Skip to main content

Spectrum Intensity Ratio and Thresholding Based SSVEP Detection

  • Conference paper
  • 3594 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8227))

Abstract

Brain Computer Interface (BCI) is a powerful tool to control a computer or machine without body movement. There has been great interest in using Steady-State Visual Evoked Potential (SSVEP) for BCI [1]. Various signal processing and classification techniques are proposed to extract SSVEP from Electroencephalograph (EEG). The feature extraction of SSVEP is developed in the frequency domain regardless of the limitation in hardware architecture, i.e. a low power and simple calculation. We introduced a spectrum intensity ratio as a simple characterization and separation of SSVEP. However, it is difficult to classify an unseeing state of subjects. In addition, we only tried the wide band flickering frequency as visual stimuli. In this paper, we adopt a classification using a simple calculation with threshold to detect the unseeing state from SSVEP in a narrow frequency band.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beverina, F., Palmas, G., Silvoni, S., Piccione, F., Giove, S.: User adaptive BCIs: SSVEP and P300 based interfaces. Psychology Journal 1, 331–354 (2003)

    Google Scholar 

  2. Vidal, J.J.: Toward direct brain-computer communication. Annual Review of Biophysics and Bioeng. 2, 157–180 (2003)

    Article  Google Scholar 

  3. McFarland, D.J., Miner, L.A., Vaughan, T.M., Wolpaw, J.R.: Mu and beta rhythm topographies during motor imagery and actual movement. Brain Topography 12, 177–186 (2000)

    Article  Google Scholar 

  4. Herrmann, C.S.: Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp. Brain Res. 137, 346–353 (2001)

    Article  Google Scholar 

  5. Garcia, G.: High frequency SSVEPs for BCI applications. Computer-Human Interaction (2008)

    Google Scholar 

  6. Regan, D.: Human brain electrophysiology. Evoked potentials and evoked magnetic fields in science and medicine. Elsevier Publisher, NewYork (1989)

    Google Scholar 

  7. Cheng, M., Gao, X., Gao, S., Xu, D.: A BCI-based environmental controller for the motion-disabled. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 137–140 (2003)

    Article  Google Scholar 

  8. Lalor, E., Kelly, S.P., Finucane, C., Burke, R., McDarby, G.: A brain-computer interface based on the steady-state VEP for immersive gaming control. Biomed. Techn. 49, 63–64 (2004)

    Google Scholar 

  9. Muller-Putz, G.R., Scherer, R., Brauneis, C., Pfurtscheller, G.: Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. Journal of Neural Eng. 2, 123–130 (2005)

    Article  Google Scholar 

  10. Cheng, M., Gao, X., Gao, S., Xu, D.: Design and implementation of a brain-computer interface with high transfer rates. IEEE Trans. Biomed. Eng. 49, 1181–1186 (2002)

    Article  Google Scholar 

  11. Friman, O., Volosyak, I., Graser, A.: Multiple channel detection of steady-state visual evoked potentials for brain-computer interfaces. IEEE Trans. Biomed. Eng. 54, 742–750 (2007)

    Article  Google Scholar 

  12. Diez, P.F., Mut, V., Perona, E.A., Leber, E.L.: Asynchronous BCI control using high-frequency SSVEP. Journal of NeuroEng. and Rehabili. 8 (2011)

    Google Scholar 

  13. Itai, A., Funase, A.: Spectrum based feature extraction using spectrum intensity ratio for SSVEP detection. In: Annual Int. Conf. of the IEEE EMBS, pp. 3947–3950 (2012)

    Google Scholar 

  14. Zhu, D., Bieger, J., Molina, G.G., Aarts, R.M.: A survey of stimulation methods used in SSVEP-based BCIs. Intell. Neuroscience 2010 1, 12 pages (2010)

    Google Scholar 

  15. Diez, P.F., Mut, V., Laciar, E., Avila, E.: A comparison of monopolar and bipolar EEG recordings for SSVEP detection. In: Annual Int. Conf. of the IEEE EMBS, pp. 5803–5806 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Itai, A., Funase, A. (2013). Spectrum Intensity Ratio and Thresholding Based SSVEP Detection. In: Lee, M., Hirose, A., Hou, ZG., Kil, R.M. (eds) Neural Information Processing. ICONIP 2013. Lecture Notes in Computer Science, vol 8227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42042-9_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42042-9_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42041-2

  • Online ISBN: 978-3-642-42042-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics