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Abstract. Provenance techniques aim to increase the reliability of hu-
man judgments about data by making its origin and derivation pro-
cess explicit. Originally motivated by the needs of scientific databases
and scientific computation, provenance has also become a major issue
for business and government data on the Web. However, so far prove-
nance has been studied only in relatively restrictive settings: typically,
for data stored in databases or scientific workflow systems, and processed
by query or workflow languages of limited expressiveness. Long-term
provenance solutions require an understanding of provenance in other
settings, particularly the general-purpose programming or scripting lan-
guages that are used to glue different components such as databases,
Web services and workflows together. Moreover, what is required is not
only an account of mechanisms for recording provenance, but also a the-
ory of what it means for provenance information to explain or justify
a computation. In this paper, we begin to outline a such a theory of
self-explaining computation. We introduce a model of provenance for a
simple imperative language based on operational derivations and explore
its properties.

1 Introduction

Scientific data (including both raw data and processed results) is now being pub-
lished and shared online in unprecedented quantities. Understanding the signifi-
cance, validity, or accuracy of this data depends on understanding its provenance.
When data is not confined to a single user, system, or intended application, it is
essential to make the origin, ownership history, processing steps, and context or
assumptions about the data explicit, to avoid misinterpretation and aid repro-
ducibility. Over the last decade, a wide variety of techniques aimed at addressing
this provenance problem have been proposed, including new data formats [46,
47] and mechanisms for generating provenance to accompany computations.

Buneman, Khanna and Tan’s 2001 paper “Why and Where: A Characteri-
zation of Data Provenance” [9] was among the first publications to investigate
the problem of provenance in database systems. Although provenance was stud-
ied earlier by Wang and Madnick [56], Woodruff and Stonebraker [59] and Cui
et al. [20], Buneman et al. [9] has had greater influence (at least measured in



terms of citations) than these other works. We conjecture that one reason for
this is that Buneman et al. went beyond proposing mechanisms for provenance:
they also considered the question of the meaning of provenance. By considering
and comparing two models, why-provenance and where-provenance, they made
it clear that there might be many different models of provenance, with different
advantages and disadvantages, and suitable for different applications.

Provenance techniques have since been studied in the context of databases [9,
29], scientific workflow systems [43, 7], operating systems [48], and inference sys-
tems [38] (including recent interest in the Semantic Web community, culminating
in a W3C Working Group on Provenance [27, 47]). In each of these contexts, there
is a large design space for provenance mechanisms, yet at the same time there
is not a clear consensus on the requirements or policies that these mechanisms
ought to satisfy. Sometimes even the specifications of the techniques are unclear,
or illustrated mainly through intuitive examples.

Instead, a wide variety of informal motivations have been cited, usually not
accompanied by precise definitions or proofs of correctness. Such motivations
include:

– To record a complete derivation of a program or inference process execu-
tion. [23, 60, 48]

– To guarantee repeatability, replayability or reproducibility. [23, 45]
– To explain causal structure, history, influence or dependence. [40, 17, 13, 15]
– To show where result data has been copied from, how result records were

composed from input records, or why results were produced. [9, 8, 29, 16]
– To validate a computation to ensure it is correct. [41]
– To diagnose and repair errors in computations involving components that

are not believed to be reliable. [39]
– To facilitate efficient recomputation and comparison of computations, in-

cluding recomputation from different inputs or in different computational
environments. [23, 5, 17, 29]

As of 2010, there were over 400 research papers on provenance in computer sys-
tems to date [44]. However, not all of them observe Lamport’s rule “State the
Problem Before Describing the Solution” [35]: instead, many present a proposed
solution and then argue that it is a solution on its own terms, without making
the problem it solves explicit. This state of affairs should be compared with the
state of security research twenty-five years ago, when a wide variety of (often
proprietary) security solutions were being proposed without a clear understand-
ing of what problems they solved (or were meant to solve). In an influential essay,
Good [28] argued that foundational understanding (theories and mathematical
models) were necessary for computer security. We believe provenance research
is in a similar state today: there are few formal models or crisp definitions of
the requirements for provenance or proofs that actual techniques achieve their
purported goals.

In previous work [17], we highlighted several hazards implicit in this state
of affairs, which we called provenance failures. A provenance failure is a loss or
risk exposed by failure to properly manage provenance: for example, losses due



to outdated information in online trading [11] or due to inaccurate scientific re-
sults [42]. Government agencies may also view leaks as provenance failures [55],
and as of this writing (June 2013), it is widely reported [30] that intelligence
agencies are combining massive computing resources with unfettered access to
metadata about phone calls and Internet use. Whether one views these develop-
ments as essential tools for fighting terrorism or unacceptable hazards to privacy
and individual liberty, one cannot deny that the problems of protecting and se-
curing metadata are becoming just as important as those for raw data.

Since 2009, there has been a major effort to define standards for provenance
on the World Wide Web [47]. Provenance techniques are now being widely advo-
cated as a basis for trusting online data and scientific results. However, if these
techniques are not placed on a firm foundation, then this effort is doomed to
failure: if the problems to be solved by provenance are not formulated precisely,
then proposed solutions will, at best, provide a false sense of security.

For the purposes of this paper, we consider provenance to be any information,
usually not already provided by the system, describing some aspect of a system’s
run-time behavior (or of data flowing through it). Our view is that general-
purpose systems, including programming languages, should be equipped with
general-purpose notions of provenance that are (a) clearly specified, (b) suitable
for a variety of typical applications, and (c) equipped with a formal correctness
property relating the behavior of the real system to the provenance description.

The first two criteria are relatively easy to satisfy. The aim of this paper is
to bring the third requirement into focus and study it. Many of the commonly-
stated requirements for provenance amount to a form of explanation that ade-
quately accounts for the behavior of the system [22]. However, the precise sense
in which some auxiliary data (which we call provenance) actually explains a com-
putational process is seldom explicitly stated. In this paper, we begin to outline
a theory of self-explaining computation, in which the semantics of provenance
and its relationship to the conventional semantics of a programming language
(or behavior of a system) are the objects of study.

What are the open questions that a theory of self-explaining computation
should address? These are just a few possibilities:

1. If a system’s actual behavior is described by explicit records, how do these
constitute explanations? What are different appropriate definitions of expla-
nation and how are they related?

2. Provenance can be recorded according to several different strategies, ranging
from coarse-grained to fine-grained. Fine-grained provenance seems more
useful or “complete” but can easily grow to dwarf the raw data. How can we
understand and quantify the tradeoff between granularity and usefulness?

3. The full provenance record often includes far too much information to be
useful. How can we extract subsets of this information that correctly ap-
proximates the full record?

4. Some provenance techniques (e.g. minimal witnesses in why-provenance) are
extensional, or invariant with respect to a conventional semantics of the sys-
tem, and others are intensional, meaning that their behavior can be different



for conventionally-equivalent expressions (e.g. where-provenance). What are
the advantages and disadvantages of these different approaches? How can
we justify intensional provenance semantics?

The behavior of computer systems can be described programmatically. The
study of the semantics of programming languages has explored a large number
of alternative approaches to defining the meaning of programs, ranging from
denotational techniques [53] that interpret program text as an abstract, math-
ematical object such as a function, to operational techniques [50] that explain
the behavior of complex program constructs via rules that describe how to eval-
uate a program step-by-step. We take the view that the theory of self-explaining
computation should build on programming language semantics, in order to en-
sure that the specifications of provenance techniques are clear, and in order to
facilitate formalization and proof of correctness properties.

We focus on an operational approach to provenance in the context of an
imperative core-language IMP [57]. We explore the implications of taking a
large-step operational derivation (that is, an explicit natural semantics proof
tree [33]) as a form of provenance. We define a semantics for programs that
produces both a standard result and an operational derivation tree, which we
view as recording all of the information that could be relevant to understanding
the program and how it executed (at the IMP level of abstraction).

We then consider the problem of formalizing some of the requirements above
and extracting information from traces in order to meet these requirements.
For example, we give a candidate definition of source locations (inspired by
where-provenance [9]) and then show how this can be extracted from derivations.
We also describe the use of derivations for a form of incremental computation
(loosely inspired by self-adjusting computation [5]), in order to demonstrate that
derivations are expressive enough to meet this strong requirement. We have made
additional contributions since the first version of this paper was written [3, 49],
and we conclude with a discussion of these results and future steps.

2 Background

To illustrate our approach, we employ a simple imperative programming lan-
guage IMP [57], augmented with pairs as a simple form of data structure. The
syntax of IMP expressions e ∈ Exp, commands c ∈ Comm and values v ∈ Val
is as follows:

e ::= x | let x = e1 in e2 | (e1, e2) | fst(e) | snd(e) | i | b | e1 = e2 | e1 + e2 | · · ·
c ::= skip | x := e | c1; c2 | if e then c1 else c2 | while e do c
v ::= i | b | (v1, v2)

where x ∈ Var denotes variables, i ∈ Z denotes integers, and b ∈ B denotes
boolean values. We will also write ⊕ for an arbitrary binary operation, including
+, =, and possibly others.



σ, x ⇓ σ(x)

σ, e1 ⇓ v1 σ[x := v1], e2 ⇓ v2
σ, let x = e1 in e2 ⇓ v2

i ∈ Z
σ, i ⇓ i

σ, e1 ⇓ i1 σ, e2 ⇓ i2
σ, e1 + e2 ⇓ i1 + i2

σ, e1 ⇓ v1 σ, e2 ⇓ v2
σ, (e1, e2) ⇓ (v1, v2)

σ, e ⇓ (v1, v2)

σ, fst(e) ⇓ v1
σ, e ⇓ (v1, v2)

σ, snd(e) ⇓ v1
b ∈ {true, false}

σ, b ⇓ b

Fig. 1. Operational semantics derivation rules for IMP expressions

σ, skip ⇓ σ
σ, e ⇓ v

σ, x := e ⇓ σ[x := v]

σ, c1 ⇓ σ′ σ′, c2 ⇓ σ′′

σ, c1; c2 ⇓ σ′′

σ, e ⇓ true σ, c1 ⇓ σ′

σ, if e then c1 else c2 ⇓ σ′
σ, e ⇓ false σ, c2 ⇓ σ′

σ, if e then c1 else c2 ⇓ σ′

σ, e ⇓ true σ, c ⇓ σ′ σ′, while e do c ⇓ σ′′

σ, while e do c ⇓ σ′′
σ, e ⇓ false

σ, while e do c ⇓ σ

Fig. 2. Operational semantics derivation rules for IMP commands

The meaning of expressions and commands is defined via operational seman-
tics rules as shown in Figures 1 and 2. Our semantics is essentially a standard
large-step operational semantics. We consider the set of stores Store = Var →
Val and use functions σ ∈ Store to store the values of variables. We write []
for the empty store, [x1 := v1, . . . , xn := vn] for a store binding xi to vi, and
σ[x := v] for a store σ updated by replacing the value of x with v. More generally,
we write σ[σ′] for σ updated with σ′, that is, σ[σ′](x) = σ′(x) if x ∈ dom(σ′)
and σ(x) otherwise.

In this paper, we view the derivations as explicit data structures, that is, as
ordered, ranked trees with nodes labeled with judgments J . The judgments we
will consider are:

J ::= σ, e ⇓ v | σ, c ⇓ σ′

The judgment σ, e ⇓ v indicates that an expression e evaluates to value v in
store σ. The judgment σ, c ⇓ σ′ indicates that a command c evaluates in store σ
to store σ′.

The rules in Figures 1 and 2 thus essentially define construction rules for
valid derivations. We write D :: σ, e ⇓ v to indicate that D is a valid derivation
whose root is labeled with σ, e ⇓ v. We may also write patterns of the form

D1 · · · Dn

J

to describe a valid derivation tree whose root is labeled with J and whose im-
mediate subderivations are D1, . . . , Dn. Figure 3 shows three sample operational
semantics derivations.



[x = 4, y = 2], x ⇓ 4 [x = 4, y = 2], 2 ⇓ 2

[x = 4, y = 2], x = 2 ⇓ false [x = 4, y = 2], y := 4 ⇓ [x = 4, y = 4]

[x = 4, y = 2], if x = 2 then x := y ∗ 2 else y := 4 ⇓ [x = 4, y = 4]

[x = 4, y = 2], x ⇓ 4 [x = 4, y = 2], 2 ⇓ 2

[x = 4, y = 2], x = 2 ⇓ false [x = 4, y = 2], y := x ⇓ [x = 4, y = 4]

[x = 4, y = 2], if x = 2 then x := y ∗ 2 else y := x ⇓ [x = 4, y = 4]

[x = 3, y = 2], x ⇓ 3 [x = 3, y = 2], 2 ⇓ 2

[x = 3, y = 2], x = 2 ⇓ false [x = 3, y = 2], y := x ⇓ [x = 3, y = 3]

[x = 3, y = 2], if x = 2 then x := y ∗ 2 else y := x ⇓ [x = 3, y = 3]

Fig. 3. Example derivation trees

For illustration purposes, we also give the standard denotational semantics
of IMP programs. Recall that a denotational semantics assigns to each program
expression or command a mathematical meaning. Here, we interpret expressions
e as functions EJeK− : Store → Val⊥ from stores to values, and commands c
as functions CJcK− : Store → Store⊥. Here, we use the standard notation S⊥
to abbreviate S ] {⊥}, that is, the set S augmented with a special “undefined”
value ⊥. One can equivalently think of the interpretations as partial functions
Store ⇀ Val or Store ⇀ Store respectively. The denotational semantics is defined
in Figures 4 and 5.

Theorem 1 ([57]). The denotational and operational semantics are equivalent
in the sense that:

1. EJeKσ = v holds if and only if there exists a derivation D of σ, e ⇓ v, and
2. CJcKσ = σ′ holds if and only if there exists a derivation D of σ, c ⇓ σ′.

The proof is standard, but in the interest of precision we exhibit functions that
witness the forward direction by constructing explicit derivations. These are
shown in Figures 6 and 7. The function EDJeKσ yields a pair (D, v) of a derivation
of D :: σ, e ⇓ v along with the actual value v. Likewise, the function CDJcKσ yields
a pair (D,σ′), where D :: σ, c ⇓ σ′. (The second components of the respective
return values, v and σ′, are redundant, but this formulation makes the definition
more uniform).

In the rest of this paper, we explore the consequences of viewing the deriva-
tion obtained by evaluating an IMP expression or command as a form of prove-
nance in its own right.

2.1 A note on the overhead and scale of provenance tracking

Our IMP language incorporates standard primitive operations found in most
general-purpose programming languages, such as arithmetic and booleans. The



EJeK : Store→ Val

EJxKσ = σ(x)

EJlet x = e1 in e2Kσ = EJe2Kσ[x := EJe1Kσ]

EJiKσ = i

EJe1 + e2Kσ = EJe1Kσ + EJe2Kσ
EJ(e1, e2)Kσ = (EJe1Kσ, EJe2Kσ)

EJfst(e)Kσ = v1 (EJeKσ = (v1, v2))

EJsnd(e)Kσ = v2 (EJeKσ = (v1, v2))

EJbKσ = b

EJe1 = e2Kσ =

{
true EJe1Kσ = EJe2Kσ
false EJe1Kσ 6= EJe2Kσ

Fig. 4. Denotational semantics of expressions

CJcK : Store→ Store

CJx := eKσ = σ[x := EJeKσ]

CJc1; c2Kσ = CJe2K(CJe1Kσ)

CJif e then c1 else c2Kσ =

{
CJc1Kσ EJeKσ = true

CJc2Kσ EJeKσ = false

CJwhile e do cKσ =

{
CJwhile e do cK(CJcKσ) EJeKσ = true

σ EJeKσ = false

Fig. 5. Denotational semantics of commands

derivation trace model we propose above could be prohibitively expensive in
raw computational terms if we instrument the program to generating a new
derivation step node for each primitive operation. Furthermore, the space needed
for such a trace is likely to be large, in direct proportion to the running time.

In this paper we do not consider this practical aspect of provenance, which is
obviously important. Our goal is to understand what information, in principle,
one might consider as a “most precise” form of provenance, in order to under-
stand what is lost by adopting more practical techniques. Moreover, it may be
that the time and space overhead of naive derivation-trace provenance can be
avoided, either through finding a more compact representation of the trace, or
using standard compression techniques to compress the trace (which may have
a lot of redundancy). Naturally, for a deterministic program, one such com-
pressed representation is the original program itself plus its input: this requires
no run-time or space overhead for provenance tracking, but requires completely



EDJeK : Store→ Deriv ×Val

EDJxKσ =
(
σ, x ⇓ σ(x) , σ(x)

)
EDJiKσ =

(
σ, i ⇓ i , i

)
EDJbKσ =

(
σ, b ⇓ b , b

)
EDJe1 ⊕ e2Kσ = let (D1, i1) = EDJe1Kσ in

let (D2, i2) = EDJe2Kσ in

(
D1 D2

σ, e1 ⊕ e2 ⇓ i1 ⊕ i2 , i1 ⊕ i2
)

EDJlet x = e1 in e2Kσ = let (D1, v1) = EDJe1Kσ in

let (D2, v2) = EDJe2Kσ[x := v1] in

(
D1 D2

σ, let x = e1 in e2 ⇓ v2 , v2
)

EDJ(e1, e2)Kσ = let (D1, v1) = EDJe1Kσ in

let (D2, v2) = EDJe2Kσ in

(
D1 D2

σ, (e1, e2) ⇓ (v1, v2)
, (v1, v2)

)
EDJfst(e)Kσ = let (D, (v1, v2)) = EDJeKσ in

(
D

σ, fst(e) ⇓ v1 , v1
)

EDJsnd(e)Kσ = let (D, (v1, v2)) = EDJeKσ in

(
D

σ, snd(e) ⇓ v2 , v2
)

Fig. 6. Extracting derivations for expressions

CDJcK : Store→ Deriv × Store

CDJx := eKσ = let (D, v) = EDJeKσ in

(
D

σ, x := e ⇓ σ[x := v]
, σ[x := v]

)
CDJc1; c2Kσ = let (D1, σ

′) = CDJc1Kσ in

let (D2, σ
′′) = CDJc2Kσ′ in

(
D1 D2

σ, c1; c2 ⇓ σ′′ , σ
′′
)

CDJif e then c1 else c2Kσ = let (D, b) = EDJeKσ in

let (D′, σ′) = if b then CDJc1Kσ else CDJc2Kσ in(
D D′

σ, if e then c1 else c2 ⇓ σ′ , σ
′
)

CDJwhile e do cKσ = let (D, b) = EDJeKσ in

if b

then let (D′, σ′) = CDJcKσ in

let (D′′, σ′′) = CDJwhile e do cKσ′ in

(
D D′ D′′

σ, while e do c ⇓ σ′′ , σ
′′
)

else

(
D

σ, while e do c ⇓ σ , σ
)

Fig. 7. Extracting derivations for commands



recomputing the program to perform provenance analysis. Exploring the tradeoff
between time and space overhead of provenance tracking vs. provenance analysis
is an important area for future work; here, we focus only on defining different
provenance analyses in terms of derivation traces.

Another important observation about the overhead and scalabilty of our ap-
proach is that our approach is parametric over the primitive operations: they may
be (as in our examples) fine-grained, machine arithmetic operations, but they
could just as well be coarser-grained, macroscopic steps. Consider, for example,
an alternative variant of IMP in which the primitive operations include entire
external programs. In other words, instead of performing all of our numerically-
intensive computation explicitly using IMP-level arithmetic, we can consider
it as a scripting language for orchestrating larger computational steps that are
treated as primitive operations from the point of view of IMP’s provenance
records. Another interesting area for future work could be to understand how
to combine efficient coarse-grained provenance with more-precise, on-demand
fine-grained provenance tracking.

3 Finding sources of copied data

As noted in the introduction, our goal is to use operational derivations as a
starting point for formalizing various requirements on provenance. We start with
the notion of where-provenance [9, 8]. Essentially, where-provenance is intended
to track the sources of data copied from the input of a computation to the
output. We will define where-provenance for while-programs in two stages: first,
we will define where-provenance for straight-line code, and then we will lift the
definition to arbitrary programs by erasing derivations to straight-line programs.

Since we have been using abstract syntax trees for values and expression
trees, it seems natural to employ paths that can be used to address parts of
expressions and values. We write paths(v) for the set of paths that are valid for
a value. Specifically, paths : Val→ {1, 2}∗ is defined as:

paths(b) = paths(i) = {ε}
paths((v1, v2)) = 1 · paths(v1) ∪ 2 · paths(v2)

Here, if P is a set of paths, we write i·P for {i·p | p ∈ P}. Similarly, we use paths
of the form x.p to point to parts of variable values in stores. We write v[p] for the
value located at path p in v, and we write v[p := v′] for the result of replacing
the value at path p in v with v′. We extend these notations to environments and
environment paths in the obvious way.

Now we first consider the problem of identifying the source path (if any) of
a path in the result of an expression.

Definition 1. Suppose EJeKσ = v and p ∈ paths(v). A source path q is a path
such that σ[q] = v[p] and for any v′, we have if EJeKσ[q := v′][p] = v′.

In other words, a source path q points to an input value σ[q] that is a copy of the
value v[p] at result path p: if we change the input σ at q to v′ then the change



is mirrored at the output v′′ at p. (Note that v′′ may also differ at other places
besides p; consider the expression (x, x).)

This definition of source path is based on the denotational semantics, and so
for example two denotationally equivalent expressions such as x+ 0 and x have
the same source path behavior. Because of this, in general it appears difficult
to determine source paths exactly: for example, if the primitive operations can
encode Boolean formulas, then we can reduce the Boolean satisfiability problem
to the problem of determining whether a Boolean variable is always an exact
copy of a part of the input. With richer primitive operations such as arithmetic,
determining whether source path relationships exist can become undecidable,
reducing from Diophantine equation satisfiability.

Nevertheless, we can safely under-approximate the source paths of an expres-
sion, as shown in the src (e, p) function:

src : Var× Path→ Path⊥

src (e,⊥) = ⊥
src (x, p) = x.p

src (i, ε) = ⊥
src (b, ε) = ⊥

src (e1 ⊕ e2, ε) = ⊥
src ((e1, e2), ε) = ⊥

src ((e1, e2), i · p) = src (ei, p)

src (fst(e), p) = src (e, 1 · p)
src (snd(e), p) = src (e, 2 · p)

src (let x = e1 in e2, p) =

{
src (e1, q) if src (e2, p) = x.q
src (e2, p) otherwise

The cases for constants and primitive functions are obvious. For pair expressions,
if the path is ε, then we return ⊥ since the pair value was created by the pair
expression. If the pair is i · p for some i ∈ {1, 2}, then we find the source of p
in the appropriate subderivation. For projection operations fst or snd, we find
the source of i · p where i = 1 or i = 2 respectively. For let-binding, we first
find the source of p in the second subderivation. There are then two cases: either
the source path is of the form x.q where x was the bound variable, or it is ⊥ or
some other path y.q. In the first case, we find the source path of x.q in e1; in the
second, we just return the source path we have already found (or ⊥).

Theorem 2. If D :: σ, e ⇓ v and p ∈ paths(v) and src (e, p) = q 6= ⊥ then q is
a source path for p.

Next, we consider commands. The definition of source path above extends
naturally to straight-line code involving only sequential composition and assign-
ment:

s ::= skip | x := e | s1; s2



Again, source paths for commands can be extracted syntactically:

src : Var× Path→ Path⊥

src (s,⊥) = ⊥
src (skip, x.p) = x.p

src (x := e, x.p) = src (e, p)

src (y := e, x.p) = x.p (x 6= y)

src (s1; s2, q) = src (s1, src (s2, q))

The idea is similar to where-provenance for expressions. The assignment com-
mand is handled similar to a let. Sequential composition is handled by compos-
ing src on subexpressions.

Theorem 3. If D :: σ, c ⇓ σ′ and p ∈ paths(σ′) and src (c, p) = q 6= ⊥ then q is
a source path for p.

However, the above notion of source path does not transfer directly to com-
mands with control-flow. For example, in a conditional if x = 1 then y = x else y = 2
there is no source path for the value of y, even in the case where x = 1 and y
seems to be copied from x. As a compromise, we consider a weaker notion, based
on the idea of “freezing” the control-flow of a derivation to obtain a straight-line
program.

freeze
(
σ, skip ⇓ σ

)
= skip

freeze

(
D

σ, x := e ⇓ σ′
)

= x := e

freeze

(
D1 D2

σ, c1; c2 ⇓ σ′′
)

= freeze (D1) ; freeze (D2)

freeze

(
D D′

σ, if e then c1 else c2 ⇓ σ′
)

= freeze (D′)

freeze

(
D :: σ, e ⇓ false
σ, while e do c

)
= skip

freeze

(
D :: σ, e ⇓ true D′ D′′

σ, while e do c

)
= freeze (D′) ; freeze (D′′)

The function freeze (D) gives a straight-line code approximation of the pro-
gram based on its derivation. We have:

Theorem 4. If D :: σ, c ⇓ σ′ then σ, freeze (D) ⇓ σ′.

Note, however, that freeze () is still an intensional concept: two derivations of
equivalent programs on equal inputs need not have the same straight-line ap-
proximation, as illustrated by D1 :: [x := 1], if x = 1 then x := 1 else skip ⇓
[x := 1] and [x := 1], x ⇓ [x := 1]. Moreover, the above theorem does not



uniquely characterize the behavior of freeze (); for example, an alternative def-
inition that simply collects the assignments needed to map σ to σ′ would also
have the given property. Thus, freeze () represents an intuitive tradeoff between
concreteness (avoiding control-flow) and faithfulness to the shape of the original
derivation.

Given a derivation D :: σ, e ⇓ v and path p in the result value v, we can then
define the source path of p in a general IMP program c as src (freeze (D) , p).

Actually, very little of the derivation is needed to compute sources. Inspecting
each rule, we never need to examine the input store of any judgment and we
seldom need to inspect the return value: we only do this for while, and we could
potentially avoid this by inferring whether the loop test holds from the structure
of the subtree (i.e., a while-subderivation with only one child must correspond
to a loop test that evaluates to false). So, in general, if we only want to extract
source information then all we really need is the straight-line approximation of
the derivation (i.e., freeze (D)), not the (usually much larger) full derivation with
explicit store, expression, and value annotations. The straight-line approximation
freeze (D) might be viewed as an interesting form of provenance in its own right.
We can extract more than just source information from it; for example, we can
determine whether an output value was computed by adding two inputs.

A straight-line program could also be viewed as a DAG, following many
conventional approaches to provenance such as OPM [46]. Clearly, we could ex-
tract an OPM-style DAG from a straight-line program. Moreover, as argued by
Cheney [13] and Moreau [45], provenance DAGs can be viewed as a model of
computation for the purpose of analyzing the causality or reproducibility of the
computation they represent. However, the DAG approximation corresponding
to freeze (D) does not necessarily provide enough information for full recompu-
tation. In the next section, we consider the related issue of using the derivation
as a basis for efficient recomputation based on caching.

4 Dependence and change propagation

Another common motivation for provenance is to understand how parts of the
result depend on intermediate computation steps or source data. The notion
of dependence plays an important role in programming languages, particularly
dependency tracking [1, 2], information flow security [51] and change propaga-
tion [5, 4]. As argued in [12, 15], we believe that this is a good starting point
for understanding how provenance should link results to the source data they
depend on.

Analyzing dependence requires us to consider not just how an expression
did evaluate but how its evaluation might change if the inputs were modified.
If we expect provenance to explain the results, then what metric should we
use to compare different explanations? We believe that an explanation should
have predictive value in the sense that it can be used to effectively predict how
the result might change if the inputs were modified. Of course, the original
program also provides this ability, but full recomputation may involve redoing



subcomputations where nothing has changed. Thus, a further requirement is that
the explanation be concise in the sense that it avoids details of uninteresting parts
of the computation that do not change.

Derivation trees already provide all of the information needed to predict the
results of changes. In fact, for a deterministic language, the root judgment of a
derivation tree already contains the whole program, and we can simply rerun this
on any new input and compare the old derivation and result value with the new
ones. However, we argue that this does not provide a satisfying explanation.
Derivation trees are verbose and it is not easy to propagate changes through
them. For example, in Figure 3 if we change the value of x from 4 to 3, the
structure of the derivation does not change. A large number of parts of the
derivation need to change, because there are many copies of the value of x in
the store and return values. In some sense, all we really need to know about the
result is that it is a copy of x, and the control flow depended on the fact that
x = 2 was false. This gives us enough information to predict the result of any
change to x that maintains the invariant x 6= 2.

To make this precise, consider the function E∆ (D, δ) that takes a derivation
D of σ, e ⇓ v and a partial environment δ and constructs the new value v′

resulting from evaluating e on σ[δ]. Here, δ is an environment that provides new
values for some of the variables in σ. We write σ[δ] to indicate the environment
that takes values δ(x) if x ∈ dom(δ) and σ(x) otherwise. We also consider an
analogous function C∆ (D, δ) that propagates changes through commands.

In Figure 8, we define functions E∆ (−,−) : Deriv × Store → Val and
C∆ (−.−) : Deriv × Store → Store⊥ that attempt to reuse values cached in
subderivations wherever possible. Specifically, whenever we can detect that the
changed values in δ do not overlap with the free variables of an expression or
command, we simply reuse the cached value (for an expression) or return δ (for
a command). The following lemma shows that this is safe:

Lemma 1. If dom(δ) ∩ FV (e) = ∅ and σ, e ⇓ v then σ[δ], e ⇓ v. Moreover, if
dom(δ) ∩ FV (c) = ∅ and σ, c ⇓ σ′ then σ[δ], c ⇓ σ′[δ].

The first rule for expressions says that we can reuse a cached subexpression
provided none of its variables have changed in value (that is, FV (e)∩ dom(δ) =
∅). The next few rules essentially just replay evaluation. The rule for let deserves
discussion: essentially, we recompute the bound expression and compare its value
with the previous value cached in the trace. If the values are equal, we recompute
the body of the let using δ, otherwise, we add the new binding for x to δ. This
makes it possible to use cached subderivations more often than if we always
added x to δ.

For commands, the rules follow a similar pattern. The first rule indicates
that it is safe to skip recomputation of a command whose free variables have
not been changed. Assignment follows a pattern similar to let. However, we
need to recompute subexpressions using the cached stores when the control flow
changes, for example if the change affects the result of a conditional test. The
rules for conditionals require re-starting evaluation when the control flow changes
(we use the denotational semantics for brevity). For example, if a conditional



E∆ (D :: σ, e ⇓ v, δ) = v (dom(δ) ∩ FV (e) = ∅)

E∆
(
σ, x ⇓ v , δ

)
= δ(x) (x ∈ dom(δ))

E∆
(

D1 D2

σ, e1 ⊕ e2 ⇓ v , δ
)

= E∆ (D1, δ)⊕ E∆ (D2, δ) (⊕ ∈ {=,+, . . .}

E∆
(

D1 D2

σ, (e1, e2) ⇓ (v1, v2)
, δ

)
= (E∆ (D1, δ) , E∆ (D2, δ))

E∆
(

D
σ, fst(e) ⇓ v , δ

)
= let (v′1, v

′
2) = E∆ (D, δ) in v′1

E∆
(

D
σ, snd(e) ⇓ v , δ

)
= let (v′1, v

′
2) = E∆ (D, δ) in v′2

E∆
(
D1 :: σ, e1 ⇓ v D2

σ, let x = e1 in e2
, δ

)
=

{
E∆ (D2, δ) (E∆ (D1, δ) = v)
E∆

(
D2, δ[x := E∆ (D1, δ)]

)
otherwise

Fig. 8. Update propagation for expressions

C∆
(
D :: σ, c ⇓ σ′, δ

)
= δ (dom(δ) ∩ FV (c) = ∅)

C∆
(
D :: σ, e ⇓ v
σ, x := e ⇓ σ′ , δ

)
=

{
δ (E∆ (D, δ) = v)
δ[x := E∆ (D, δ)] otherwise

C∆
(

D1 D2

σ, c1; c2 ⇓ σ′ , δ

)
= C∆

(
D2, C∆ (D1, δ)

)
C∆

(
D :: e ⇓ true D1

σ, if e then c1 else c2 ⇓ σ′ , δ

)
= if E∆ (D, δ) then C∆ (D1, δ) else CJc2K(σ[δ])

C∆
(

D :: σ, e ⇓ false D2

σ, if e then c1 else c2 ⇓ σ′ , δ

)
= if E∆ (D, δ) then CJc1K(σ[δ]) else C∆ (D2, δ)

C∆
(
D :: σ, e ⇓ true D′ D′′

σ, while e do c ⇓ σ′ , δ

)
= if E∆ (D, δ) then C∆

(
D′′, C∆

(
D′, δ

))
else δ

C∆
(

D :: σ, e ⇓ false

σ, while e do c ⇓ σ , δ
)

= if E∆ (D, δ) then CJwhile e do cK(σ[δ]) else δ

Fig. 9. Update propagation for commands



test changes from true to false, then we cannot use the subderivation stored
for the then-branch; we have to execute the else-branch “from scratch” using
ordinary evaluation on the updated store σ[δ]. Composition and while also follow
predictable patterns; here, we use the denotational semantics for commands as
shorthand for computing commands “from scratch”.

Theorem 5. If D :: σ, e ⇓ v then σ[δ], e ⇓ E∆ (D, δ). Similarly, if D :: σ, c ⇓ σ′
and σ[δ], c ⇓ σ′′ then σ′′ = σ′[C∆ (D, δ)].

Note that the second part needs to be stated carefully because there is no guar-
antee that recomputing a command on a changed input will terminate.

The correctness theorem above essentially states that the functions E∆ (−,−)
and C∆ (−,−) can be used to correctly compute the updated result. We could
go further, and augment these functions to calculate the new derivation as well,
or the changed part of the derivation. The latter could serve as a rough measure
of the amount of “work” needed to recompute; obviously, in many cases the
changed part of the derivation will be much smaller than the whole derivation,
just as the changed part of the store obtained by C∆ (−,−) can be smaller than
the whole result store.

Propagating updates through computations efficiently is a subtle issue with a
large, still-growing literature (particularly for self-adjusting computation in func-
tional programming [5, 4]). Our goal here is not to introduce a new approach to
incremental recomputation that we claim will be more efficient, but only to es-
tablish a formal link between derivations-as-provenance and the notions of trace
used in incremental recomputation. In particular, the C∆ (D, δ) function high-
lights one qualitative difference between replaying the whole expression from
scratch and derivation-based change propagation: only by recording some infor-
mation about what happened in a previous run can we avoid fully recomputing
each part of the program.

We could also push this idea further in several ways: we could allow finer-
grained changes such as updates that change a specific path in a variable’s value,
not just the whole value; we could consider techniques for controlling the cost
of caching by marking subexpressions with checkpointing annotations; we could
improve the precision of update propagation for commands by static analysis
of assignments; or we could incrementally recompute both the new value and
its derivation (or the difference between derivations). Many of these ideas have
already been explored in the context of self-adjusting computation, and it is
intriguing to consider the possibility of unifying the notion of traces used in
efficient self-adjusting computation systems with that needed for provenance.

5 Discussion

Pragmatic concerns, such as ease of use and extensibility, are often cited for em-
ploying operational semantics instead of denotational semantics. In particular,
extensions such as nondeterminism, concurrency, additional type constructors,



object-oriented features, and higher-order functions can be added to an opera-
tional semantics comparatively easily. Following the recipe in this paper, each
such extension comes equipped with one or more standard notions of “opera-
tional derivation” which could be used as a form of provenance. However, the
reality is not quite so simple: for example, adding sum types or collection types
poses problems for our use of paths to address parts of result values. We discuss
the ramifications of these extensions in the rest of this section.

5.1 Sum Types

Functional languages such as ML and Haskell support algebraic datatypes, based
on type-theoretic sum types. The type τ1 + τ2 represents the disjoint union of
types τ1 and τ2. Its introduction forms are injection functions inl : τ1 → τ1 + τ2
and inr : τ2 → τ1+τ2, and its elimination form is a case construct that performs
pattern matching.

e ::= · · · | inl(e) | inr(e) | case e of {x.e1 | y.e2}
v ::= · · · | inl(v) | inr(v)

Sum types and the associated programming constructs can be handled similarly
to booleans and conditionals:

σ, e ⇓ v
σ, inl(e) ⇓ inl(v)

σ, e ⇓ inl(v) σ[x := v], e1 ⇓ v1
σ, case e of {x.e1 | y.e2} ⇓ v1

σ, e ⇓ v
σ, inr(e) ⇓ inr(v)

σ, e ⇓ inr(v) σ[y := v], e2 ⇓ v2
σ, case e of {x.e1 | y.e2} ⇓ v2

Sum types complicate the issue of how to refer to parts of the input or output.
A naive approach would simply be to add inl and inr as possible path steps,
so that the path 1.inl.2 refers to 42 in the value (inl(17, 42), 0). However, this
leads to problems with the definition of source path, since changes to the input
might change the structure of the output in ways that invalidate paths involving
inl or inr.

5.2 Higher-order functions and other control abstractions

Modern programming languages increasingly support first-class higher-order func-
tions, either explicitly (as in functional languages such as ML, Haskell, or Scheme,
and more recently in object-oriented languages such as C#, Java or Scala), or
implicitly via other constructs such as function objects or inner classes (available
in older versions of Java).

e ::= · · · | λx.e | e1 e2
v ::= · · · | 〈λx.e, σ〉



Here, 〈λx.e, σ〉 is a closure packaging a function body up with the environment
in which it was constructed. We extend the operational semantics as follows (in
the standard way):

σ, e1 ⇓ 〈λx.e, σ′〉 σ, e2 ⇓ v2 σ′[x := v2], e ⇓ v
σ, e1 e2 ⇓ v σ, λx.e ⇓ 〈λx.e, σ〉

Higher-order functions pose a significant challenge to provenance tracking,
because now the control flow (corresponding to the shape of the derivation tree)
depends on evaluation: when evaluating a first-class function call, we first eval-
uate the function part to find the body of the function, which is in general not
known until run time. Also, similarly to sums, it is difficult to use paths to refer
to “parts” of closure values.

5.3 Collection Types

Now consider an extension to the language to permit simple collections (such as
sets, lists, or bags), as in Nested Relational Calculus [10]:

e ::= · · · | ∅ | {e} | e1 ∪ e2
v ::= · · · | ∅ | {v1, . . . , vn}

The operational semantics of collection operations can be defined as follows:

σ, ∅ ⇓ ∅
σ, e1 ⇓ v1 σ, e2 ⇓ v2
σ, e1 ∪ e2 ⇓ v1 ∪ v2

σ, e ⇓ v
σ, {e} ⇓ {v}

We could also add a set comprehension operation
⋃
x∈e0 e to obtain an expressive

comprehension query language, but the problems we want to discuss do not
require this. (Naturally, this would introduce additional complications due to
variable binding).

The prospect of using paths to refer to parts of data structures is significantly
complicated in the presence of collections, especially unordered collections. For
lists, we have similar issues to those for sums. For sets, it is technically possible
to refer to set elements via their values, although this can be unwieldy when
sets are nested. But for multisets, paths are no longer sufficient to address each
part of a value if we view multiset expressions as equal modulo reordering of
elements.

As a simple example, consider a multiset expression {x− y} ∪ {z + 1} which
evaluates to {1, 1}. If we want to ask for the provenance of one of the output
elements, there is no location scheme for pure multiset values that lets us distin-
guish between the two copies of ‘1’ in the output. This means that in order to
support correct source tracking we need to impose some kind of location struc-
ture on multisets. Of course, we can avoid this problem in a simple way, by
treating collection values as lists and using integer indices. However, this index-
ing approach becomes rather complex if we wish to propagate changes from the



input to the output, because the paths are not stable with respect to changes
that affect the sizes of subcollections.

For example, suppose we have an expression {a}∪x∪{d}. If we first evaluate
it with x = {b} then the result will be {a, b, d} where v[3] = d. But if we update
x to be {b, c}, then the result is v′ = {a, b, c, d}, where v′[3] = c and v′[4] = d.
We would like to be able to say that changing x from {b} to {b, c} did not affect
the d value at v[3]. Intuitively, the d value in v[3] is the same as the d value at
v′[4], but they have different paths. Thus, we need to maintain a partial mapping
{(1, 1), (3, 4)} relating the paths in v to identical parts of v′. Now consider an
expression such as {a} ∪ x ∪ {b} ∪ x ∪ {c}. If x is changed from {d} to {d, e},
then we need to reindex both the b and c elements, that is, the partial mapping
would be {(1, 1), (3, 4), (5, 7)}.

These examples illustrate that paths based on positional indices are not stable
under changes to the input. Although indexing can be made to work using partial
mappings, it is notationally heavy, and it seems much cleaner instead to use
collections that maintain explicit, unique labels for their elements. These labels
can be used in paths, and have two further advantages over indices: we can still
treat labeled multisets as equivalent up to reordering, and we do not have to
keep track of partial mappings among results. These advantages also hold for
lists and sets, for which it is technically possible to use numbers or element values
in paths instead of labels. On the other hand, using labels requires generating
fresh labels for newly-created collections, which essentially makes the rules for
creating collections nondeterministic, which in turn complicates matters for the
same reason as other forms of nondeterminism. We are currently investigating
this problem.

5.4 Nondeterminism

We model a simple form of nondeterminism by adding a coin-flip expression
flip whose semantics is as follows:

σ, flip ⇓ true σ, flip ⇓ false

Obviously, nondeterminism makes it impossible to predict the result of a program
or its derivation.

Nondeterminism has little impact on the source-location extraction function:
a value constructed by flip simply has source ⊥. However, nondeterminism has
interesting consequences for the update-propagation semantics. Basically, the
question is how we should deal with changes to computations involving flip.
Should all coin flips that might affect the result of a computation be re-done?
In this case, we would constrain the caching rules to apply only if e does not
contain flip.

Or should we avoid this as much as possible, to try to preserve the structure
of the derivation as much as we can? In this case, we would allow caching to
reuse the results of coin-flips stored in the derivation. Only if a subexpression is



re-evaluated (e.g. as the result of a control flow change) would new random coin
flips be performed.

Either choice may be sensible, depending on the situation. If we want change
propagation to simulate what actually happened as much as possible (e.g. to
track down the source of an error), we would opt for the first design, reusing as
many cached coin flips as possible. If we want change propagation to simulate all
possible behaviors of the program, while reusing deterministic subcomputations,
then we need the second semantics. If we interpret flip probabilistically instead
of nondeterministically, there may be additional choices.

5.5 Arrays, references, dynamic allocation, and concurrency

It is interesting to note that most approaches to provenance have focused on
relatively high-level languages or abstractions such as database queries, scien-
tific workflows, or operating system calls. In contrast, most work on program
slicing [54], and much work on information flow in language-based security [51],
has focused on small imperative languages similar to IMP extended with fea-
tures such as arrays, references, and dynamic memory allocation. These features
are, of course, still essential parts of programming most real-world systems writ-
ten in C, C++, or Java, and are also present in many scripting or numerical
computation languages used by scientists, such as Python, Matlab or R. Thus,
to understand provenance in general, we will need to understand provenance
for these features. Since these are exactly the features that tend to make pro-
gram analysis, typechecking, and debugging difficult, we can predict with some
confidence that they will pose challenges for provenance as well.

The approach taken in this paper should provide at least a starting point for
understanding provenance in the presence of arrays, references or dynamic mem-
ory allocation. Concurrency may also be tackled using operational techniques.
However, simply using some kind of derivation as a form of provenance leaves a
lot of questions unanswered, especially in the case of concurrency: How can we
efficiently record a full operational derivation? Is this even desirable in general,
or can we formulate specifications that make it clear that we can make do with
less? How can we recover a full operational derivation of a concurrent execution
given that each concurrently-executing part only has access to part of the full
derivation?

6 Related work

There is some prior work discussing requirements or design philosophies for
provenance systems (e.g. [32, 37, 39, 31]). This work, like a great deal of work on
provenance, has invoked informal motivations such as that provenance should
identify data that are “relevant to”, “caused” or “influenced” an output and
provide “repeatability”, “transparency”, or “explanation”. There has been little
attempt to define these terms carefully or formally with respect to the seman-
tics of the programs or systems being studied. As argued previously in some of



our prior work [15, 8, 17], we believe that while these informal motivations are
important, they are not enough on their own to explain what provenance is and
why it is challenging to define, collect and manage it. There is a danger that
different users and implementers may interpret these terms differently, leading
to miscommunication and confusion. As was once common in computer secu-
rity, there are many provenance mechanisms being designed without adequate
understanding of the policies that they are meant to satisfy.

Some work on provenance in databases has considered whether certain forms
of provenance can be extracted from others, including some negative results. For
example, the semiring provenance model of Green et al. [29] can express some
other models such as why-provenance and lineage, but cannot express where-
provenance and vice versa (as discussed in [24, 16]). However, the design space
for techniques to track and manage provenance for data and computations that
span databases, workflows, or general-purpose programming languages, remains
largely unexplored. Our workshop paper [6] gives one approach to a unified model
of provenance for database queries and workflows. A subsequent paper [3] investi-
gates provenance extraction and security issues for a trace model for functional
programs. We are interested in developing analogous techniques for database
query languages, building on language-integrated query techniques [18].

In a previous paper [15], we identified a connection between dependence in
information-flow security and provenance, and developed a new form of prove-
nance based on dependence tracking. Our paper [17] explored connections to
programming languages, security, incremental, and bidirectional computation
research [1, 5, 25]. More recently, we have investigated foundations for prove-
nance security [14], building on work by Chong [19]. We believe language-based
provenance security to be a fruitful area for future work, possibly extending the
derivation trace model in this paper.

Our recent work [3, 49] considers traces and trace slicing for a pure, call-by-
value calculus with product, sum and recursive types, and recursive functions,
using a conventional large-step semantics; paths become unwieldy in this setting,
and we adopt an alternative approach based on partial values. Other features
such as exceptions, laziness, and first-class continuations (call/cc) pose similar,
and possibly greater, challenges from the point of view of provenance. These chal-
lenges may require us to abandon the idea of using large-step derivations in favor
of the small-step operational techniques typically used for these features [50].

Aside from a few papers on provenance techniques in concurrency calculi [52,
21], the theory of self-explaining computation in the presence of computational
effects, concurrency, or laziness is unexplored. General approaches to the deno-
tational or operational semantics of effects [36, 34] provide an intriguing starting
point for the study of provenance in the presence of effects. Ideas from concur-
rency theory, particularly Winskel’s event structures [58], may be a good place
to start in understanding the meaning of provenance in concurrent or distributed
settings.



7 Conclusions

To date, research on provenance has focused on particular classes of systems
or computational models, such as databases, workflow management systems or
operating systems. Real scientific data and processing pipelines are typically not
confined to a single kind of system but instead use a combination of these systems
as well as ad hoc programs written in general-purpose or scripting languages that
glue these different systems together. We therefore argue here that provenance
needs to be understood for general-purpose programming languages.

In this paper, we have proposed a simple (perhaps too simple) model of
provenance in general-purpose programming language: the provenance trace of
a computation is simply a full operational derivation, i.e. a “proof” that the pro-
gram executed and produced a given value. This approach has both advantages
and drawbacks. It seems reasonable to expect that we can extract any other
form of provenance from such a trace: even in the presence of nondeterminism,
the trace records all inputs, outputs and intermediate choices. Thus, we can ex-
tract other forms of provenance, such as source location information, as well as
adapting traces to changes to the input. However, this generality (at least, if
interpreted naively) comes at a high cost: the memory and processing overhead
of storing such full traces for nontrivial programs appears prohibitive, strongly
motivating compression or slicing techniques that can mitigate this cost while
still providing detailed provenance. Another possible drawback, compared to, for
example, the elegant semiring framework used in relational databases [29, 24], is
the absence of strong semantic properties that can be used to optimize programs
in the presence of provenance.

Nevertheless, our contribution helps to frame the problem of provenance man-
agement in general-purpose languages, by proposing an idealized “most general”
form of provenance that can be used to define and compare other, more practi-
cal techniques. Many other questions remain to be investigated in developing a
theory of self-explaining computation, including:

– Can we compress or slice the full derivation trace efficiently enough to make
it a practical approach? If not, what are the limits of efficient provenance
for general-purpose programs?

– How can we extend derivation traces to handle complex features such as
concurrency, side-effects or collections?

– Can we identify intermediate forms of provenance that retain a high degree
of generality while remaining efficiently implementable?

– Can we develop an appropriate compositional model of provenance building
on denotational semantics (and admitting standard program equivalences)?
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