Skip to main content

Structure Descriptor for Articulated Shape Analysis

  • Conference paper
Advances in Visual Computing (ISVC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8033))

Included in the following conference series:

  • 2748 Accesses

Abstract

Combining the anatomic and volumetric metrics we propose a structure-aware method to effectively detect articulation structures. It helps non-experts to quickly generate structural descriptors which can be used for realistic shape animation and shape understanding. Firstly, the geodesic distance for topological analysis is computed to obtain a topological skeleton. Secondly, we refine the articulation joints with the help of an anatomic and volumetric measurement. The enhanced graph encoded with structural joints provides an affine-invariant and meaningful structure descriptor of articulated shape in a reasonable execution time. A series of experiments have been implemented to show the robustness and efficiency for most articulated shape analysis and shape animation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dey, T.K., Giesen, J., Goswami, S.: Shape segmentation and matching with flow discretization. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 25–36. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing their Shock Graphs. IEEE Transactions on Pattern Recognition and Machine Intelligence 26(5), 550–571 (2004)

    Article  Google Scholar 

  3. Sundar, H., Silver, D., Gagvani, N., Dickinson, S.: Skeleton based shape matching and retrieval. In: Proc. of Shape Modelling and Applications, pp. 130–139. IEEE Press, Seoul (June 2003)

    Google Scholar 

  4. Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Transactions on Graphics (Proceedings SIGGRAPH ) 22(3), 954–961 (2003)

    Article  Google Scholar 

  5. Tierny, J., Vandeborre, J.P., Daoudi, M.: 3D Mesh skeleton extraction using topological and geometrical analyses. In: Proc. of the 14th Pacific Conference on Computer Graphics and Applications, Taipei, Taiwan, October 11-13, pp. 85–94 (2006)

    Google Scholar 

  6. Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., Seidel, H.P.: Intelligent mesh scissoring using 3D snakes. In: Proc. of the 12th Pacific Conference on Computer Graphics and Applications, pp. 279–287 (2004)

    Google Scholar 

  7. Shlafman, S., Tal, A., Katz, S.: Metamorphosis of polyhedral surfaces using decomposition. Computer Graphics Forum 21(3) (2002); Proceedings Eurographics 2002

    Google Scholar 

  8. Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh segmentation based on fitting primitives. The Visual Computer 22(3), 181–193 (2006)

    Article  Google Scholar 

  9. Gelfand, N., Guibas, L.J.: Shape segmentation using local slippage analysis. In: Proc. of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 214–223. ACM Press, New York (2004)

    Chapter  Google Scholar 

  10. Xu, W., Wang, J., Yin, K., Zhou, K., Van De Panne, M., Chen, F., Guo, B.: Joint-aware Manipulation of Deformable Models. ACM Transactions on Graphics, SIGGRAPH 2009 (2009)

    Google Scholar 

  11. Wu, F.C., Ma, W.C., Liang, R.H., Chen, B.Y., Ouhyoung, M.: Domain connected graph: the skeleton of a closed 3d shape for animation. The Visual Computer 22(2), 117–135 (2006)

    Article  Google Scholar 

  12. Shapira, L., Shamir, A., Cohen-Or, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. The Visual Computer 24(4), 249–259 (2008)

    Article  Google Scholar 

  13. Lazarus, F., Verroust, A.: Level set diagrams of polyhedral objects. In: Proc. 5th ACM Symp. Solid Modeling and Applications, pp. 130–140. ACM Press (1999)

    Google Scholar 

  14. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: Proc. SIGGRAPH 2001, pp. 203–212. ACM Press, Los Angeles (2001)

    Google Scholar 

  15. Milnor, J.: Morse Theory. Princeton University Press, New Jersey (1963)

    MATH  Google Scholar 

  16. Shinagawa, Y., Kunii, T.L., Kergosien, Y.L.: Surface coding based on Morse theory. IEEE Computer Graphics and Applications 11, 66–78 (1991)

    Article  Google Scholar 

  17. Liu, R., Zhang, H., Shamir, A., Cohen-Or, D.: A Part-aware surface metric for shape analysis. Computer Graphics Forum 28(2), 397–406 (2009)

    Article  Google Scholar 

  18. Skrba, L., Reveret, L., Hétroy, F., Cani, M.P.: Quadruped Animation. In: Eurographics 2008, State of The Art Report (2008)

    Google Scholar 

  19. Aujay, G., Hétroy, F., Lazarus, F., Depraz, C.: Harmonic skeleton for realistic character animation. In: Proc. of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2007)

    Google Scholar 

  20. Weber, O., Sorkine, O., Lipman, Y., Gotsman, C.: Context-aware skeletal shape deformation. Computer Graphics Forum 26(3), 265–273

    Google Scholar 

  21. Yan, H.B., Hu, S.M., Martin, R.: Skeleton-based shape deformation using simplex transformations. In: Comp. Graphics International, pp. 66–77 (2006)

    Google Scholar 

  22. Culver, T., Keyser, J., Manocha, D.: Accurate computation of the medial axis of a polyhedron. In: SMA 1999: Proc. of the Fifth ACM Symposium on Solid Modeling and Applications, pp. 179–190 (1999)

    Google Scholar 

  23. Dey, K.T., Zhao, W.: Approximate medial axis as a voronoi subcomplex. In: SMA 2002: Proceedings of the Seventh ACM Symposium on Solid Modeling and Applications, pp. 356–366 (2002)

    Google Scholar 

  24. Zabih, R., Kolmogorov, V.: Spatially coherent clustering using graph cuts. In: CVPR, pp. 437–444 (2004)

    Google Scholar 

  25. Baran, I., Popovic, J.: Automatic rigging and animation of 3D characters.  ACM Trans. Graph. 26(3), 72 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Han, L., Hu, J., Li, L. (2013). Structure Descriptor for Articulated Shape Analysis. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8033. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41914-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41914-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41913-3

  • Online ISBN: 978-3-642-41914-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics