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A CALCULUS OF CHEMICAL SYSTEMS

GORDON D. PLOTKIN

1. Introduction

In recent years various calculi have been proposed for modelling biological systems,
typically intracellular pathways. These calculi generally fall into one of two camps: ones
based on process calculi, such as Milner’s pi-calculus [24], and rule-based ones. Examples
of the former include [31, 32, 30]; examples of the latter include BIOCHAM, κ, BioNet-
Gen, and Dynamical Grammars [2, 6, 15, 26]. One positive feature of the rule-based
approach is that rules correspond naturally to biological events, with a main example
being chemical reactions. However rule-based models usually consist of sets of rules,
and these are completely unstructured. In sharp contrast, process calculi have natural
means for specifying modularity such as a parallel combinator, to combine subsystems,
and the ability to name and parameterise subsystems. They thereby can avoid much
redundancy.

Here we aim at combining the naturalness of rules with the modularity of process cal-
culi. We keep both sides of the endeavour simple. Our rules are simple reactions between
species; our modularity provides parallelism and the ability to define modules (without
parameters). We call the resulting formalism the Calculus of Chemical Systems and con-
sciously model it on Milner’s CCS [23], his Calculus of Communicating Systems. There
are two versions of our calculus, a qualitative one and, more importantly, a quantitative
one where the rules are equipped with rates. In both cases modules are non-recursive;
this is more suited to biological systems than the recursive modules of Milner’s CCS.

There are strong arguments in favour of the existence of modules at the cellular
level [13, 1], although it is worth remarking that the extent to which biological systems
are modular is controversial because of the high degree of interaction between supposed
subsystems. Nonetheless, biologists do not describe entire cells but rather particular
pathways and they further note recurring patterns; see, for example, [10] on the MAPK
cascade. There is also speculation that modules have evolutionary significance and
provide robustness to environmental perturbations [13, 1]. In terms of Petri nets, where
there has also been much research on modularity, e.g., [19, 11, 28], we combine nets
sharing commonly named places (species) but not transitions (reactions). Whereas we
provide means for describing modules one can also try to find modules within systems
with given unstructured descriptions, often graphical; see [18] for a survey of work along
these lines.

Following the CCS paradigm, we look at a number of equivalences, here naturally
given via various compositional denotational semantics. In giving these semantics we
take up a suggestion of Pedersen [29] to incorporate the various semantics within a
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2 GORDON D. PLOTKIN

general framework, here using commutative monoids. (This is strongly connected to the
use of rings of operators by Mjolsness and Yosiphon [26].)

For the quantitative case, we consider two equivalencies, one based on ordinary differ-
ential equations (ODEs), and the other on stochastic matrices. For the qualitative case
we consider a transition relation semantics and a Petri net one. As is well known, reac-
tions can also be naturally represented by Petri nets, particularly P/T nets, and, indeed
there is little difference between P/T nets and sets of reactions. See [4, 14, 25] for surveys
of the now extensive applications of Petri nets to pathway simulation; see [35, 16] for an
early chemical reaction formalism using a bipartite graph structure equivalent to P/T
nets; and see [8] for a survey of the application of graphical ideas to chemical reaction
systems, including two bipartite graph formalisms [17, 5].

We provide a complete axiomatisation of each semantics that we consider. We also
consider definability, the main result here is a characterisation of the collection of de-
finable sets of ODEs due to Hárs and Tóth [12, 7]. Continuing to consider the analogy
with Milner’s CCS, one could also seek analogues of Hennesy-Milner logic, but we do
not do so here.

Since our calculus and P/T nets are ways of specifying sets of reactions, there is a
tight relationship between them: the kind of P/T nets we consider form a complete
model of the basic axiom system of the calculus, and all such nets are definable, up to
isomorphism. This gives the calculus a reading as a modular way to describe Petri nets;
conversely, the possibility arises of inputting programs via a graphical input system.

As is already well-known, one can give P/T nets themselves qualitative or quanti-
tative semantics (for the quantitative semantics [14, 36] one has, of course, to equip
the transitions with rates). We show that each such direct semantics agrees with the
corresponding calculus semantics, by which we mean that the latter factors through the
former via the P/T net semantics of the calculus. As the various semantics of the P/T
nets are standard, this acts as a verification of the corresponding semantics of the cal-
culus. Another consequence is that properties of the semantics of P/T nets correspond
with properties of the semantics of processes of the calculus; therefore any means of
establishing that one holds provides a means of establishing that the other does.

The calculus of chemical systems is intended as a simulation language. So, in the cases
of the quantitative semantics, one could argue that one is interested in the simulations
that processes induce rather than the ODEs, or stochastic matrices, themselves. These
simulations are the solutions to the ODEs, or (samples of) the Markov processes in-
duced by the stochastic matrices, and are functionally dependent on given initial states.
Unfortunately, such simulations do not have a prima facie compositional (here, com-
mutative monoid) structure. Following a standard move in the programming language
literature, see, e.g., [37, 9], one could say that the correct equivalence should be an ana-
logue of behavioural (a.k.a. observational, or, more neutrally, contextual) equivalence,
that is, having the same behaviour, here simulations, in all contexts. Pleasingly, it turns
out that we have full abstraction results in both cases, that is, the denotational and
contextual equivalences agree.

Our calculus is intended as a simplest possible rule-based calculus. It should be pos-
sible to usefully add modularity to any rule-based calculus. Indeed the grammatical
approach in [26] provides what amounts to a parameterised module mechanism. One
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can enrich our calculus with facilities for modifications and simple complexes along the
general lines of BIOCHAM, and with a construction for (static) compartments: all of
these are omnipresent in cellular networks. One then has a calculus briefly described
in [29], and called there the Calculus of Biochemical Systems. That paper provided
further linguistic facilities, for example parameterised modules, several kinds of dec-
larations, and functional reaction rates; the aim was to provide a full-scale modular
modelling language. In principle, such further developments can be carried out for any
rule-based system.

After some technical preliminaries in Section 2, we present the calculus of chemical
systems in Section 3. We begin Section 4 with the commutative monoid semantical
framework. We give two semantics for the qualitative version of the calculus, a transition
relation one and a P/T net one, and we give three semantics for the quantitative calculus,
one using a kind of P/T net equipped with reaction rates, and the differential and
stochastic ones, all as mentioned above. Completeness results are given for all of these
(Theorems 4.1, 4.2, 4.5, and 4.9, and discussions). Characterisations of definability are
given for the (immediately obvious) Petri net case and for the ODE case (Theorem 4.4);
the other cases present interesting open problems. Finally the full abstraction result for
the ODE case is given by Theorem 4.8, and that for the stochastic case by Theorem 4.12.

2. Technical Preliminaries

For any set A we write Mf (A) for the collection of finite multisets on A. For any
such multiset X, the multiplicity of a ∈ A is written X(a) and we write ||X|| for its size,
i.e.,

∑
a∈AX(a). The empty multiset is written as ∅; we may confuse an a ∈ A with

the multiset with unique element a occurring with multiplicity 1; and for any multisets
X and Y we write mX and X + Y for the multisets such that (mX)(a) = mX(a)
and (X + Y )(a) = X(a) + Y (a), respectively. So, in particular, for natural numbers
m1, . . . ,mr, and a1, . . . , ar ∈ A we have the multiset m1a1 + . . .+mrar. Finally, for any
function f : A → B, and a ∈ A and b ∈ B, f [a 7→ b] denotes the function everywhere
equal to f except, possibly, at a where it has the value b.

3. The calculus

We assume given a nonempty finite set Spec of species, ranged over by S, I,O. The
set of species names is a parameter to our formalism and may be varied according to the
area of application.

The set of rules, ranged over by R, is given by:

R ::= X → Y

where X and Y are finite multisets of species.
We can use rules to describe chemical reactions, as in:

m1I1 + . . .+mrIr −→ n1O1 + . . .+ npOp

where the Ii are the reactants and the Oj are the products and the stoichiometry is given
by the mi and the nj . Rules can also be used to describe complex formation, as in:

E + S −→ E-S
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where E-S is an assumed name for an E, S-complex, and to describe transport, as in:

S → nucleus[S]

where nucleus[S] is an assumed name for S inside the cell nucleus.
The set of (qualitative) processes, ranged over by P and Q, is then given by the

following abstract syntax:

P ::= R | P |Q | NIL | A = P ;Q | A
where A ranges over a countably infinite set ProcId of process identifiers. The first case
is that of a rule, and the second case P |Q is that of two systems P and Q acting in
parallel: as a species name may occur in both they may interact. The third case is the
empty system and the fourth case is a local definition: of A as P in Q. The last case
is whatever system the identifier A denotes: as such it will normally be a fragment of a
larger process in which it receives a definition.

Local definition is a binding construct with A having scope Q in A = P ;Q. We have
the usual notions of the free process identifiers FP(P ) occurring in a process P , of α-
equivalence of processes, P ≡α Q, and of the capture-avoiding substitution P [Q/A] of
a process Q for a process identifier A in a process P . We adopt a standard convention
and regard α-equivalent processes as identical.

For the set of quantitative processes, rules instead have the form

X
r−→ Y

where r is a positive real (i.e., r > 0), which gives the rate at which the rule occurs.
There are natural abbreviations. For reversible reactions, we could write

X
r←→
s
Y

as an abbreviation for

X
r−→ Y | Y s−→ X

in the quantitative language (and here, and below, we assume the evident corresponding
abbreviations for the qualitative language).

For an enzymatic reaction in which an enzyme E converts a substrate S to a product
P we could write

E : S
r,s,t−−→ P

as an abbreviation for

S + E
r←→
s
E-S | E-S

t−→ E + P

Finally for a reversible enzymatic reaction with different enzymes E and E′ in the
forwards and backwards directions we could write

E : S
r,s,t←−−→
r′,s′,t′

P : E′

for

E : S
r,s,t−−→ P | E′ : P r′,s′,t′−−−−→ S

There is an interesting empirical adequacy question here concerning the design of
abbreviations: one needs to be able to use all the abbreviations commonly found in
the literature. More ambitiously one may try to generate useful such abbreviations
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systematically. For example one may add those suggested in [38] in order to obtain
natural, succinct descriptions of a variety of enzyme kinetics.

There is an evident, very simple, equational theory for processes (more precisely, one
for each of the qualitative or quantitative cases). It has the standard rules of reflexivity,
transitivity and symmetry and substitutivity for the parallel construct, together with
the following congruence rule for local definitions:

P = P ′ Q = Q′

(A = P ;Q) = (A = P ′;Q′)

The axioms are that the parallel construct and NIL form a commutative monoid:

(P1 | P2) | P3 = P1 | (P2 | P3) P1 | P2 = P2 | P1 P | NIL = P

together with:

(A = P ;Q) = Q[P/A]

Every process can be put in the following canonical form:

A1 | . . . | Am | R1 | . . . | Rn
associating parentheses to the left. We remark that the rule of substitutivity for local
definitions is redundant as processes can be put in canonical form without using it.

It follows from Theorem 4.1, below (and from its analogue for the quantitative case)
that two such canonical forms are provably equal if, and only if, the same process names
and reactions occur in each, possibly in different orders; in other words if the two multi-
sets of process names and reactions obtained from each canonical form are equal. With
that we know that processes have normal forms, i.e., canonical forms unique up to re-
ordering. The same situation obtains with respect to all the semantics considered below:
there are evident canonical forms, and the relevant completeness theorems ensure that
they are, in fact, normal forms, i.e., they are unique up to reordering.

4. Semantics

We give a variety of (denotational) semantics for both the qualitative and quantitative
calculi. It proves convenient to organise all these under one scheme. Suppose that we
have a structure

(M, |M ,NILM )

where |M is a binary operation on M and NILM is an element of M , and for every rule
R we are given an element of M , its semantics, written M [[R]], slightly abusing notation.
A process environment is a map

ρ : ProcId→M

For every process P we give its semantics M [[P ]](ρ) relative to a process environment ρ,
by:

M [[R]](ρ) = M [[R]]
M [[P | Q]](ρ) = M [[P ]](ρ) |M M [[Q]](ρ)
M [[NIL]](ρ) = NILM

M [[A = P ;Q]](ρ) = M [[Q]](ρ[A 7→M [[P ]](ρ)])
M [[A]](ρ) = ρ(A)
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Note that M [[P ]](ρ) depends only on the values that ρ assigns to the free process variables
of M ; we may therefore write M [[P ]] instead of M [[P ]](ρ) when M is closed; elements
of M of the form M [[P ]] are said to be definable. As is usual, denotational semantics
commutes with substitution, by which is meant that:

M [[P [Q/A]]](ρ) = M [[P ]](ρ[A 7→M [[Q]](ρ)])

always holds.
If M is a commutative monoid then we obtain a model of the above equational theory,

meaning that if P = Q is provable then M [[P ]](ρ) = M [[Q]](ρ), for all ρ. Conversely, we
say that such a model is complete if whenever M [[P ]](ρ) = M [[Q]](ρ) for all ρ then P = Q
is provable.

One may instead have a structure (M, |M ,NILM ), which is not a commutative monoid,
but can be equipped with a congruence ∼ such that M/ ∼ is a commutative monoid:
this occurs, for example, in the case of Petri nets. One then has a model in the weaker
sense, that if P = Q is provable then M [[P ]](ρ) ∼ M [[Q]](ρ) for all ρ, and one defines
completeness accordingly.

4.1. Petri Net Semantics. We begin with the qualitative case. Following the above
framework we need to give a suitable set Net of Petri nets. We take these to be structures

(T, pre, post)

where T , the set of transitions, is a finite subset of {0, 1}∗ and pre, post : T →Mf (Spec).
We may write pre(t), post(t) as, respectively, ·t, t·. We do not specify a set of places
as we use the same set of places, Spec, for all our nets. Note too that places are
identified with (basic) species, as is normally done when using Petri nets to describe
biochemical processes, and which corresponds to the convention in pathway graphical
formalisms of having each species occur just once in the graph. Further, transitions are
kept anonymous: this could, of course be changed, but they are normally kept so, and
we know no reason to depart from that practice. Our nets are P/T nets with the small
differences that we have a fixed set of places and that we do not have an initial marking.

The semantics of rules is given by:

Net[[X −→ Y ]] = ({ε}, {ε 7→ X}, {ε 7→ Y })
Next, the function |Net: Net2 → Net is defined by:

(T, pre,post) |Net (T ′,pre′, post′) = (0T ∪ 1T ′, pre′′, post′′)

where

pre′′(u) =def

{
pre(w) (if u = 0w)
pre′(w) (if u = 1w)

and

post′′(u) =def

{
post(w) (if u = 0w)
post′(w) (if u = 1w)

And we define:
NILNet = (∅, ∅, ∅)

meaning the constantly ∅ function in the second and third components.
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With these definitions (Net, |Net,NILNet) is not a commutative monoid, because of
slight differences of transitions. However we can define a congruence, putting

(T, pre, post) ∼ (T ′, pre′, post′)

if, and only if, the two nets are isomorphic, meaning that there is a bijection θ : T ∼= T ′

such that, for all t ∈ T we have pre(t) = pre′(θ(t)) and post(t) = post′(θ(t)), and,
dividing out by this congruence, we do obtain a commutative monoid, as required.

In a way, the calculus of chemical systems is little more than a way of writing down
Petri nets, and this results in some natural formal relations between the two. Concerning
definability, as is evident, every net in Net is definable by a program, up to isomorphism.
This means that for every such net N there is a closed process P such that [[P ]] ∼ N .
This is the formal correlate of the pragmatic possibility of inputting processes by drawing
nets, just as the semantics is the formal correlate of the pragmatic possibility of defining
nets by processes.

We also have that the Petri net semantics is complete, and that the canonical forms
are unique up to reordering (we then say that they are normal forms):

Theorem 4.1. The following are equivalent for any two processes P and Q:

(1) P and Q can be proven equal.
(2) Any two canonical forms of P and Q are the same up to reordering.
(3) Net[[P ]](ρ) ∼ Net[[Q]](ρ) for all ρ.

Proof. Clearly (2)⇒ (1)⇒ (3). So assume (3) and consider two processes P and Q with
canonical forms A1 | . . . | Am | R1 | . . . | Rn and A′1 | . . . | A′m′ | R′1 | . . . | R′n′ . Recalling
that Spec is nonempty, choose S ∈ Spec, and let B1, . . . , Bn be a list of the process
variables occurring freely in either one of P or Q, and let s be the maximum of the
number of occurrences of S in an Rj or a R′j′ . Now choose ρ so that ρ(Bk) is a net with

one transition ε such that ·ε(S) = s+k and ε·(S) = 0. Then, as Net[[P ]](ρ) ∼ Net[[Q]](ρ),
one has that the two chosen canonical forms of P and Q are identical up to reordering
(we omit further details). �

There is a variant of the Petri net semantics worth remarking. One only allows nets
not containing any transition w with ·w = w· and takes the semantics of X → X to be
NILNet. Everything then goes through as before except that in the proof system one
adds the axiom

X → X = NIL

and in canonical forms one forbids rules of the form X → X.
In the quantitative case rules have associated positive reals and we instead take our

set of quantitative Petri nets, CNet to be structures

(T, pre, post, rate)

where T , pre and post are as before and rate : T → R+, where R+ is the set of positive
reals. (Formally, these nets are stochastic nets but for the same small differences as
before: there is a fixed set of places and there is no initial marking. However, our nets
have no fixed intended interpretation, and, indeed, will receive both an ODE and a
stochastic semantics.)
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One then makes the evident changes to the semantics for the qualitative case: we do
not spell them out here. The evident analogue of Theorem 4.1 holds, with the analogous
proof. One also has the evident analogue of the above variant of the Petri net semantics,

now with X
r−→ X = NIL as the additional axiom.

4.2. Qualitative Semantics: Transition Relations. We give a semantics of the
qualitative calculus in terms of transition relations on markings, here finite multisets
of species. The idea is that the marking gives the population of each species and the
transitions correspond to the occurrence of a finite multiset of reactions, or other rules.
So we set TRel to be the set of relations→ onMf (Spec) satisfying the following closure
conditions:

X → X
X → Y X ′ → Y ′

X +X ′ → Y + Y ′

The first corresponds to the fact that the multiset of rules firing may be empty; the
second corresponds to the fact that the firings of two multisets can be combined into
their joint firing. Given any relation → on Mf (Spec) there is a least such relation →∗
containing it and closed under the rules; we have:

→∗= {(Z +
∑
i=1,n

miXi, Z +
∑
i=1,n

miYi) | Xi → Yi,mi ∈ N (i = 1, n)}

We say that → generates →∗.
The semantics of rules is given by:

TRel[[X → Y ]] = {(Z + kX,Z + kY ) | Z ∈Mf (Spec), k ∈ N} (= {(X,Y )}∗)
and we define a commutative monoid structure on TRel by:

→ |TRel →′= {(kX + k′X ′, kY + k′Y ′) | k, k′ ∈ N, X → Y,X ′ →′ Y ′} (= (→ ∪ →′)∗)
and:

NILTRel = {(X,X) | X ∈Mf (Spec)} (= ∅∗)
Note that |TRel is absorptive, i.e., that, for any transition relation →, we have:

→ |TRel → = →
We do not know any characterisation of the relations defined by closed processes, other
than the obvious one that they are generated by a finite relation. An obvious necessary
condition is that, for any X, the set {Y | X → Y } is finite. However there are closed non-
finitely generated relations obeying this condition, e.g., {(mS, nS) | m ≥ 1,m ≤ n ≤ m2}
where the maximum gap size, m2 −m, grows too quickly. This example also satisfies
two other obvious conditions: that both the set {Y | X → Y } and its size are recursive
in X.

As well as the axioms above, another three hold in TRel:

P | P = P

X → X = NIL

X → Y | X ′ → Y ′ = X → Y | X ′ → Y ′ | X +X ′ → Y + Y ′

The first corresponds to the absorptiveness of |TRel and the others to the above closure
conditions. Every process can be put in a canonical form. This is, as before, a composi-
tion of process names and rules but where, in addition, no process name or rule occurs
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twice, and where no rule is in the closure of the others (considered as forming a relation).

As we now see, with these additional axioms we obtain completeness for the transition
relation semantics:

Theorem 4.2. The following are equivalent for any two processes P and Q (assuming
there is an element of Spec not occurring in P or Q):

(1) P and Q can be proven equal using the above axioms for the qualitative semantics.
(2) Any two canonical forms of P and Q are the same up to reordering.
(3) TRel[[P ]](ρ) = TRel[[Q]](ρ) for all ρ.

Proof. As in the case of Theorem 4.1 we need only assume (3) and prove (2). So let
A1 | . . . | Am | R1 | . . . | Rn and A′1 | . . . | A′m′ | R′1 | . . . | R′n′ be canonical forms of P
and Q. For any Ai, first choose S not occurring in P or Q and then choose ρ such that
ρ(Ai) = {(S, 0)}∗ and, otherwise, is NILTRel. Then TRel[[P ]](ρ) is the least transition
relation containing (S, ∅) and the Ri (considered as ordered pairs of multisets). So, by
assumption, (S, ∅) also occurs in TRel[[Q]](ρ) and so, as S occurs in no R′j′ , Ai must be

one of the A′i′ . With this, and the symmetric argument, we see that the Ai and the A′i′
are the same.

Next, taking ρ constantly NILTRel, we see that the Rj and the R′j′ generate the same

transition relations using the above closure conditions as rules. Observe that if (X,Y )
is generated from a set of pairs of multisets, then either X = Y = ∅ or (X,Y ) is in the
set or else it is generated from (X ′, Y ′) in the set with ||X ′|| + ||Y ′|| < ||X|| + ||Y ||. So
as R1 (say) is not ∅ → ∅ either it is some R′j′ or else it is generated from R′j′ , which

are smaller in this sense. But those R′j′ are, in turn, generated from smaller Ri, and
so, in this last alternative, R1 is generated from strictly smaller Ri, which contradicts
canonicity. Arguing symmetrically we see that the Rj and the R′j′ coincide. �

This theorem yields completeness for the set of transition relations formed from Spec
expanded with an additional species name. As the additional species name is only used
in the case that P and Q are open, the theorem holds generally for closed processes. The
possibility of expanding Spec also ensures that that the equivalence of (1) and (2) holds
without any assumption. It is worth noting that it follows from the proof that one can
restrict the environments in (3) to be definable, by which we mean that all their values
are definable.

One can, of course, directly define a transition relation in TRel on every net in Net.
Specifically to every net N = (T, pre, post) one assigns the following transition relation:

R(N) =def {(Y +
∑
t∈T

X(t)·t, Y +
∑
t∈T

X(t)t·) | X ∈Mf (T )} (= {(·t, t·)}∗)

The function R : Net→ TRel preserves all the semantical structure:

Proposition 4.3. For any rule R we have:

TRel[[R]] = R(Net[[R]])

and, further, R is a monoid homomorphism.
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Consequentially, the Petri net and transition relation semantics are consistent with
the usual multi-transition semantics of Petri nets in that, for any qualitative process P
and any Net process environment ρ, we have:

TRel[[P ]](R◦ρ) = R(Net[[P ]](ρ))

We can think of R as giving the semantics of Petri nets. As syntactic objects, Petri
nets are generated from transitions by finite composition, andR preserves that structure.
The qualitative calculus provides a syntax for nets with its rules and finite composition
structure and the completeness of the axiom system identifies nets as equivalence classes
of terms, and so as a kind of non-free syntax.

There are other possible transition relations one can associate to Petri nets, such
as transitions occurring by virtue of a single transition firing, or by virtue of a set of
transitions firing, or by virtue of a maximal set (or multiset) of transitions firing. Of
these, the first two are modular, meaning that they can be equipped with a suitable
monoidal structure, but the last two are not. We chose the multiset semantics as it
seemed the most natural given that one is in any case working with markings as multisets.
Another variant would have been to decorate the transition relation with the set or
multiset of transitions involved, but we decided against that as we are keeping transitions
anonymous.

Petri nets being at once graphs and supporting the fundamentals of chemistry them-
selves provide a fundamental graphical notation. Biologists make much use of informal
graphical means of describing pathways; further, there has been work by Kohn, Kitano
and others, see, e.g., [21, 20, 22], to produce more formal graphical notations adequate
for flexible natural pathway description. By taking abbreviatory conventions seriously,
meaning having them as additional language constructs, one can give a different graphi-
cal semantics than Petri nets, for example Petri nets extended with reversible transitions.
In that way one’s formalism would begin to make contact with the more informal graph-
ical approaches, but still retain direct contact with the more basic Petri nets, and their
various semantics.

4.3. Quantitative Semantics: ODE. We give a semantics of the quantitative calculus
in terms of ordinary differential equations (ODEs). Here one associates to a process a
set of ODEs of the form:

d[S1]
dt = p1

...
d[Sm]

dt = pm

where, as usual, we write [S] for the concentration of a species S, and S1, . . . , Sm is an
enumeration of the species in Spec, and p1, . . . , pm are real polynomials over the [Si].
We need to make a commutative monoid Diff out of such sets of ODEs and to that end
we identify them with maps from Spec to the commutative monoid of real polynomials
over the [Si]. They then have the standard pointwise monoid structure:

(p |Diff q)(S) = p(S) + q(S)

and:

NILDiff(S) = 0
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It only remains to give the semantics of rules:

Diff[[X
r−→ Y ]](S) = r(Y (S)−X(S))

∏
S∈Spec

[S]X(S)

Not all sets of ODEs of the above form can arise as the semantics of (closed) processes
or, equivalently, using Proposition 4.6 below, of quantitative Petri nets. However there is
a simple condition, characterising those that are so definable. Expand each pi as a linear
sum of distinct monomials:

∑
j aijqij (ai 6= 0). We then have the following theorem, due

to Hárs and Tóth; we include a proof for the sake of completeness.

Theorem 4.4. A set of ODEs of the above form is definable if, and only if, whenever
any aij is negative then the power of [Si] in qij is non-zero.

Proof. It is easy to see that this condition holds for all definable sets of equations. For
the converse, it is enough to show that, for any i, j, we can define a rule Rij such
that Diff[[Rij ]](S) = 0, if S 6= Si, and Diff[[Rij ]](S) = aijqij . With that, the parallel
composition of the Rij defines the given set of differential equations.

So, let qij have the form
∏
k=1,n[Sk]

mk . There are two cases. Suppose first that aij is
negative. Then mi 6= 0 and we take the rule Rij to be

m1S1 + · · ·+mnSn
aij/mi−−−−→ m1S1 + · · ·+mi−1Si−1 +mi+1Si+1 + · · ·+mnSn

The other case is where aij is positive, when we take the rule Rij to be

m1S1 + · · ·+mnSn
aij−−→ Si + (m1S1 + · · ·+mnSn)

�

There can be non-trivial examples of different quantitive (closed) processes (or, equiv-
alently systems of reactions, or, as we see below, non-isomorphic quantitative Petri nets)
having the same ODE semantics. The example

2A
2r−→ B +A = 2A

r−→ 2B

was (essentially) given in [3], and another example was given in [12]; see [33, 34] for
work on finding optimal reaction systems having given ODEs. We now axiomatise this
equivalence. The following axioms hold:

X
r−→ X = NIL

X
r+s−−→ Z = X

r−→ Z | X s−→ Z

X + Y
r−→ X + Z = X + Y

r−→ X | X + Y
r−→ X + Y + Z

X + Y + Z
r−→ X = X + Y + Z

r−→ X + Y | X + Y + Z
r−→ X + Z

X
r−→ X + Y + Z = X

r−→ X + Y | X r−→ X + Z

X + Y
r−→ X | X + Y

s−→ (X + Y ) + Y = NIL (if r = s)

X + Y
r−→ X | X + Y

s−→ (X + Y ) + Y = X + Y
r−s−−→ X (if r > s)

X + Y
r−→ X | X + Y

s−→ (X + Y ) + Y = X + Y
s−r−−→ (X + Y ) + Y (if r < s)

The first two of these axioms are easy to understand. For the others, let us say

that a rule of the form X + Y
r−→ X is of consumption type and that a rule of the
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form X
r−→ X + Y is of production type. Then the third axiom divides an arbitrary

rule into one of each type; the fourth axiom divides a consumption rule into two other
consumption rules that are simpler in the sense that less is consumed in each; the fifth
axiom divides a rule of production type into two simpler such rules; and the last three
concern the balance between production and consumption when a consumption rule is
put in parallel with a production one.

The six consumption and production axioms may be easier to understand if we write

Y
r−→
X

Z for X + Y
r−→ X + Z. Consumption and production axioms then take the

respective forms Y
r−→
X
∅ and ∅ r−→

X
Y , and the six axioms become:

Y
r−→
X

Z = Y
r−→
X
∅ | ∅ r−−−→

X+Y
Z

Y + Z
r−→
X
∅ = Z

r−−−→
X+Y

∅ | Y r−−−→
X+Z

∅

∅ r−→
X

Y + Z = ∅ r−→
X

Y | ∅ r−→
X

Z

Y
r−→
X
∅ | ∅ s−−−→

X+Y
Y = NIL (if r = s)

Y
r−→
X
∅ | ∅ s−−−→

X+Y
Y = Y

r−s−−→
X
∅ (if r > s)

Y
r−→
X
∅ | ∅ s−−−→

X+Y
Y = ∅ s−r−−−→

X+Y
Y (if r < s)

Note that in all the equations the left-hand-side of the rules do not change: in terms of
the ODEs we are only reorganising the contributions to the coefficients of the monomials.
There is a canonical form. Say that a consumption, respectively production, rule is unary

if it is of the form S
r−→
X
∅, respectively ∅ r−→

X
S. Then a process is in canonical form if

it is a composition of process names and such unary rules, with no species having both
a consumption and a production rule. Every process can be put in canonical form: one
eliminates trivial rules using the first axiom, reduces rules to compositions of unary ones
using the next three axioms, and combines unary rules with identical left- and right-hand
sides using the next, and finally uses the last two rules to ensure that no species has
both a consumption and a production rule.

With the addition of the above axioms, the logic of the quantitative calculus is com-
plete for the ODE semantics:

Theorem 4.5. The following are equivalent for any two processes P and Q:

(1) P and Q can be proven equal using the above axioms for the ODE semantics.
(2) Any two canonical forms of P and Q are the same up to reordering.
(3) Diff[[P ]](ρ) = Diff[[Q]](ρ) for all ρ.

Proof. As always, we need only assume (3) and prove (2). So choose canonical forms
A1 | . . . | Am | R1 | . . . | Rn and A′1 | . . . | A′m′ | R′1 | . . . | R′n′ of P and Q. A consumption
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rule X + S
r−→ X has semantics with value 0 everywhere except at S where it has value

−r[S]
∏
i

[Si]
X(Si)

A production rule X
r−→ X+S has semantics with value 0 everywhere except at S where

it has value

r
∏
i

[Si]
X(Si)

So, considering Diff[[P ]](ρ) and Diff[[Q]](ρ), with ρ having value 0 everywhere, we see
that the Ri and the R′i′ must coincide.

To show that A1, say, occurs with the same multiplicity in the two canonical forms
one employs the environment ρ, which has value 0 everywhere except at A1 where it has

value Diff[[nS
1−→ ∅]] where S is a chosen element of Spec and n > 0 is chosen greater

than the multiplicity of S in the left-hand side of any Ri. �

As before, it follows from the proof that one can restrict the environments in condition
(3) to be definable.

One can directly assign ODE semantics to Petri nets in CNet, as was already done
more generally in [14]. We set:

D(T, pre,post, rate)(S) =
∑
t∈T

rate(t)(t·(S)− ·t(S))
∏

S′∈Spec

[S′]
·t(S′)

thereby defining the semantics D : CNet → Diff. As before this Petri net semantics
preserves all the semantical structure:

Proposition 4.6. For any rule R we have:

Diff[[R]] = D(CNet[[R]])

Further, D : (CNet, |CNet,NILCNet)→ (Diff, |Diff ,NILDiff) is a monoid homomorphism.

So the Petri net and ODE semantics are consistent in that, for any quantitative process
P and any CNet process environment ρ, we have:

Diff[[P ]](D◦ρ) = D(CNet[[P ]](ρ))

We now turn to our full abstraction results for the ODE semantics. We begin with
a notion of “same simulation behaviour.” For any p,q ∈ Diff, define p ∼ q to hold if,

and only if, for all non-negative initial values (i.e., those in x ∈ R|Spec|
≥0 ) there is a time

interval [0, t) on which the ODEs given by p and q have the same solutions with initial
value x. Thus p ∼ q if the ODEs given by p and q have the same solutions locally, for
any given initial value. This relation is evidently an equivalence; it seems a reasonable
definition as, in general, ODEs need not have global solutions.

One concern about the definition of same simulation behaviour is that solutions of the
ODEs given by p may have negative components, even although the initial value is non-
negative. However this does not happen for definable p, as, in that case, solutions remain
non-negative, as shown in [35, 16]; one can prove this using an immediate consequence
of the above definability condition, that if [Si] = 0, then pi ≥ 0.
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Next we define the set of process contexts C,D by the following abstract syntax:

C ::= R | C|D | NIL | A = C;D | A | [ · ]

which is the same as that for processes except that the possibility of a “hole” [ · ] has
been added. Given any context C and process P one obtains a process C[P ] by replacing
all the holes in C by P . We then define our notion of contextual equivalence by:

P ≈ Q iff ∀C. (C[P] and C[Q] closed ⇒ Diff[[C[P ]]] ∼ Diff[[C[Q]]])

We now show that our semantics is indeed fully abstract, in that contextual equiva-
lence coincides with having the same ODE semantics. First we need a lemma.

Lemma 4.7. For any p,q ∈ Diff, p ∼ q holds if, and only if, p = q.

Proof. Assume p ∼ q. Fix an initial value x. By a standard existence theorem for
ordinary differential equations (either that of Cauchy-Peano or that of Picard-Lindelöf),
the ODEs given by p have a solution on some [0, t) with the given initial value, and so, by
the assumption, the ODEs given by q have the same solution. Such solutions determine

the values of the d[Si]
dt at the given initial value, and so the polynomials p([Si]) and

q([Si]) have the same values at the given initial value. As the initial value was chosen

arbitrarily from R|Spec|
≥0 , it follows that the two polynomials are identical. �

Theorem 4.8. For any processes P and Q we have:

P ≈ Q iff ∀ρ.Diff[[P ]](ρ) = Diff[[Q]](ρ)

Proof. For the implication from right to left, assume that ∀ρ.Diff[[P ]](ρ) = Diff[[Q]](ρ).
It is then easy to show for any context C that ∀ρ.Diff[[C[P ]]](ρ) = Diff[[C[Q]]](ρ); the
proof is by induction on the structure of C.

Conversely, suppose that P ≈ Q. Let ρ be a definable environment, and suppose that
ρ(A) = Diff[[PA]]; and let A1, . . . , An be a list without repetition of all the free process
variables of P or Q. Define C be the context

A1 = PA1 ;
...

An = PAn ;
[ · ]

Noe that both C[P ] and C[Q] are closed; this lets us apply the assumption:

Diff[[P ]](ρ) = Diff[[P ]](ρ[A1 7→ Diff[[PA1 ]]] . . . [An 7→ Diff[[PAn ]]])
= Diff[[P [PAn/An] . . . [PA1/A1]]](ρ)

(substitution and denotation commute)
= Diff[[C[P ]]](ρ) (using the proof rules)
= Diff[[C[Q]]](ρ) (by assumption and Lemma 4.7)
= Diff[[Q]](ρ)

The conclusion then follows by Theorem 4.5, and the remark after it on definable
environments.

�
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4.4. Quantitative Semantics: Stochastic. We give another semantics of the quan-
titative calculus in terms of the set SMatrix of stochastic transition matrices. These are
maps Q :Mf (Spec)2 → R such that

Q(X,Y ) ≥ 0 (if Y 6= X)

and

Q(X,X) = −
∑
Y 6=X

Q(X,Y )

This has the following pointwise commutative monoid structure:

(Q |SMatrix Q
′)(X,Y ) = Q(X,Y ) +Q′(X,Y )

NILSMatrix(X,Y ) = 0

For the semantics of rules, first define (X,Y ) � (X ′, Y ′) to hold for multisets X,Y,X ′, Y ′

iff, for some (necessarily unique) Z we have X ′ = Z +X and Y ′ = Z +Y . Then, in case
Y 6= X and X ′ ≥ X, we put:

SMatrix[[X
r−→ Y ]](X ′, Y ′) =

 r
(
X′

X

)
(if (X,Y ) � (X ′, Y ′))

−r
(
X′

X

)
(if Y ′ = X ′)

0 (otherwise)

where (
X′

X

)
=def

∏
S∈Spec

(X′(S)
X(S)

)
In all other cases we put:

SMatrix[[X
r−→ Y ]](X ′, Y ′) = 0

We do not know any characterisation of the stochastic transition matrices definable
by nets. One necessary condition is that there is a k such that for all X we have
|{Y | Q(X,Y ) > 0}| ≤ k. However a first problem seems to be, allowing nets with
countably many transitions, to characterise the stochastic transition relations defined
by such nets.

The following axioms hold:

X
r−→ X = NIL

X
r+s−−→ Z = X

r−→ Z | X s−→ Z

There is an evident canonical form: a composition of process names and rules in which no

rule of the form X
r−→ X occurs and at most one rule with any given left- and right-hand

side occurs. With the addition of the above two axioms, the logic of the quantitative
calculus is complete for the stochastic semantics:

Theorem 4.9. The following are equivalent for any two processes P and Q:

(1) P and Q can be proven equal using the above axioms for the stochastic semantics.
(2) Any two canonical forms of P and Q are the same up to reordering.
(3) SMatrix[[P ]](ρ) = SMatrix[[Q]](ρ) for all ρ.
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Proof. As always, we need only assume (3) and prove (2). So choose canonical forms
A1 | . . . | Am | R1 | . . . | Rn and A′1 | . . . | A′m′ | R′1 | . . . | R′n′ of P and Q. Setting ρ to
be constantly NILSMatrix for any X,Y ∈Mf (Spec) with X 6= Y , we have:

SMatrix[[P ]](ρ)(X,Y ) =
∑

(Xj ,Yj)�(X,Y )

rj
(
X
Xj

)
where Rj = Xj

rj−→ Yj ; a similar formula holds for Q, with R′k = X ′k
r′k−→ Y ′k.

We prove that X
r−→ Y occurs in one canonical form iff it is in the other by induction

on ||X||. So consider an Rj = Xj
rj−→ Yj , to show it is some R′k. From the above formula

for SMatrix[[P ]] we have:

SMatrix[[P ]](ρ)(Xj , Yj) =
∑

(Xj′ ,Yj′ )�(X,Y )

||Xj′||<||Xj ||

rj′
(
X
Xj′

)
+ rj

(Xj

Xj

)

using the fact that if (X ′, Y ′) � (X,Y ) and ||X ′|| = ||X|| then X ′ = X and Y ′ = Y .
Similarly, we have:

SMatrix[[Q]](ρ)(Xj , Yj) =
∑

(X′k, Y
′
k) � (Xj , Yj)

||X′k|| < ||Xj ||

r′k
(
X
Xj′

)
+ δ

where δ = 0 unless there is a (necessarily unique) R′k = X ′k
r′k−→ Y ′k with X ′k = Xj and

Y ′k = Yj , when δ = r′k
(X′k
X′k

)
(= r′k

(Xj

Xj

)
).

We know that SMatrix[[P ]](ρ)(Xj , Yj) = SMatrix[[Q]](ρ)(Xj , Yj), so, applying the in-

duction hypothesis, we see that rj
(Xj

Xj

)
= δ. So, as rj 6= 0, we have rj

(Xj

Xj

)
= δ = r′k

(Xj

Xj

)
,

and so r′k = rj . Therefore Rj occurs in the canonical form of Q, as required. The
converse assertion, that rules appearing in the canonical form of Q also appear in the
canonical form of P is proved similarly.

To see that the same process identifiers occur in both canonical forms, and with
the same multiplicities, suppose that A has multiplicity m in P and multiplicity m′

in Q. Define ρ to have value NILSMatrix everywhere except at A where it has value

SMatrix[[nS
1−→ ∅]], for chosen S ∈ Spec, and n > 0 greater than the multiplicity of S

in the left-hand side of any Rj or Rj′ . Noting that (X ′, Y ′) � (X, ∅) iff X ′ = X and
Y ′ = ∅ we that SMatrix[[R1 | . . . | Rn]](ρ)(nS, ∅) = 0 and so SMatrix[[P ]](ρ)(nS, ∅) = mn!.
Arguing similarly, we see that SMatrix[[Q]](ρ)(nS, ∅) = m′n! where m′ is the multiplicity
of A1 in the canonical form of Q. It follows from the assumption that m′ = m.

�

Again as before, it follows from the proof that one can restrict the environments in
condition (3) to be definable.

There is a standard Petri net stochastic semantics S : CNet→ SMatrix, see, e.g., [36,
14]. It is given for Y 6= X by:

S(T, pre, post, rate)(X,Y ) =
∑
t∈T
{rate(t)

(
X
·t

)
| (·t, t·) � (X,Y )}
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and thereby determined on the diagonal.

Proposition 4.10. For any rule R we have:

SMatrix[[R]] = S(CNet[[R]])

and S is a monoid homomorphism.

It follows that the Petri net and stochastic semantics are consistent in that, for any
quantitative process P and any CNet process environment ρ, we have:

SMatrix[[P ]](S◦ρ) = S(CNet[[P ]](ρ))

As in the case of the ODE semantics, we can consider notions of contextual equiva-
lence for stochastic simulation. The analogue of a solution of the ODEs with a given
initial value is the Markov process induced by a stochastic matrix Q ∈ SMatrix, with a
given initial point-mass probability distribution δX . (For an explanation of how Markov
processes arise from stochastic matrices see, for example, Chapter 2 of [27].)

For any Q,Q′ ∈ SMatrix, define Q ∼ Q′ to hold if, and only if, for any given initial
point-mass probability distribution δX , Q and Q′ induce the same Markov process.
Contextual equivalence is then defined by:

P ≈ Q iff ∀C. (C[P] and C[Q] closed ⇒ SMatrix[[C[P ]]] ∼ SMatrix[[C[Q]]])

Lemma 4.11. For any Q,Q′ ∈ SMatrix, Q ∼ Q′ holds if, and only if, Q = Q′.

Proof. The result is an immediate consequence of the fact that the X-th row of any
Q ∈ SMatrix is determined by the induced Markov process starting at δX . To see
this, first note that the first holding time of this process is exponentially distributed
with parameter QX =def −Q(X,X). If QX is 0 then so is the entire X-th row of Q.
Otherwise, as the jump chain of the Markov process is the X-th row of the jump matrix
Π of Q, and as ΠX,Y = Q(X,Y )/QX off the diagonal when QX 6= 0, the X-th row of Q
is again determined. �

Using this lemma, we have that the stochastic matrix semantics is indeed fully ab-
stract; the proof is entirely analogous to that of Theorem 4.8.

Theorem 4.12. For any processes P and Q we have:

P ≈ Q iff ∀ρ. SMatrix[[P ]](ρ) = SMatrix[[Q]](ρ)
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