Skip to main content

sEMG Based Joint Angle Estimation of Lower Limbs Using LS-SVM

  • Conference paper
Book cover Neural Information Processing (ICONIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8226))

Included in the following conference series:

Abstract

In this paper, a new estimation model based on least squares support vector machine (LS-SVM) is proposed to build up the relationship between Surface electromyogram (sEMG) signal and joint angle of the lower limb. The input of the model is 2 channels of preprocessed sEMG signal. The outputs of the model are joint angles of the hip and the knee. sEMG signal is acquired from 7 motion muscles in treadmill exercise. And two channels of them are selected for dynamic angle estimation for their strong correlation with angle data. Angle estimation model is constructed by 2 independent LS-SVM based regression model with radial basis function (RBF). It is trained using part of the sample sets acquired in 10s exercise duration and test by all data. Experimental result shows proposed method has good performance on joint angles estimation based sEMG. Root mean square error (RMSE) of prediction knee and hip joint angles is 3.02° and 2.09° respectively. It provide new human-machine interface for active rehabilitation training of SCI, stroke or neurological injury patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mayr, A., Kofler, M., Quirbach, E., et al.: Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabilitation and Neural Repair 21(4), 307–314 (2007)

    Article  Google Scholar 

  2. Krebs, H.I., Volpe, B.T., Aisen, M.L., et al.: Increasing productivity and quality of care:Robot-aided neuro-rehabilitation. Journal of Rehabilitation Research and Development 37(6), 639–652 (2000)

    Google Scholar 

  3. Lum, P.S., Burgar, C.G., Van der Loos, H.F.M., et al.: The MIME robotic system for upper-limb neuro-rehabilitation: results from a clinical trial in subacute stroke. In: Proceeding of the 9th IEEE International Conference on Rehabilitation Robotics, pp. 511–514 (2005)

    Google Scholar 

  4. Ando, T., Okamoto, J., Fujie, M.G.: Optimal Design of a Micro Macro Neural Network to Recognize Rollover Movement. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2009 IEEE IROS), pp. 1615–1620 (2009)

    Google Scholar 

  5. Kim, J., Mastnik, S., André, E.: EMG-based hand gesture recognition for real-time biosignal interfacing. In: The 13th International Conference on IUI, pp. 30–39 (2008)

    Google Scholar 

  6. Hashemi, J., Morin, E., Mousavi, P., Hashtrudi-Zaad, K.: Joint Angle-based EMG Amplitude Calibration. In: The 33rd Annual International Conference of the IEEE EMBS, pp. 4439–4442 (2011)

    Google Scholar 

  7. Ngeo, J., Tamei, T., Shibata, T.: Continuous Estimation of Finger Joint Angles using Muscle Activation Inputs from Surface EMG Signals. In: The 34th Annual International Conference of the IEEE EMBS, pp. 2756–2759 (2012)

    Google Scholar 

  8. Wang, S., Gao, Y., Zhao, J., Yang, T., Zhu, Y.: Prediction of sEMG-Based Tremor Joint Angle Using the RBF Neural Network. In: Proceeding of 2012 IEEE International Conference on Mechatronics and Automation, pp. 2103–2108 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Q., Song, Y., Hou, Z., Zhu, B. (2013). sEMG Based Joint Angle Estimation of Lower Limbs Using LS-SVM. In: Lee, M., Hirose, A., Hou, ZG., Kil, R.M. (eds) Neural Information Processing. ICONIP 2013. Lecture Notes in Computer Science, vol 8226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42054-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42054-2_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42053-5

  • Online ISBN: 978-3-642-42054-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics