofDL(P). Thus,S = M N At(P) is
an answer set aP by [20]. a

Even tighter relationships of answer sets and models castablished for the translatio®aV'!(P),
BVe&(P), andBV's(P). It can be shown that the modgl/, 7) of BV*(P) corresponding to an answer set
S of P is unique, i.e., there is no other mod&l, ') of the translation such th& = N N At(P). These
results contrast with [20]: the analogous extensibiis (P) guarantee the uniquenessaf in a model
(M, ) but there are always infinitely many copi@¥/, 7’) of (M, 7) such that M, ') &= DL*(P). Such
a valuationr’ can be simply obtained by setting(z) = 7(x) + 1 for anyz.

4 Native Support for Extended Rule Types

The input syntax of theMODELSsystem was soon extended by further rule types [28]. In saiterfaces,
the rule types usually take the following simple syntaotigiis:

{a1,...,a1} < b1,... by, ~c1,. .. ,~Cp. (14)
a < {b1,....bp,~c1,...,~Cm}. (15)
a4 b1 =Wy, by = Wh, ,~C1 = Weyye oo y~Cm = W, }- (16)

The body of achoice rule(14) is interpreted in the same way as that of a normal ruleTt¢ head, in
contrast, allows to derive any subset of atoms. .. ,q;, if the body is satisfied, and to makechoice
in this way. The head of a cardinality rule (15) is derived, if its body is satisfied, i.e., the number of
satisfied literals amongét, ... ,b, and~cy,...,~c,, is at leastl acting as thdower bound A weight
rule of the form (16) generalizes this idea by assigning arbjitparsitive weights to literals (rather than
1s). The body is satisfied if the sum of weights assigned iefit literals is at least thus enabling one
to infer the head: using the rule. In practise, the grounding components us&®BP systems allow for
more versatile use of cardinality and weight rules, but thmitive forms (14), (15), and (16) provide a
solid basis for efficient implementation via translatiofke reader is referred to [28] for a generalization
of answer sets for programs involving such extended rulesyphe respective classweight constraint
programs(WCPS) is typically supported lMODELS compatible systems.

Whenever appropriate, it is possible to translate extenaledypes as introduced above back to normal
rules. To this end, a number of transformations are addilesg&9] and they have been implemented as a
tool calledLP2NORMALS. For instance, the head of a choice rule (14) can be captaredms of rules

a1 < b,~ai. ... a; < b, ~a.
ai < ~ajq. co. Q] < ~ay.

whereay, ... ,a; are new atoms anblis a new atom standing for the body of (14) which can be defined
using (14) with the head replaced byWe assume that this transformation is applied at first toorem

7 A special variable: is used as a placeholder for the constait the translatiorDL(P) [20].
8nttp://www.tcs.hut.fi/Software/asptools/



gringo program.lp instance.lp \

| smodels -internal -nolookahead \
| lpcat -s=symbols.txt \

| 1p2bv [-11 [-g] \

| boolector —fm

Fig. 1. Unix shell pipeline for running a benchmark instance

choice rules when the goal is to translate extended rulestyfte bit-vector logic. The strength of this
transformation is locality, i.e., it can be applied on a fijerule basis, and linearity with respect to the
length of the original rule (14). To the contrary, linear malization of cardinality and weight rules seems
impossible. Thus, we also provide direct translations fotmulas of bit-vector logic.

We present the translation of a weight rule (16) whereasrtngslkation of a cardinality rule (15) is
obtained as a special casg,=...=w,, = w.,=...=w,.,, = 1. The body of a weight rule can be
evaluated using bit vectors, . . . ,s,m Of width & = [log, (30, wy, + >, we, + 1)] constrained by
2 x (n 4+ m) formulas

b1 — (51 =k We, )s =by — (s1 = 0),
by — (52 =k $1 4k Wey ), by — (82 = s1),

bn — (Sn =k Sn—1 Ttk w—bn)l _‘bn — (Sn =k Snfl)n
c1 = (Snt1 =k Sn)s =c1 = (Snt1 =k Sn +k Wey ),

Cm — (5n+m =k 5n+m71)1 e (Sner =k Sn4+m—1 +i wcm)-

The lower bound of (16) can be checked in terms of the formei,, ..., <x 1) where we assume that
is of width k&, since the rule can be safely deleted otherwise. In view@btrerall translation, the formula
bd, < —(sp+m <z ) can be used in conjunction with the completion formula (4%ighit rules also
contribute to the dependency grapii:* (P) in analogy to normal rules, i.e., the headlepends on all
positive body atoms;, . .. ,b,. In this way,BV (P) generalizes for prograni? having extended rules.

5 Experimental Results

A new translator calledr2Bv was implemented as a derivativelaf2DIFF° that translates logic programs
into difference logic. In contrast, the new translator wpitbvide its output in the bit-vector format. In
analogy to its predecessor, it expects to receive its inpuhé sMoDELS! file format. Models of the
resulting bit-vector theory are searched for use@pLECTOR? (v. 1.4.1) [6] andz3'? (v. 2.11) [9] as
back-end solvers. The goal of our preliminary experimerds W see how the performances of systems
based onP2Bv compare with the performance of a state-of-the-art ASResalvasP'® (v. 1.3.5) [13]. The
experiments were based on the NP-complete benchmarks ABReCompetition 2009. In this benchmark
collection, there are 23 benchmark problems with 516 irtgtaiin total. Before invoking a translator and
the respective SMT solver, we performed a few preprocestéms, as detailed in Figure 1, by calling:

— GRINGO (v. 2.0.5), for grounding the problem encoding and a givetance;
— SMODELSM (v. 2.34), for simplifying the resulting ground program;

http://www.tcs.hut.fi/Software/lp2diff/
Vyttp://www.tcs.hut.fi/Software/smodels/
Upttp://fmv. jku.at /boolector/
2http://research.microsoft.com/en—-us/um/redmond/projects/z3/
Bhttp://www.cs.uni-potsdam.de/clasp/
Yhttp://www.tcs.hut.fi/Software/smodels/



Table 1. Experimental results without normalization

INST[|CLASP LP2BV+BOOLECTOR LP2BV+Z3 LP2DIFF+Z3

Benchmark w|L]|]se|]w]|w]|L ||t w | L ||t
Overall Performance 516 465 276 244 261 256 217 216 194 204 360 349 324 324

347/118(188/ 88161/ 83174/ 87176/ 80/ 142/ 75147/ 69 124/ 700 135/ 69 257/103 251/ 98 225/ 99 226/ 99
KnightTour 10 8/0 2/0 1/0 0/0 0/0 1/0 0/0 0/0 1/0 6/0 6/0 4/0 5/0
GraphColouring 29 8/0 7/0 710 710 7/0 6/0 710 7/0 7/0 710 710 7/0 7/0
WireRouting 23 11/11 2/3 1/1 1/2 0/2 1/3 0/0 0/0 0/1 3/3 2/3 2/4 5/3
DisjunctiveScheduling 10 5/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
GraphPartitioning 13 6/7 3/0 3/0 3/0 3/0 4/0 4/0 4/0 3/0 6/2 6/1 6/1 6/1
ChannelRouting 11 6/2 6/2 6/2 6/2 6/2 5/2 6/2 6/2 6/2 6/2 6/2 6/2 6/2
Solitaire 27 19/0 2/0 5/0 1/0 4/0 0/0 0/0 0/0 0/0 21/0 | 21/0 | 20/0 | 21/0
Labyrinth 29 26/0 1/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
WeightBoundedDominatingSet 29 26/0 18/0 | 18/0 | 17/0 | 18/0 | 12/0 | 12/0 | 11/0 | 12/0 | 22/0 22/0 | 22/0 | 21/0
MazeGeneration 29 10/15 8/15 | 1/15 | 0/15 | 0/16 | 5/16 | 1/15 | 0/15 | 1/15 | 10/17 | 10/15| 5/15 | 4/15
15Puzzle 16 16/0 16/0 | 15/0 | 14/0 | 15/0 | 4/0 4/0 5/0 5/0 0/0 0/0 0/0 0/0
BlockedNQueens 29 15/14 2/2 0/2 1/2 0/2 1/0 2/0 2/0 0/0 15/13 | 15/13 | 15/12 | 15/13
ConnectedDominatingSet 21 10/10 || 10/11| 9/8 | 10/11| 6/3 | 10/10| 9/10 | 10/9 | 10/9 9/8 716 97 716
EdgeMatching 29 29/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 3/0 1/0 3/0 2/0
Fastfood 29 10/19 9/16 | 10/16 | 10/16 | 9/16 9/9 9/9 9/10 | 9/9 | 10/18 | 10/18 | 10/18 | 10/18
GeneralizedSlitherlink 29 29/0 29/0 | 20/0 | 29/0 | 29/0 | 29/0 | 29/0 | 16/0 | 29/0 29/0 | 29/0 | 29/0 | 29/0
HamiltonianPath 29 29/0 27/0 | 25/0 | 29/0 | 28/0 | 26/0 | 27/0 | 25/0 | 26/0 | 29/0 29/0 | 29/0 | 29/0
Hanoi 15 15/0 15/0 | 15/0 | 15/0 | 15/0 5/0 5/0 5/0 4/0 15/0 15/0 | 15/0 | 15/0
HierarchicalClustering 12 8/4 8/4 8/4 8/4 8/4 4/ 4 4/ 4 4/ 4 4/ 4 8/4 8/4 8/4 8/4
SchurNumbers 29 13/16 6/16 | 5/16 | 5/16 | 5/16 | 9/16 | 9/16 | 9/16 | 9/16 | 11/16 | 11/16 | 11/16 | 11/16
Sokoban 29 9/20 9/19 | 8/19 | 8/19 | 8/19 | 7/15 | 7/13 | 7/14 | 5/13 9/20 | 9/20 | 9/20 | 9/20
Sudoku 10 10/ 0 5/0 4/0 4/0 5/0 4/0 4/0 4/0 4/0 9/0 8/0 8/0 9/0
TravellingSalesperson 29 29/0 3/0 0/0 6/0 | 10/0 | 0O/0 8/0 0/0 0/0 29/0 | 29/0 | 7/0 710

— LPCAT (v. 1.18), for removing all unused atom numbers, for makimg atom table of the ground
program contiguous, and for extracting the symbols forlase; and
— LP2NORMAL (version 1.11), for normalizing the program.

The last step is optional and not included as part of the mipéh Figure 1. Pipelines of this kind were
executed under Linux/Ubuntu operating system running eitsie AMD Opterof™) 2435 processors
under 2.6 GHz clock rate and with 2.7 GB memory limit that esponds to the amount of memory
available in the ASP Competition 2009.

For each system based on a translator and a back-end sbérerare four variants of the system to con-
sider: W indicates that only weak ranking constraints asglug/hile L, G, and LG mean that either local,
or global, or both local and global strong ranking constsirespectively, are employed when translating
the logic program.

Table 1 collects the results from our experiments withoutradization whereas Table 2 shows the
results wher.P2NORMAL [19] was used to remove extended rule types discussed im8ekttin both
tables, the first column gives the name of the benchmarlgvietl by the number of instances of that
particular benchmark in the second column. The followinigiems indicate the numbers of instances that
were solved by the systems considered in our experimentstation like 8/4 means that the system was
able to solve eight satisfiable and four unsatisfiable irtgtaun that particular benchmark. Hence, if there
are 15 instances in a benchmark and the system could onlg 86 this means that the system was
unable to solve the remaining three instances within the timit of 600 seconds, i.e. ten minutes, per
instancé®. As regards the number of solved instances in each benchtharkest performing translation-
based approaches are highlighted in boldface. Though itn@ashown in all tables, we also run the
experiments using translatop2DIFF with z3 as back-end solver, and the summary is included in Table
3—qgiving an overview of experimental results in terms oatatumbers of instances solved out of 516.

It is apparent that the systems based.e@Bv did not perform very well without normalization. As
indicated by Table 3, the overall performance was even wirae that of systems usinge2pIFF for

15 One observation is that the performance of systems base®2BV is quite stable: even when we extended the
time limit to 20 minutes, the results did not change muchfé¢diinces of only one or two instances were perceived
in most cases).



Table 2. Experimental results with normalization

INST||CLASP LP2BV+BOOLECTOR LP2BV+Z3
Benchmark W | L | G | LG W | L | G |LG
Overall Performance 516 459 381 343 379 381 346 330 325 331
346/113(279/102243/100278/101281/100 240/106 231/ 99 224/101 232/ 99
KnightTour 10 10/0 2/0 2/0 1/0 0/0 1/0 0/0 0/0 0/0
GraphColouring 29 9/0 8/0 8/0 8/0 8/0 9/2 9/2 9/2 9/2
WireRouting 23 11/11 2/6 1/3 1/3 1/3 217 1/4 1/4 1/3
DisjunctiveScheduling 10 5/0 5/0 5/0 5/0 5/0 5/0 5/0 5/0 5/0
GraphPartitioning 13 471 5/0 5/0 4/0 5/0 2/1 2/1 2/1 2/0
ChannelRouting 11 6/2 6/2 6/2 6/2 6/2 6/2 6/2 6/2 6/2
Solitaire 27 18/0 23/0 | 23/0 | 23/0 | 23/0 | 22/0 | 22/0 | 22/0 | 22/0
Labyrinth 29 27/0 1/0 1/0 2/0 3/0 0/0 0/0 0/0 0/0
WeightBoundedDominatingSgt29 25/0 15/0 | 15/0 | 15/0 16/0 10/0 | 10/0 | 10/0 | 10/0
MazeGeneration 29 || 10/15 || 8/15 | 0/15 | 0/15 | 0/16 | 5/16 | 0/15 | 0/15 | 0/15
15Puzzle 16 15/0 16/0 16/0 16/0 16/0 11/0 | 10/0 | 11/0 | 11/0
BlockedNQueens 29 15/14 || 14/14 | 14/14 | 14/14 | 14/14 | 15/14 | 15/14| 15/14 | 15/14
ConnectedDominatingSet 21 || 10/11 || 10/11 | 8/11 | 9/11 | 9/10 | 10/11| 9/11 | 9/11 | 9/11
EdgeMatching 29 29/0 29/0 | 29/0 | 29/0 | 29/0 | 29/0 | 29/0 | 29/0 | 29/0
Fastfood 29 || 10/19 || 9/14 | 9/15 | 9/16 | 9/15 | 0/13 | 0/10 | 0/12 | 0/12
GeneralizedSlitherlink 29 29/0 29/0 | 21/0 | 29/0 | 29/0 | 29/0 | 29/0 | 21/0 | 29/0
HamiltonianPath 29 29/0 29/0 | 28/0 | 29/0 | 29/0 | 29/0 | 29/0 | 29/0 | 29/0
Hanoi 15 15/0 15/0 | 15/0 | 15/0 | 15/0 | 15/0 | 15/0 | 15/0 | 15/0
HierarchicalClustering 12 8/4 8/4 8/4 8/4 8/4 8/4 8/4 8/4 8/4
SchurNumbers 29 13/16 || 10/16 | 10/16 | 9/16 | 10/16 | 13/16 | 13/16| 13/16 | 13/16
Sokoban 29 9/20 9/20 | 9/20 | 9/20 | 9/20 | 9/20 | 9/20 | 9/20 | 9/20
Sudoku 10 10/0 10/0 10/0 10/0 10/0 10/0 10/0 10/0 10/0
TravellingSalesperson 29 29/0 16/0 | O/0 27/0 27/0 0/0 0/0 0/0 0/0

translation ana@3 for model search. However, if the input was first translaéala normal logic program
using LP2NORMAL, i.e., before translation into a bit-vector theory, thefpenance was clearly better.
Actually, it exceeded that of the systems based ®2DIFF and became closer to that of ASp. We note
that normalization does not help so much in caser#DIFF and the experimental results obtained using
both normalized and unnormalized instances are quiteainmilterms of solved instances. Thus it seems
that solvers for bit-vector logic are not able to make the bEsative translations of cardinality and weight
rules from Section 4 in full. If an analogous translationoimifference logic is used, as implemented
in LP2DIFF, such a negative effect was not perceived usiBg Our understanding is that the efficient
graph-theoretic satisfiability check for difference coastts used in the search procedure8fturns the
native translation feasible as well. As indicated by out tesults,BOOLECTORIs clearly better back-end
solver forLP2BVv thanz3. This was to be expected sine®@OLECTORIs a native solver for bit-vector
logic whereagz3 supports a wider variety of SMT fragments and can be usethfwe general purposes.
Moreover, the design afP2Bv takes into account operators of bit-vector logic which areadly supported
by BooLECTORanNd not implemented as syntactic sugar.

In addition, we note on the basis of our results that the perémce of the state-of-the-art ASP solver
CLASP is significantly better, and the translation-based apgresdo computing stable models are still
left behind. By the results of Table 2, even the best variahsystems based arp2Bv did not work well
enough to compete withLASP. The difference is especially due to the following benchmatnight Tour,
Wire Routing Graph Partitioning Labyrinth, Weight Bounded Dominating S&astfood and Travelling
SalespersonAll of them involve either recursive rule&fight Tour, Wire Routing andLabyrinth), weight
rules {Weight Bounded Dominating SahdFastfood, or both Graph Partitioningand Travelling Sales-
person. Hence, it seems that handling recursive rules and weimdtcaints in the translational approach
is less efficient compared to their native implementatioalinsp. When using the current normalization
techniques to remove cardinality and weight rules, thessifeground programs tend to increase signifi-
cantly and, in particular, if weight rules are abundant.é&@mple, after normalization the ground programs
are ten times larger for the benchmakight Bounded Dominating Send five times larger fdrastfood
Itis also worth pointing out that the efficiency of ASp turned out to be insensitive to normalization.



Table 3. Summary of the experimental results

|System W] L]G]LG|
LP2BV+BOOLECTOR 276 | 244 | 261 | 256
LP2BV+Z3 217|216 | 194 | 204
LP2DIFF+Z3 360 | 349| 324 | 324
[CLASP [ 465 |
LP2NORMAL2BV+BOOLECTOR | 381 343| 379| 381
LP2NORMAL2BV+Z3 346 | 330| 325| 331
LP2NORMAL2DIFF+Z3 364 | 357 | 349 | 349
[CP2ZNORMAL+CLASP [ 459 |

While having trouble with recursive rules and weight coaisiiis for particular benchmarks, the transla-
tional approach handles certain large instances quite Wed largest instances in the experiments belong
to the Disjunctive Schedulingpenchmark, of which all instances are ground programs &f Gizr one
megabyte but after normalizatifhtheLP2BVv systems can solve as many instances|assp.

6 Conclusion

In this paper, we present a novel and concise translation frormal logic programs into fixed-width bit-
vector theories. Moreover, the extended rule types supgdnry SMODELS compatible answer set solvers
can be covered via native translations. The length of thaltieg translation is linear with respect to the
length of the original program. The translation has beeriémpnted as a translater2Bv, which enables
the use of bit-vector solvers in the search for answer saisp@liminary experimental results indicate
a level of performance which is similar to that obtained gsinlvers for difference logic. However, this
presumes one first to translate extended rule types intoalouies and then to apply the translation into
bit-vector logic. One potential explanation for such bebais the way in which SMT solvers implement
reasoning with bit vectors: a predominant strategy is todiate theory atoms involving bit vectors into
propositional formulas and to apply satisfiability checkiachniques systematically. We anticipate that an
improved performance could be obtained if a native supmortértain bit vector primitives were incor-
porated into SMT solvers directly. When comparing to théestd-the-art ASP solveTtLASP, we noticed
that the performance of the translation based approacha@dpinfavorably, in particular, for benchmarks
which contained recursive rules or weight constraints dhb®his indicates that the performance can be
improved by developing new translation techniques forghte® features. In order to obtain a more com-
prehensive view of the performance characteristics ofrdmestational approach, the plan is to extend our
experimental setup to include benchmarks that were usdtkithird ASP competition [7]. Moreover, we
intend to use the new SMT library format [4] in future versaf our translators.

Acknowledgmentd his research has been partially funded by the Academy déRdhunder the project
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