Skip to main content

Object Pose Estimation by Locally Linearly Embedded Regression

  • Conference paper
Neural Information Processing (ICONIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8228))

Included in the following conference series:

Abstract

In this paper we propose a new local learning algorithm for appearance-based object pose estimation, called Locally Linearly Embedded Regression (LLER). LLER uses a constrained version of Locally Linear Embedding (LLE) to simultaneously embed into an intermediate low-dimensional space the training images, the query image and a grid of pose parameters. A linear map is learned between the points in the local neighborhood of the query representation in this low-dimensional intermediate space and their corresponding pose parameters, which is used to directly recover the pose of the query image. The proposed method has been evaluated in a pose estimation task on a database of 16 different objects, consistently outperforming several representative global and local appearance-based pose estimation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grimson, E.: Object Recognition by Computer: The Role of Geometric Constraints. MIT Press (1990)

    Google Scholar 

  2. Lamdan, Y., Wolfson, H.J.: Geometric Hashing: A General and Efficient Model-Based Recognition Scheme. In: Proc. Int. Conf. on Computer Vision, Tampa, FL (1988)

    Google Scholar 

  3. Olson, C.F.: Efficient Pose Clustering Using a Randomized Algorithm. Int. Journal of Computer Vision 23(2), 131–147 (1997)

    Article  Google Scholar 

  4. Lepetit, V., Fua, P.: Monocular Model-Based 3D Tracking of Rigid Objects: A Survey. Foundations and Trends in Computer Graphics and Vision 1(1), 1–89 (2005)

    Article  Google Scholar 

  5. Murase, H., Nayar, S.K.: Visual Learning and Recognition of 3-D Objects from Appearance. Int. Journal of Computer Vision 14(1), 5–24 (1995)

    Article  Google Scholar 

  6. Okatani, T., Deguchi, K.: Yet another appearance-based method for pose estimation based on a linear model. In: IAPR Workshop on Machine Vision Applications, pp. 258–261 (2000)

    Google Scholar 

  7. Melzer, T., Reiter, M., Bischof, H.: Appearance models based on kernel canonical correlation analysis. Pattern Recognition, Special Issue on Kernel and Subspace Methods for Computer Vision, 1961–1971 (2003)

    Google Scholar 

  8. Ando, S., Kusachi, Y., Suzuki, A., Arakawa, K.: Appearance based pose estimation of 3D object using support vector regression. In: International Conference on Image Processing, vol. 1, pp. 341–344 (2005)

    Google Scholar 

  9. Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embeding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  10. Ham, J.H., Lee, D.D., Saul, L.K.: Learning High Dimensional Correspondences from Low dimensional Manifolds. In: The 20th International Conference on Machine Learning (2003)

    Google Scholar 

  11. Raytchev, B., Terakado, K., Tamaki, T., Kaneda, K.: Pose Estimation by Local Procrustes Regression. In: Proc. 18th IEEE International Conference on Image Processing, ICIP 2011, pp. 3666–3669 (2011)

    Google Scholar 

  12. Torgeson, W.: Multidimensional Scaling: I. Theory and method. Psychometrika 17, 401–419 (1952)

    Article  MathSciNet  Google Scholar 

  13. Cox, T., Cox, M.: Multidimensional Scaling, 2nd edn. Chapman & Hall/CRC (2000)

    Google Scholar 

  14. Mardia, K., Kent, J., Bibby, J.: Multivariate Analysis. Academic Press (1979)

    Google Scholar 

  15. Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications. Wiley, New York (1974)

    MATH  Google Scholar 

  16. Jolliffe, I.: Principal Component Analysis. Springer (1986)

    Google Scholar 

  17. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  18. Belkin, M., Niyogi, P.: Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. In: Adv. NIPS 15, Vancouver, Canada (2001)

    Google Scholar 

  19. Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q.: Graph Embedding and Extensions: A General Framework for Dimensionality Rediction. IEEE Trans. PAMI 29(1), 40–51 (2007)

    Article  MathSciNet  Google Scholar 

  20. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)

    Google Scholar 

  21. Viksten, F., Forssen, P., Johansson, B., Moe, A.: Comparison of Local Image Descriptors for Full 6 Degree-of-Freedom Pose Estimation. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1139–1146 (2009)

    Google Scholar 

  22. Object Pose Estimation Database, http://www.cvl.isy.liu.se/research/objrec/posedb/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raytchev, B., Terakado, K., Tamaki, T., Kaneda, K. (2013). Object Pose Estimation by Locally Linearly Embedded Regression. In: Lee, M., Hirose, A., Hou, ZG., Kil, R.M. (eds) Neural Information Processing. ICONIP 2013. Lecture Notes in Computer Science, vol 8228. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42051-1_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42051-1_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42050-4

  • Online ISBN: 978-3-642-42051-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics