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Abstract. A method for foreground detection in data acquired by a
moving RGBD camera is proposed. The background scene is initially in
a reference model. An initial estimation of camera motion is provided by
a conventional point cloud registration approach of matched keypoints
between the captured scene and the reference model. This initial solution
is then refined based on a top-down, model based approach that evaluates
candidate camera poses in a Particle Swarm Optimization framework. To
evaluate a candidate pose, the method renders color and depth images
of the model according to this pose and computes a dissimilarity score of
the rendered images to the currently captured ones. This score is based
on the direct comparison of color, depth, and surface geometry between
the acquired and rendered images, while allowing for outliers due to the
potential occurrence of foreground objects, or newly imaged surfaces.
Extended quantitative and qualitative experimental results confirm that
the proposed method produces significantly more accurate foreground
segmentation maps compared to the conventional, baseline feature-based
approach.

1 Introduction

Foreground detection, or otherwise the capability of segmenting novel objects
or persons against a static scene from a video sequence, is an initial step in
a wide range of computer vision applications (see [1] for a review). Typically,
the problem is treated for the case of static cameras. Under this assumption,
significant photometric variations of the observed scene are attributed to fore-
ground objects. However, in certain application domains, the assumption of a
static camera does not hold. As an example, in mobile robotics, cameras are in
motion together with the robot that carries them. In this context, it is useful for
a robot to be able to detect humans or other obstacles against the environment
in which it navigates. We propose a method for solving the foreground detection
problem by a moving RGBD camera.
The proposed method capitalizes on the color and depth information provided

by RGBD cameras. Our motivation stems from the observation that color infor-
mation alone is known to exhibit limitations even for the case of a static camera.
For this reason, research efforts have been targeted at the utilization of addi-
tional channels of information. For example, the method in [2] fuses data from
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the infra-red and visible spectrum to enhance the accuracy of foreground detec-
tion. More relevant to this work, [3, 4] employ depth information in addition to
RGB, to reinforce method accuracy. Moreover, [5] utilizes motion information.
A lot of researchers have studied the problem of foreground detection for

the case of a moving conventional RGB camera. By utilizing apparent 2D mo-
tion, such methods attempt to perform foreground detection based on motion
segmentation (see [6] for a review). The methods [7–9] have been proposed for
cases where the scene can be approximated by a plane or when the camera only
rotates. In contrast to this work, these methods cannot be applied to scenes
with significant depth variations or generic camera motion. The method in [10]
segments a set of trajectories, but depends on long term tracking and is prone
to segmentation errors near object boundaries. The methods in [11, 12] employ
inference to overcome the requirement for long trajectories. Motion segmenta-
tion methods require the presence of strong image gradient and, thereby, exhibit
poor performance is scenes without rich texture. In addition, they can exhibit
inaccuracies at object boundaries as computation of motion is evaluated over a
neighborhood that may image more than one motions. Based on depth informa-
tion, this work overcomes limitations due to lack of texture and, also, provides
a crisp foreground detection result near object boundaries. It also operates on a
per frame basis and, thus, does not require motion tracking.
Foreground detection for a moving camera has been also studied in the con-

text of independent motion detection (see [13] for a review). In this context,
image keypoints are tracked and robustly estimate camera motion and, at the
same time, indicate independently moving keypoints as outliers to this estimate
[14]. In [15], an approach based on stereo input was proposed. Such methods
rely on optical flow or keypoint detection and, similarly to motion segmenta-
tion approaches, cannot handle well textureless objects. As a result, they can
be unsuitable for foreground detection, due to the sparse nature of their output.
The method in [16] overcomes such limitations, utilizing depth images to pro-
vide a relatively denser motion field, but which still is insufficient for accurate
foreground detection. This work estimates camera motion based on keypoints
but, additionally, uses a direct comparison of depth and color channels to the
background model, to increase the accuracy of camera motion estimation. As
shown, this results on an increment of foreground detection accuracy, as well.
More relevant to the proposed approach is [17] that registers RGBD streams

to stabilize a video, but without providing foreground detection. The method
in [18] utilizes registration of point cloud reconstructions to reconstruct wide-
area environments, while the obtained reconstruction can be employed to detect
the presence of new objects in the scene. However, as this registration employs
ICP [19] it is sensitive to wide-baseline sensor motion. Similarly to this work, [20]
overcomes this limitation combining color and depth information, but focuses on
the recovery of camera trajectory and environment reconstruction rather than
providing foreground detection.
The proposed method utilizes sensor calibration to allow the association of

RGB and depth values and employs the first frame of an RGBD sequence as
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the reference frame. This frame is comprised by an RGB image I0 and a depth
image D0. The successive images acquired at time t, It, Dt are registered to
the reference frame, by estimating the camera motion between these two frames
even for wide motion baselines. The registered depth images enable foreground
detection in Dt. For this purpose, the reference frame is selected to image solely
the background. As the method operates independently for each acquired frame,
images It and Dt are denoted simply as I and D, respectively.
The remainder of this paper is organized as follows. In Sec. 2 and Sec 3,

we present our approach for estimating the camera motion and for detecting
the foreground, respectively. The method is experimentally evaluated in Sec. 4.
Section 5 summarizes the paper and provides directions for future work.

2 RGBD Camera Pose Estimation

The proposed method for RGBD camera pose estimation is a combination of a
bottom-up, feature based approach followed by a top-down, model based one.
The conventional, bottom-up approach provides an initial estimate of camera
pose, based on the matching of keypoints between the currently acquired RGB
image and a model of the background. Thereafter, this estimate is refined by the
top-down, model-based approach. This top-down approach renders color and
depth images of the background model at candidate poses and evaluates them
as to how well they explain the currently acquired images, while taking into
account that there might be scene elements moving independently to the sensor.

2.1 Acquisition and Representation of Sensory Data

Depth image D is transformed into a 3D mesh of triangles, using the projection
matrix P = [Q|p4] of the sensor’s depth camera. Henceforth, the mesh obtained
at time t will be denoted as M . M is represented using a vertex matrix and an
array of triangle indices. The dimensions of the vertex matrix match the depth
image resolution. Each of its elements contains a vertex for the corresponding
pixel of D. The vertex Vij , imaged in D at pixel (i, j), is:

Vij = Q−1(D(i, j)[i j 1]T − p4). (1)

If Vij is expressed in the camera coordinate frame, Q becomes the camera cali-
bration matrix K and p4 the zero vector. Thus, Eq. 1 is simplified as:

Vij = (Q−1[i j 1]T )D(i, j). (2)

The term Q−1[i j 1]T in Eq. 2 is constant for each (i, j) and precomputed. This
way, the mesh vertex matrix is availed only by a per-element multiplication,
which is performed in parallel in the GPU.
The array of triangle indices contains indices to the vertex matrix elements

and is computed by generating 2 triangles for each 2×2 pixel neighborhood in D.
This arrangement is also static and is precomputed. Due to sensor limitations,
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D may contain invalid pixels. These pixels are set to a value of zero, as soon as
D is acquired from the sensor. Triangles that index these vertices are removed
also on the GPU, using a parallel stream compaction of the stored indices array.
In depth discontinuities (i.e. at pixels imaging object boundaries), the above

strategy generates triangles that do not correspond to existing surfaces, and
which can cause inaccuracies in pose estimation. We filter such triangles by ac-
knowledging that they correspond to planar surfaces of great obliqueness with
respect to optical rays that image them; they would be, thus, impossible for the
depth camera to image. To efficiently achieve this filtering we compute |∇D|,
by convolution with a 3 × 3 Gaussian derivative. Triangles with vertices asso-
ciated with a high gradient magnitude correspond to very oblique surfaces and
are removed. The operation is performed in the GPU and the gradient value
corresponding to a slope of 85◦ is selected as the filtering threshold.

2.2 Data Driven Camera Motion Estimation

The first step of the proposed method is to perform a coarse estimation of the
camera motion between the reference and the current frame. Initially, SIFT key-
points [21] are extracted from I0 and I and correspondences are established
between the two feature sets. For each match, the corresponding 3D points
(availed through the registration of the RGB and depth images) are also as-
sociated. These two point clouds are iteratively registered using RANSAC [22],
to cope with outliers due to the independent motion of scene elements and non-
matching surfaces between the two viewpoints. At each RANSAC iteration, a
subset of the point clouds is selected and registration is performed using the
generalized Least Squares fitting algorithm described in [23]. A cost function is
evaluated over the entire point clouds, as the number of inlying correspondences.
A correspondence is considered to be an inlier if the distance between its two 3D
points is below a predefined threshold. The parameters resulting in the largest
collection of inliers are selected. The least squares solution over the set of in-
liers gives rise to the initial estimate of the sensor motion R0, t0 between the
reference and the current frame.

2.3 Model Driven Camera Motion Refinement

Rendering Pose Hypotheses. During evaluation of candidate poses, M is
rendered according to them in synthetic images. The virtual sensor simulated in
this process shares the same intrinsic and extrinsic parameters with the actual
one. It is assumed that the mesh M is already transformed according to the
initial pose estimate (see Sec. 2.2), which is to be refined. Let Pk = Rk, tk be
the k-th candidate pose for which the synthetic images Dk, for depth, and Ik,
for color, need to be rendered.M is transformed according to Rk, tk and Dk, Ik
are rendered. As this is a refinement step, transformation Rk, is an “in place”
rotation. Denoting by c the centroid of the points inM , the transformation that
a mesh point x undergoes is:

Rk(x − c) + c+ tk. (3)
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No further action is required to transform M , as triangle relationships and tex-
ture coordinates are invariant to Euclidean transformations. Taking into account
R0, t0, the overall transformation is:

RkR0x+Rk(t0 − c) + c+ tk. (4)

Rendering of the synthetic image is carried out on the GPU and is implemented
through OpenGL calls. The process employs Z-buffering to respect visibility to
renders the 3D model realistically, taking self-occlusions into account.

Evaluating Pose Hypotheses. Ideally, rendering the reference model at an
accurate candidate pose would produce identical depth and color images to the
acquired ones. Thus, to evaluate the accuracy of a candidate pose, the similarity
of Dk to D and Ik to I must be quantified. As both D0 and Dk may exhibit
pixels with null depth measurements, a mask image of the same dimensions is
used, in which a pixel is set to 1 if the corresponding pixels in D0 and Dk are
both valid and to 0 otherwise.
In the following, n0(p) will denote the normal vector of the triangle imaged at

pixel p of D0 and nk(p) the equivalent normal for the triangle rendered at pixel
p of Dk. The dissimilarity for a candidate pose Pk = {Rk, ck} is, henceforth,
called the objective function and defined as:
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1
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(5)
where ∆D = |Dk(p) − D0(p)|, ∆I = δ(Ik(p), I

0(p)), ∆n = 1 − |nk(p) · n0(p)|,
and · denotes the inner product. Cardinality of elements N is defined below.
The objective function weights equally the impact of 3 cues, availed by depth,
color and surface normal information, each one evaluated in a pixelwise manner.
More specifically, the terms ∆D and ∆I evaluate the per pixel dissimilarity of
the hypothesized pose with the acquired depth and color images, respectively.
For the term ∆I , δ() is the color similarity function in [24], which is robust to
variations of illumination conditions. The term ∆n evaluates the incompatibility
of the orientation of surfaces imaged by the depth camera with the orientation
of surfaces rendered at each pixel of the depth image, via the inner angle of the
surface normals, as the dot product of these unit vectors yields the cosine of
this angle. Finally, the normalizing terms wD, wI , and wn are scaling constants.
In preliminary experiments, conducted through synthetic images where ground
truth was available, we observed the combination of these 3 cues to provide more
accurate results than any of them in isolation, or in combinations of two.
In these investigations, we have also observed that independently moving scene

elements create local minima in the objective function. To tackle them, the
evaluation of the objective function is split in two phases. At the first phase,
the values to be summed are calculated. At the second phase, these values are
sorted in ascending order and the last β of these are discarded. In Eq. 5, N is the
cardinality of these values. As the excluded values yield the largest summed costs
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Fig. 1. Two cases of foreground elimination using percentiles. Pixels belonging to the
percentile (25%) are marked red. Left to right: Reference image, registration of frame
with (middle) and without (right) foreground objects.

of the objective function, the corresponding pixels are likely to be outliers and
are, thus, eliminated. The value of β is expressed as the ratio of the foreground
area to the total image area; in our experiments β = 0.25. In essence, β describes
the expected area of the foreground as seen from the current viewpoint. When
outliers are less than those determined by β, an accurate pose estimation is still
achieved. In this case, the foreground pixels are correctly identified, while the
remaining of the β pixels are observed distributed across the image, typically
where sensor noise is most prominent. The same behavior is observed when no
foreground objects are visible. In this case, all of the β discarded pixels are
background pixels, incorrectly classified as foreground (see Fig. 1).
To ensure robustness a constraint for N is required to be above a minimum

cardinality for a candidate pose to be considered, so that is not evaluated using
too few samples. We have set this cardinality as a percentage of the number of
pixels in the depth image and used, again, value β for this threshold.

Particle Swarm Optimization. The large solution space of the pose esti-
mation problem prohibits an exhaustive search approach. Instead, the problem
is treated as an optimization problem that is solved using the Particle Swarm
Optimization (PSO) [25]. The state of each particle includes its current position
in the search space, xτ , as well as its current velocity, vτ , where τ indicates the
current generation. Additionally, each particle i holds its optimum position up
to the current generation in pi, while the current global optimum position is
shared among all particles in pg. After each generation, the particle’s state is
updated using the following equations:

vτ = L(vτ−1 + c1r1(pi − xτ−1) + c2r2(pg − xτ−1)), (6)

xτ = xτ−1 + vτ . (7)

Intuitively, each particle is attracted by the particle that has achieved the best
score in the objective function so far, as well as by the position at which it
achieved its own best objective function score. Based on these dynamics, the
swarm of particles explores the search space, seeking for the optimal (in terms
of the objective function) position.
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In the above equations, constant L is the constriction factor and is set as L =
2/(|2−ψ−

√

ψ2 − 4ψ|), with ψ = c1+c2. The values for the cognitive component,
c1, and the social component, c2, are set to 2.8 and 1.3, respectively. Vectors r1
and r2 consist of samples randomly selected from a uniform distribution, in
[0, 1]. The optimization is repeated until a sufficient objective function score is
obtained, or a maximum number of generations is reached.
In our problem formulation, a particle is a point in the 6D space representing

camera poses. A swarm of particles is a set of candidate camera poses that are
repetitively evaluated based on how they score in Eq.(5) and updated based on
Eq.(6) and Eq.(7). The initial positions of the particles are random samples of a
normal distribution centered around the camera pose estimate obtained by the
initialization method in Sec. 2.2.

3 Foreground Detection

Given an estimate of the camera pose, foreground detection is enabled, based
on the depth image of the RGBD frame. The process compares the synthetic
image D′ corresponding to the estimated camera pose against a model of the
background, in the form of depth image H . In the simplest case, H is the first
frame of the sequence,D0. However,H can be dynamically updated, as described
below. The output is a binary image T where the value 0 corresponds to pixels
classified as background, while the value 1 as foreground. Once T is computed,
it can be warped back to D using the transformation estimated in Sec. 2.3.
Foreground detection is achieved by pixelwise comparison of the distances of

points represented by D′ to their corresponding background points. The obvious
choice of per-pixel subtraction followed by a simple thresholding with a constant
threshold produces undesirable side effects. As the depth sensor precision and
accuracy degrades over distance, pixels of D imaging distant background ob-
jects are incorrectly identified as foreground. Instead, an adaptive thresholding
method is used. The threshold value is evaluated in a per-pixel basis, using the
distance of the background from the camera:

T (p) =

{

0 if |H(p)− D′(p)| ≤ H(p) · wB

1 if |H(p)− D′(p)| > H(p) · wB ,
(8)

where wB is a weight value in [0, 1], which determines the required percentage of
difference of a pixel from the background in order to be classified as foreground.
In our experiments, wB = 0.01.
The depth image D0 may contain invalid pixels, so the corresponding pixels of

D cannot be classified, creating holes in T . To overcome this problem a “history”
of the background is maintained and updated as new depth information becomes
available. For a resolution of w×h, a 3D buffer F of w×w×n is utilized (n = 16
is used). Background model history is updated as follows. An initial foreground
mask is calculated, using Eq. 8 on D′ and the last known H (or D0 for the
1st frame). Pixels classified as background, are appended to the corresponding
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Fig. 2. Results from synthetic data. Left to right: I0, I including occlusion, and the
corresponding foreground detection by gen.

positions in F , discarding values older than n. The new depth image H is then
formed using the median of the up to n values of F for each pixel. Finally, T is
calculated from Eq. 8, using D and the updated H .
As the camera moves, new areas of the scene, not visible before, are discov-

ered. In this way, a more complete background model is estimated and, thus, a
larger area of foreground objects can be correctly classified. Small areas of the
background appearing as holes in D0 due to sensor noise or steep viewpoints,
are now recovered as these deficiencies may not occur from other viewpoints,
or at a later time. For already registered background areas, the median depth
provides a better approximation of the background than a single measurement.

4 Experiments

Experiments on synthetic and real data are reported which document the ac-
curacy benefit obtained using the proposed method. In the experiments, the
proposed method is compared against the initialization method of Sec. 2.2 as
a representative of keypoint-based methods for independent motion estimation.
For brevity, init will refer to the feature-based pose estimation technique of
Sec. 2.2 and gen will refer to the proposed method.
To the best of our knowledge, there is currently no publicly available RGBD

dataset which provides images of the scene in isolation, for building its back-
ground model. We, thus, created such datasets for the evaluation of our method.
As ground truth regarding foreground estimation was difficult to assess in these
datasets without manual intervention, we present the pertinent comparisons vi-
sually. Also, as rotation and translation are combined in the estimation of camera
pose, we report estimation error in terms of camera location.
An experiment with synthetic images was conducted first, utilizing the ren-

derer of Sec. 2.3, so that ground truth was accurately known. A 220 frame
dataset featured virtual sensor motion in a domain of ±20◦ and ±1m. In Fig. 2,
an indicative result is shown. Due to the synthetic nature of the data, pose
estimation was very accurate. Additionally, the detection of foreground pixels
exhibited precision and recall rates greater than 99% for both methods. Nev-
ertheless, an increment in pose estimation accuracy was observed for gen. The
mean translational errors are reported in Table 1 in row Synthetic.
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Fig. 3. Comparison of foreground detection methods. Left to right: I0, I , and corre-
sponding foreground detection for init, and gen.

Table 1. Mean and standard deviation for the translational (mm) pose error for meth-
ods init and gen

Dataset tINIT (mean) tINIT (std) tGEN (mean) tGEN (std)

Synthetic 5.9 (11.7) 2.6 (1.4)

Checker1 36.5 (26.6) 20.9 (13.4)

Checker2 18.4 (13.3) 12.2 (13.4)

In an experiment with real images, a checkerboard was utilized to provide
ground truth for pose estimation. Two datasets were acquired as follows. A
Kinect camera was mounted on a tripod and RGBD frames were acquired, while
the camera pose was modulated. For each pose, a pair of frames was acquired.
In the first frame of the each pair, the scene was imaged without occlusions.
In the second frame, a person occluded the background. Camera pose was es-
timated from the occlusion-free frames by conventional extrinsic camera cal-
ibration. As the sensor did not move, this estimate availed ground truth for
the second frames. In both datasets the camera motion was not continuous,
but occurred in wide steps. The first dataset consists of 34 different poses, ac-
quired from a distance of ≈ 3m, while the second dataset consists of 23 different
poses, taken at closer distance (≈ 1m). The rotation ranges are ±110◦, ±80◦

and the translation ranges are ±2m, ±1m, respectively for the first and second
dataset. The translational errors for the two datasets are shown in Table 1 in
rows Checker1 and Checker2.
Finally, another dataset was acquired featuring more continuous sensor mo-

tion. In this dataset, the RGBD sensor moves within an indoor environment,
while three persons freely move in from of the camera occluding the background.
The sequence lasts for 1557 frames, acquired at 30Hz, with camera motion
ranging in the domain of ±1.5m and 60◦. In Fig. 4, the proposed foreground
detection method and the contribution of the “background history” technique
are demonstrated. In Fig. 5 indicative results from this experiment are shown.
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Fig. 4. Top: Background model. I
0 (left). H at time t = 0; magenta pixels indicate

no depth measurement (middle). H after 1557 frames (right). Bottom: Foreground
detection. I (left), result without (middle) and with (right) background history.

Fig. 5. Comparison of foreground detection methods. Left to right: I
0, result using

init, using gen, and gen with background history.

The computational complexity is determined by the following factors. The
number of pixels by which the model is rendered in Ik, Dk increases linearly the
complexity of the method as an intensity value is rendered for each. The com-
plexity of the PSO algorithm is linear to the number of particles and generations
considered. In all experiments, 40 particles and 70 generations were used. The
number of triangles in the rendered model also linearly increases computational
complexity, as each triangle of the model is considered when rendering a can-
didate pose. In a naive implementation of our method, for images of 640× 480
pixels and a model of 6 · 105 triangles, execution time was ≈ .8 sec per frame, on
a computer with a i7 CPU at 3.07GHz and GeForce GTX 580 GPU.
From the experiments, we confirm that the proposed method provides accu-

rate refinements to the feature-based initial pose estimate. We note the robust-
ness of the method to sensor noise, which is typical for the case of off-the-shelf
sensors. Most importantly, for the comparison of the foreground detection re-
sults obtained from the two compared methods we conclude that the additional
accuracy provided by the proposed method is important to the accuracy of fore-
ground detection, as even minute errors in camera pose may have a significant
impact on the result of foreground detection.
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5 Discussion

This paper presented an approach for foreground detection in RGBD data. The
proposed approach estimates camera motion between a reference and a target
frame in the presence of distracting scene foreground. To achieve this, it performs
a top-down refinement of the solution provided by a standard, feature-based,
bottom up method. This refinement is formulated as an optimization problem
that is effectively solved through Particle Swarm Optimization that takes into
account color and geometry information. We demonstrated that the resulting
method improves the motion estimation accuracy of the baseline feature based
method. We also demonstrated that the increased accuracy in camera motion
estimation reflects positively to the accuracy on foreground estimation. The pro-
posed method is applicable even in cases of large camera motions and produces
dense foreground/background segmentation maps. Last but not least, the ob-
tained results provide a basis for estimating the 3D motion parameters of the
independently moving foreground, as the retrieved foreground pixels are associ-
ated with 3D coordinates. A next step for future work is the optimization of our
implementation, in order to decrease its, currently, large execution time. Other
extensions include the integration of this work in a Simultaneous Localization
and Mapping (SLAM) framework, to increase its range of operation.
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