Skip to main content

Compressed Sensing Ensemble Classifier for Human Detection

  • Conference paper
Book cover Intelligence Science and Big Data Engineering (IScIDE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8261))

  • 2333 Accesses

Abstract

This paper proposes a novel Compressed Sensing Ensemble Classifier (CSEC) for human detection. The proposed CSEC employs the compressed sensing technique to get a more sparse model with a more reasonable selection of base classifiers. The major contributions of this paper are: 1) a novel principled framework for ensemble classifier design based on compressed sensing; 2) a new concept of considering both the simplicity of ensemble classifier and irrelevance of base classifiers towards optimal classifier design; and 3) a quadratic function for CSEC optimization which includes a new optimizable positive semi-definite relevance matrix to simultaneously select appropriate base classifiers with minimized relevance. Experimental results on INRIA and SDL databases show that the performance of CSEC is better than two most popular classifiers SVM and AdaBoost, as well as a most recent method CLML.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mohan, A., Papageorgiou, C., Poggio, T.: Example-Based Object Detection in Images by Components. IEEE Trans. PAMI 23(4), 349–360 (2001)

    Article  Google Scholar 

  2. Mu, Y., Yan, S., Liu, Y., Huang, T., Zhou, B.: Discriminative Local Binary Patterns for Human Detection in Personal Album. In: Proc. CVPR (2008)

    Google Scholar 

  3. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. CVPR (2001)

    Google Scholar 

  4. Tuzel, F.P., Meer, P.: Human Detection via Classification on Riemannian Manifolds. In: Proc. CVPR, pp. 1–8 (2007)

    Google Scholar 

  5. Wang, X., Han, T.X., Yan, S.: An HOG-LBP Human Detector with Partial Occlusion Handling. In: Proc. ICCV, Kyoto (2009)

    Google Scholar 

  6. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: Proc. CVPR, vol. 1, pp. 886–893 (2005)

    Google Scholar 

  7. Zhu, Q., Avidan, S., Yeh, M.C., Cheng, K.T.: Fast Human Detection Using a Cascade of Histograms of Oriented Gradients. In: Proc. CVPR, vol. 2, pp. 1491–1498 (2006)

    Google Scholar 

  8. Munder, S., Gavrila, D.: An Experimental Study on Pedestrian Classification. IEEE Trans. PAMI 28(11), 1863–1868 (2006)

    Article  Google Scholar 

  9. Xu, R., Zhang, B., Ye, Q., Jiao, J.: Cascaded L1-norm Mimimzation Learning (CLML) classifier for human detection. In: Proc. CVPR (2010)

    Google Scholar 

  10. Platt, J.C.: Using Analytic QP and Sparseness to Speed Training of Support Vector Machines. In: NIPS, pp. 557–563 (1998)

    Google Scholar 

  11. Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)

    Article  Google Scholar 

  12. Donoho, D.: For most large underdetermined systems of linear equations the minimal l1-norm near solution approximates the sparsest solution. Comm. on Pure and Applied Math. 59(6), 797–829 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Thorburn, W.M.: Occam’s razor. Mind 24, 287–288 (1915)

    Article  Google Scholar 

  14. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust Face Recognition via Sparse Representation. IEEE Tran. PAMI 31, 210–227 (2009)

    Article  Google Scholar 

  15. Vapnik, V.N.: The nature of statistical learning theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  16. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press (1990)

    Google Scholar 

  17. Bartlett, P., Freund, Y., Lee, W.S., Schapire, R.E.: Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods. Ann. Statist. 26(5), 1651–1686 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zhou, Z.-H., Wu, J., Tang, W.: Ensembling neural networks: Many could be better than all. Artificial Intelligence 137(1-2), 239–263 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  20. Grant, M.: Disciplined convex programming. PhD thesis, Stanford (2004)

    Google Scholar 

  21. http://coe.gucas.ac.cn/SDL-HomePage/resource.asp

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, B., Liu, J., Gao, Y., Liu, J. (2013). Compressed Sensing Ensemble Classifier for Human Detection. In: Sun, C., Fang, F., Zhou, ZH., Yang, W., Liu, ZY. (eds) Intelligence Science and Big Data Engineering. IScIDE 2013. Lecture Notes in Computer Science, vol 8261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42057-3_106

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42057-3_106

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42056-6

  • Online ISBN: 978-3-642-42057-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics