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Abstract. Restricted Boltzmann machines (RBMs) and deep Boltzmann ma-
chines (DBMs) are important models in deep learning, but it is often difficult
to measure their performance in general, or measure the importance of individ-
ual hidden units in specific. We propose to use mutual information to measure
the usefulness of individual hidden units in Boltzmann machines. The measure
serves as an upper bound for the information the neuron can pass on, enabling
detection of a particular kind of poor training results. We confirm experimentally,
that the proposed measure is telling how much the performance of the model
drops when some of the units of an RBM are pruned away. Our experiments on
DBMs highlight differences among different pretraining options.
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1 Introduction

Restricted Boltzmann machines (RBMs) and deep Boltzmann machines (DBMs) are
important models in deep learning, helping to achieve state-of-the-art performance in
many tasks. However, both models are also known to be difficult to train [1, 2].

If training of an RBM or DBM is not successful, it is often assumed that the hidden
neurons do not learn to detect features that are useful for the task the Boltzmann ma-
chine (BM) is expected to perform. Whether training is successful is often measured by
directly testing the performance of the trained model in this task at hand. The model is
therefore often treated as a “black box” only evaluated based on final performance.

When training RBMs or DBMs, it would be beneficial to gain deeper insights into
the details of a learned model beyond a mere final performance measure. One way to
shed light on the underlying functionality of a particular model is to collect statistics
of the individual neurons. E.g. in tasks where the visible neurons of the BM represent
pixels in pictures, it is standard practice to visualize the learned weights.

Structural learning is an additional field where measuring the importance of indi-
vidual neurons is crucial. One approach in structural learning is to add or prune neurons
while training the model (see e.g. [3–5]). In general, the benefit of such an approach
includes decreasing the number of hyperparameters that need to be defined a priori [4],
better expected generalization, and faster performance [6]. However, it is unclear how
training a BM is affected by adding or pruning neurons while training.



In this paper, we propose to use mutual information between the observation vector
and a single hidden unit for evaluating its importance.

After reviewing RBMs and DBMs in Sect. 2, we propose the mutual information
(MI) measure for studying the importance of individual hidden units of a BM in Sect. 3.
Experimenting with RBMs in Sect. 4, we demonstrate the usefulness of the measure in
pruning and adding neurons as well as visualizing the progress of learning. In Sect. 5,
we compare pretraining choices of a DBM using the proposed measure.

2 Boltzmann Machines: Background

2.1 Restricted Boltzmann Machines

A restricted Boltzmann machine (RBM) [7] is a variant of a Boltzmann machine that
has a bipartite structure such that each visible neuron is connected to all hidden neurons
and each hidden neuron to all visible neurons, but there are no edges between the same
type of neurons. An RBM defines an energy of each state (x,h) by

−E(x,h | θ) = b>x+ c>h+ x>Wh, (1)

and assigns the following probability to the state via Boltzmann distribution:
p(x,h | θ) = 1

Z(θ) exp {−E (x,h | θ)} , where θ = {b, c,W} is a set of parameters
consisting of visible and hidden biases as well as weights between visible and hidden
neurons. Z(θ) is a normalization constant that makes the probabilities sum up to one.

2.2 Deep Boltzmann Machines

A deep Boltzmann machine (DBM) was proposed in [8] as a relaxed version of an
RBM. A DBM simply stacks multiple additional layers of hidden units on the layer of
hidden units of an RBM. As was the case with an RBM, consecutive layers are fully
connected, while there is no edge among the units in one layer.

The energy function is defined as

−E(x,h | θ) = b>x+c>[1]h[1]+x>Wh[1]+
L∑

l=2

(
c>[l]h[l] + h>[l−1]U[l−1]h[l]

)
, (2)

where L is the number of hidden layers. The state and biases of the hidden units at
the l-th hidden layer and the weight matrix between the l-th and (l + 1)-th layers are

respectively defined by h[l] =
[
h
[l]
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]>
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]
,

where ql is the number of the units in the l-th layer and U[l] ∈ Rql×ql+1 .

2.3 Why Interested in Boltzmann Machines?

RBM is an important basic building block of deep neural networks. In [9] it was shown
that an MLP with many hidden layers can be trained well by greedily pretraining each
pair of consecutive layers as an RBM. Furthermore, deep generative models such as



deep belief networks and DBMs were found to be easily trainable if the parameters were
initialized by greedy layer-wise pretraining using an RBM [10, 8]. DBM was found to
be effective at initializing the parameters of an MLP as well [8].

Furthermore, both RBM and DBM have been found to be useful on their own, as
well. RBM and DBM were used to achieve high predictive performance on collabora-
tive filtering [11], multimodal learning [12] and hierarchical feature extraction [13].

However, all these achievements by RBM and DBM require that these neural net-
works were trained well. Several recent research showed that training RBM and DBM
is difficult, and that inappropriately trained ones may neither perform well on their own
nor as a part of another model [1, 2]. Although computing log-likelihood by estimat-
ing the normalizing constant [14] has been oft-used to evaluate RBMs and DBMs, it is
computationally expensive and does not tell much about how much contribution each
hidden neuron makes. Hence, in this paper we try to explore one potential measure that
can be used to evaluate the contribution of each hidden neuron in RBM and DBM.

3 Mutual Information Measure for Hidden Units

Neural networks such as multi-layer perceptron (MLP) networks are often criticized for
being black boxes, that is, it is difficult to understand what the individual neurons are
doing. One measure that can easily be studied is the variance of the neuron activation
across samples (see e.g. [15]). The underlying rationale is that neurons with constant
activation across the samples cannot convey any discriminative information about the
samples. However, as Boltzmann machines are stochastic, measuring activation vari-
ance is clearly not appropriate, as even a neuron with constant activation probability
could have a high activation variance.

We therefore propose to measure the relevant activity (or importance) of a single
hidden neuron hj in Boltzmann machines by measuring the mutual information (MI)
I(x, hj) between the observation vector (or the set of visible neurons) x and the hidden
neuron hj . Specifically, the MI-measure of the hidden unit MIj is

MIj = I(x, hj) =

1∑
hj=0

∑
x

P (x, hj) log2

(
P (hj | x)
P (hj)

)

=

1∑
hj=0

[
−P (hj) log2 (P (hj)) +

∑
x

P (x)P (hj | x) log2 (P (hj | x))

]

≈
1∑

hj=0

[
−P (hj) log2 (P (hj)) +

T∑
t=1

1

T
P (hj | xt) log2 (P (hj | xt))

]
.

We use the logarithm with base 2 in order to get the amount of information as bits.
It is easy to show that the mutual information between the binary hidden neuron hj and
the visible neurons x ranges from 0 to 1 bit, and defines the upper bound of the average
information the hidden neuron can convey about the state of the visible neurons x.
The measure is also independent of the particular task that the model learned by the
Boltzmann machine is supposed to perform.
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Fig. 1. Classification accuracy development when pruning neurons. Left: Original RBM was
trained with 4000 hidden neurons for 1000 epochs using standard gradient. Right: Original net-
work was trained with 1000 hidden neurons using enhanced gradient for 100 epochs.

Note that the MI-measure cannot measure how well the hidden unit works together
with other hidden units. For instance, maximizing the MI-measure could not be used
as the objective of training Boltzmann machines since training using such a criterion
could lead to each hidden unit representing the same feature. However, the MI-measure
serves as a useful measure of the upper bound for how useful the hidden neuron can
be for any task the Boltzmann machine is trained for. Therefore, the hidden neurons
with almost zero MI-measure will also be almost useless in any task. This is a partic-
ularly useful measure when training Boltzmann machines, as certain common training
situations yield neurons with a very low MI-measure.

4 Experiments on Restricted Boltzmann Machines

This section studies the use of MI-measure as a measure of the usefulness of hidden
neurons in the case of RBMs by (1) pruning, (2) adding new hidden neurons during
training, and (3) visualizing the progress of training.

4.1 Pruning Neurons after Training

We tested the contribution of neurons with varying mutual information to a simple
classification task. We trained an RBM with 4000 hidden neurons on the MNIST data
set [16], and used the hidden neuron activations as inputs to a logistic classifier. We
then pruned 100 hidden neurons at a time in order of the MI-measure. We did this both
in ascending and descending order, in addition to randomly pruning 100 neurons at a
time. The remaining neuron activations were then used as features in the classifier.

The results of the tests are shown in Fig. 1 (left). As predicted, the classification
performance does not drop markedly when pruning neurons with very low MI-measure.

We also did a similar exercise for a 1000 hidden neuron RBM, where we used the
enhanced gradient [1] in training. The results clearly differ from the previous model, in
that the MI-measure is not clearly related to importance in the classification task. As



Fig. 2. MI-measure of RBM where 500 hidden neurons are added in the middle of the training
(left) vs. a normal RBM with 1000 hidden neurons from the start of the training (right). Both
models were trained for 100 epochs.

can be seen from Fig. 1 (right), this model differs from the previous in that all hidden
neurons have a fairly high MI-measure. Therefore, no neurons have a low enough MI-
measure as to not be able to convey enough information about the observations x. This
clearly reveals that high MI-measure is not always an accurate indicator of high signifi-
cance for the classification task – only a sufficiently low MI-measure can confidentially
predict that a neuron is not useful.

4.2 Adding Neurons During Training

One potential way to learn an optimal structure of an RBM would be to add neurons to
the hidden layer. This has bee studied e.g. in [4, 3]. However, it is possible that adding
neurons to a layer of hidden units where the previous hidden units have been trained
for some time would not be beneficial, as the added neurons might not learn relevant
structures in addition to the already co-adapted hidden neurons. In order to test that
hypothesis, we trained an RBM of 500 hidden neurons for 50 epochs, after which we
added another 500 hidden neurons to the model and trained it for another 50 epochs.
The development of the MI-measure can be seen in Fig. 2.

We again used the hidden neuron activations as features for a logistic classifier and
compared the performance of the two models. The table lists the median accuracy from
three runs. The performance of the model with added features is clearly inferior to the
model trained with 1000 hidden neurons for 100 epochs.

500 hidden units 500 + 500 hidden units 1000 hidden units
Class. accuracy 95.22 % 95.45 % 96.49 %

When examining the MI-measure of the 500 neurons added after 50 epochs, it is
clear that the measure stays considerably lower than for the 500 neurons added in the
beginning. It is also worth noting that even during the 50 epochs, the mutual information
stays much lower than the level the original 500 neurons reached already after only a
few epochs of training. This would support the hypothesis that the neurons added later
are not able to find very relevant features easily. We therefore recommend caution when
considering naively adding neurons parallel to already trained neurons in an RBM.



0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Entropy of hidden unit

M
I−

m
ea

su
re

 

 
Initialization
After 10 epochs
After 100 epochs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.05

0.1

0.15

0.2

0.25

MI−measure

V
ar

−
E

Fig. 3. Left: Mutual information of a hidden unit with the observation vector (MI-measure) plotted
against the entropy of the hidden unit at different stages of learning. Right: Variance of the ex-
pected activation (Var-E) of each hidden neuron plotted against the MI-measure after 100 epochs
of training for an RBM with 1000 hidden neurons.

4.3 Relations to Entropy and Variance

One use for the proposed measure is simply to visualize the progress of learning.
In Fig. 3 (left), we plot the entropy H(hj) = −

∑1
hj=0 P (hj) log2 (P (hj)) of the

hidden units against their MI-measure in the initialization phase, after 10 epochs, and
after 100 epochs. We see that training increases their mutual information on average,
but also decreases the entropy on some hidden neurons.

It can be seen in Fig. 3 (right) that the MI-measure has a close resemblance to
the variance over samples of the expected activation Var-Ej = Vart

(
EP (hj |xt) [hj ]

)
.

Var-E highlights that the stochastic variation in P (hj | xt) does not count as relevant
activity, whereas variation over the data index t does. Note that we used Var-E for
studying neurons in Fig. 9 of [1].

5 Experiments on Deep Boltzmann Machines

Although Deep Boltzmann Machines [8] have been used with great success in several
applications, they are generally considered difficult to train. One method that has been
essential in alleviating that difficulty is greedy layer-wise pretraining.

In order to illustrate this difficulty, we trained two DBMs with two layers of 1000
hidden neurons for 100 epochs: the first without any pretraining, and the second one
with two-stage pretraining [2]. The hidden neuron activations of both of the models
were used as features for a logistic classifier. As can be seen from Fig. 4 the mutual
information of especially the second layer was extremely low without pretraining. The
mutual information is in fact so low, that the entire second layer only conveys on average
a maximum of 1.5× 10−10 bits of information about the observations. This illustration
strengthens the hypothesis that the difficulty in training DBMs relates to the model not
learning useful features of the data.



Fig. 4. MI-measure of a DBM with two layers of hidden units without pretraining (left) and with
pretraining (right)

6 Discussion

We propose using mutual information between the observation vector and a single hid-
den unit (MI-measure) for evaluating the importance of individual hidden units of a
Boltzmann machine. Following the progress of this measure during training would be
useful at least for noticing situations where some of the units are not useful at all. We
demonstrated several cases where it could happen. Firstly, training a large RBM with
traditional gradient can include a lot of inactive units. Secondly, when an RBM has al-
ready learned a representation of the data, and new units are introduced in it, it is rather
difficult to make them useful. Thirdly, when training deep Boltzmann machines without
layer-wise pretraining, all the neurons in especially the upper layers might be useless.

We found that the MI-measure should only very cautiously be used as such to rank
neuron importance among the active neurons, since it rather serves as an upper bound
of importance. This might be due to at least two phenomena: Firstly, the MI-measure
ignores the interaction among hidden units, and Boltzmann machines produce very dis-
tributed representations of data since each unit can only retain at most one bit of infor-
mation. Secondly, it is well known that sparse representations perform well especially
for classification tasks [17]. Sparse features have a lower entropy, and Fig. 3 shows that
units with lower entropy tend to have a lower MI-measure, too. This would suggest that
perhaps some combination of entropy and MI-measure could be used as a more accurate
measure of usefulness in the future. Another direction in which to continue the work is
to study the mutual information of the latent representation and class labels, assuming
they are available. This has been proposed as a learning criterion by Peltonen and Kaski
[18].
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