Skip to main content

Tunable Negative Differential Resistance of Single-Electron Transistor Controlled by Capacitance

  • Conference paper
Book cover Computer Engineering and Technology (NCCET 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 396))

Included in the following conference series:

  • 938 Accesses

Abstract

The characteristic of specifically tunable negative differential resistance (NDR) of single-electron transistor (SET) controlled by capacitance which is noted accidentally in our experiment is studied in this paper. Tunable NDR of SET controlled by single source, drain and gate capacitances are simulated, respectively, then it is also done by controlling more than one capacitance. From the simulation results, it is seen that NDR of SET can be modulated by changing the value of capacitance of SET. Moreover, the cause of the phenomenon of tunable NDR of SET controlled by capacitance is given a qualitative analysis based on macro model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Likharev, K.K.: Single-Electron Devices and Their Applications. Proceedings of the IEEE 87(4), 606–632 (1999)

    Google Scholar 

  2. Heij, C.P., Dixon, D.C., Hadley, P., Mooij, J.E.: Negative differential re-sistance due to single-electron switching. Appl. Phys. Lett. 74, 1042–1044 (1999)

    Google Scholar 

  3. Lee, B.H., Jeong, Y.F.: A novel SET/MOSFET hybrid static memory cell design. IEEE Trans. Nanotechnol. 3, 377–382 (2003)

    Google Scholar 

  4. George, H.C., Pierre, M., Jeh, X., Orlov, A.O., Sanquer, M., Snider, G.L.: Application of negative differential conductance in Al/AlOX single-electron transistors for background charge characterization. Appl. Phys. Lett. 96(4), 042114 (2010)

    Google Scholar 

  5. Kaasbjerg, K., Flensberg, K.: Image charge effects in single-molecule junctions: Breaking of symmetries and negative-differential resistance in a benzene single-electron transistor. Phys. Rev. B 84(11), 115457 (2011)

    Google Scholar 

  6. Miyaji, K., Saitoh, M.: Compact Analytical Model for Room-Temperature-Operating Silicon Single-Electron Transistors With Discrete Quantum Energy Levels. IEEE Trans. Nanotechnol. 5(1), 167–173 (2006)

    Google Scholar 

  7. Lee, S., Miyaji, K., Kobayashi, M., Hiramoto, T.: Extremely high flexibilities of Coulomb blockade and negative differential conductance oscillations in room-temperature-operating silicon single hole transistor. Appl. Phys. Lett. 92(7), 073502 (2008)

    Google Scholar 

  8. See, J., Dollfus, P., Galdin, S.: Theoretical Investigation of Negative Differential Conductance Regime of Silicon Nanocrystal Single-Electron Devices. IEEE Trans. on Electron Devices 53(5), 1268–1273 (2006)

    Google Scholar 

  9. Sui, B., Fang, L., Chi, Y., Zhang, C.: Analysis of negative differential conductance of single-island single-electron transistors owing to Coulomb oscillations. IET Circuits Devices Syst. 4(5), 425–432 (2010)

    Google Scholar 

  10. Chen, S.L., Griffin, P.B., Plummer, J.D.: Negative Differential Resistance Circuit Design and Memory Applications. IEEE Trans. on Electron Devices 56(4), 634–640 (2009)

    Google Scholar 

  11. Ramesh, A., Park, S.Y., Berger, P.R.: 90 nm 32×32 bit Tunneling SRAM Memory Array With 0.5 ns Write Access Time, 1 ns Read Access Time and 0.5 V Operation. IEEE Trans. on Electron Devices 58(10), 2432–2445 (2011)

    MathSciNet  Google Scholar 

  12. Wasshuber, C.: Computational Single-electronics. Springer, New York (2001)

    MATH  Google Scholar 

  13. Mahapatra, S., Ionescu, A.M.: Realization of Multiple Valued Logic and Memory by Hybrid SETMOS Architecture. IEEE Trans. Nanotechnol. 4(6), 705–714 (2005)

    Google Scholar 

  14. Gan, K.J., Tsai, C.S., Chen, Y.W., Yeh, W.K.: Voltage-controlled multiple-valued logic design using negative differential resistance devices. Solid State Electron. 54(6), 1637–1640 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, X., Xing, Z., Sui, B. (2013). Tunable Negative Differential Resistance of Single-Electron Transistor Controlled by Capacitance. In: Xu, W., Xiao, L., Zhang, C., Li, J., Yu, L. (eds) Computer Engineering and Technology. NCCET 2013. Communications in Computer and Information Science, vol 396. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41635-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41635-4_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41634-7

  • Online ISBN: 978-3-642-41635-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics