Skip to main content

Digital Dynamical Systems of Spike-Trains

  • Conference paper
Book cover Neural Information Processing (ICONIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8227))

Included in the following conference series:

Abstract

This paper studies a simple digital dynamical system that can generate various spike-trains. In order to consider the steady and transient states, we use two basic feature quantities. The first one is the number of co-existing periodic spike-trains that can characterize richness of the steady state. The second one is the concentricity of transition to the periodic spike-trains that can characterize variation of transient phenomena. Performing numerical experiments for two typical examples based on the bifurcating neuron, basic classification of the dynamics is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horimoto, N., Saito, T.: Analysis of Digital Spike Maps based on Bifurcating Neurons. NOLTA, IEICE, E95-N 10, 596–605 (2012)

    Article  Google Scholar 

  2. Ogawa, T., Saito, T.: Self-organizing Digital Spike Interval Maps. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part II. LNCS, vol. 7063, pp. 612–617. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Chua, L. O.: A nonlinear dynamics perspective of Wolfram’s new kind of science, I, II. World Scientific (2005)

    Google Scholar 

  4. Wada, W., Kuroiwa, J., Nara, S.: Completely reproducible description of digital sound data with cellular automata. Physics Letters A 306, 110-115 (2002)

    Google Scholar 

  5. Ito, R., Nakayama, Y., Saito, T.: Learning of Dynamic BNN toward Storing-and-Stabilizing Periodic Patterns. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part II. LNCS, vol. 7063, pp. 606–611. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Ott, E.: Chaos in dynamical systems. Cambridge (1993)

    Google Scholar 

  7. Campbell, S.R., Wang, D., Jayaprakash, C.: Synchrony and desynchrony in integrate-and-fire oscillators. Neural Computation 11, 1595–1619 (1999)

    Article  Google Scholar 

  8. Izhikevich, E.M.: Simple Model of Spiking Neurons. IEEE Trans. Neural Networks 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  9. Torikai, H., Funew, A., Saito, T.: Digital spiking neuron and its learning for approximation of various spike-trains. Neural Networks 21, 140–149 (2008)

    Article  MATH  Google Scholar 

  10. Torikai, H., Nishigami, T.: An artificial chaotic spiking neuron inspired by spiral ganglion cell: parallel spike encoding, theoretical analysis, and electronic circuit implementation. Neural Networks 22, 664–673 (2009)

    Article  Google Scholar 

  11. Rulkov, N.F., Sushchik, M.M., Tsimring, L.S., Volkovskii, A.R.: Digital communication using chaotic-pulse-position modulation. IEEE Trans. Circuits Systs., 48(12), 1436–1444 (2001)

    Article  Google Scholar 

  12. Iguchi, T., Hirata, A., Torikai, H.: Theoretical and heuristic synthesis of digital spiking neurons for spike-pattern-division multiplexing. IEICE Trans. Fundamentals, E93-A 8, 1486–1496 (2010)

    Article  Google Scholar 

  13. Matsubara, T., Torikai, H.: Asynchronous cellular automaton-based neuron: theoretical analysis and on-FPGA learning. IEEE Trans. Neiral Netw. Learning Systs. 24, 736–748 (2013)

    Article  Google Scholar 

  14. Amari, S.: A Method of Statistical Neurodynamics. Kybernetik 14, 201–215 (1974)

    MathSciNet  MATH  Google Scholar 

  15. Perez, R., Glass, L.: Bistability, period doubling bifurcations and chaos in a periodically forced oscillator. Phys. Lett., 90A 9, 441–443 (1982)

    Article  MathSciNet  Google Scholar 

  16. Torikai, H., Saito, T., Schwarz, W.: Synchronization via multiplex pulse-train. IEEE Trans. Circuits Syst. I 46(9), 1072–1085 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Horimoto, N., Saito, T. (2013). Digital Dynamical Systems of Spike-Trains. In: Lee, M., Hirose, A., Hou, ZG., Kil, R.M. (eds) Neural Information Processing. ICONIP 2013. Lecture Notes in Computer Science, vol 8227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42042-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42042-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42041-2

  • Online ISBN: 978-3-642-42042-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics