Skip to main content

A Multi-agent Based Migration Model for Evolving Cooperation in the Spatial N-Player Snowdrift Game

  • Conference paper
PRIMA 2013: Principles and Practice of Multi-Agent Systems (PRIMA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8291))

Abstract

In recent years, there has been an increased interest in using agent-based simulation models to investigate the evolution of cooperative behaviour in spatial evolutionary games. However, the relationship between individual player mobility (or migration) and population dynamics is not clear. In this paper, we investigate the impacts of alternative migration mechanisms in the spatial N-player Snowdrift game. Here, agents occupy sites in a two-dimensional toroidal lattice. Specific game instances are created by nominating N sites from each of the local neighbourhoods. We use a genetic algorithm to evolve agent game-playing strategies. In addition, agents have an opportunity to migrate to different sites in the lattice at regular intervals. Key parameters in our model include the migration rate, the actual dispersal distance, the “take-over” scheme, the group size N, and the relative cost-to-benefit ratio of the game. Detailed simulation experiments show that the proposed model is able to promote cooperation in a population of mobile agents. However, the magnitude of the dispersal distance plays a significant role in determining population dynamics. Our findings help to further understand how migratory (mobility) patterns affect evolutionary processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aktipis, C.A.: Is cooperation viable in mobile organisms? Simple walk away rule favors the evolution of cooperation in groups. Evolution and Human Behavior 32(4), 263–276 (2011)

    Article  Google Scholar 

  2. Alba, E., Dorronsoro, B.: Cellular Genetic Algorithms. Springer, Berlin (2008)

    MATH  Google Scholar 

  3. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Transactions on Evolutionary Computation 6(5), 443–462 (2002)

    Article  Google Scholar 

  4. Axelrod, R.: The evolution of strategies in the iterated prisoner’s dilemma. In: Davis, L. (ed.) Genetic Algorithms and Simulated Annealing, pp. 32–41. Morgan Kaufmann, Los Altos (1987)

    Google Scholar 

  5. Batty, M.: Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals. The MIT Press, Cambridge (2005)

    Google Scholar 

  6. Cantú-Paz, E.: A survey of parallel genetic algorithms. Calculateurs Parallèles, Réseaux et Systòmes Répartis 10(2), 141–171 (1998)

    Google Scholar 

  7. Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer, Norwell (2000)

    MATH  Google Scholar 

  8. Chen, Z., Gao, J.X., Cai, Y.Z., Xu, X.M.: Evolution of cooperation among mobile agents. Physica A: Statistical Mechanics and its Applications 390, 1615–1622 (2011)

    Article  MATH  Google Scholar 

  9. Chen, Z., Gao, J.X., Cai, Y.Z., Xu, X.M.: Evolutionary prisoner’s dilemma game in flocks. Physica A: Statistical Mechanics and its Applications 390, 50–56 (2011)

    Article  Google Scholar 

  10. Chiong, R., Dhakal, S., Jankovic, L.: Effects of neighbourhood structure on evolution of cooperation in N-player iterated prisoner’s dilemma. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 950–959. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Chiong, R., Kirley, M.: Evolving cooperation in the spatial N-player snowdrift game. In: Li, J. (ed.) AI 2010. LNCS, vol. 6464, pp. 263–272. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Chiong, R., Kirley, M.: Iterated N-player games on small-world networks. In: Krasnogor, N., Lanzi, P.L. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2011), pp. 1123–1130. ACM Press, New York (2011)

    Google Scholar 

  13. Chiong, R., Kirley, M.: Effects of iterated interactions in multi-player spatial evolutionary games. IEEE Transactions on Evolutionary Computation 16(4), 537–555 (2012)

    Article  Google Scholar 

  14. Chiong, R., Kirley, M.: The evolution of cooperation via stigmergic interactions. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2012), pp. 1052–1059. IEEE Press, Piscataway (2012)

    Google Scholar 

  15. Chiong, R., Kirley, M.: Random mobility and the evolution of cooperation in spatial N-player iterated prisoner’s dilemma games. Physica A: Statistical Mechanics and its Applications 391, 3915–3923 (2012)

    Article  Google Scholar 

  16. Dugatkin, L.A., Wilson, D.S.: ROVER: A strategy for exploiting cooperators in a patchy environment. The American Naturalist 138(3), 687–701 (1991)

    Article  Google Scholar 

  17. Enquist, M., Leimar, O.: The evolution of cooperation in mobile organisms. Animal Behaviour 45(4), 747–757 (1993)

    Article  Google Scholar 

  18. Guan, J.-Y., Wu, Z.-X., Wang, Y.-H.: Evolutionary snowdrift game with disordered environments in mobile societies. Chinese Physics 16(12), 3566–3570 (2007)

    Article  Google Scholar 

  19. Helbing, D., Yu, W.: Migration as a mechanism to promote cooperation. Advances in Complex Systems 11(4), 641–652 (2008)

    Article  MATH  Google Scholar 

  20. Helbing, D., Yu, W.: The outbreak of cooperation among success-driven individuals under noisy conditions. Proceedings of the National Academy of Sciences of the United States of America 106, 3680–3685 (2009)

    Article  Google Scholar 

  21. Hofmann, L.-M., Chakraborty, N., Sycara, K.: The evolution of cooperation in self-interested agent societies: A critical study. In: Sonenberg, L., Stone, P., Tumer, K., Yolum, P. (eds.) Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011), Taipei, Taiwan, pp. 685–692 (2011)

    Google Scholar 

  22. Jiang, L.-L., Wang, W.-X., Lai, Y.-C., Wang, B.-H.: Role of adaptive migration in promoting cooperation in spatial games. Physical Review E 81(3), 36108 (2010)

    Article  Google Scholar 

  23. Killingback, T., Doebeli, M.: Spatial evolutionary game theory: Hawks and doves revisited. Proceedings of the Royal Society of London: Biological Sciences 263, 1135–1144 (1996)

    Article  Google Scholar 

  24. Kirchkamp, O.: Spatial evolution of automata in the prisoners’ dilemma. Journal of Economic Behaviour and Organization 43(2), 239–262 (2000)

    Article  Google Scholar 

  25. Kirley, M.: A cellular genetic algorithm with disturbances: Optimisation using dynamic spatial interactions. Journal of Heuristics 8(3), 321–342 (2002)

    Article  MATH  Google Scholar 

  26. Kümmerli, R., Gardner, A., West, S.A., Griffin, A.S.: Limited dispersal, budding dispersal, and cooperation: An experimental study. Evolution 63(4), 939–949 (2009)

    Article  Google Scholar 

  27. Kun, A., Scheuring, I.: The evolution of density-dependent dispersal in a noisy spatial population model. Oikos 115, 308–320 (2006)

    Article  Google Scholar 

  28. Lambin, X., Aars, J., Piertney, S.B.: Dispersal, intraspecific competition, and kin facilitation: A review of the empirical evidence. In: Clobert, J., Danchin, E., Dhondt, A.A., Nichols, J.D. (eds.) Dispersal, pp. 110–122. Oxford University Press (2001)

    Google Scholar 

  29. Lin, Y.-T., Yang, H.-X., Wu, Z.-X., Wang, B.-H.: Promotion of cooperation by aspiration-induced migration. Physica A: Statistical Mechanics and its Applications 390, 77–82 (2011)

    Article  Google Scholar 

  30. Meloni, S., Buscarino, A., Fortuna, L., Frasca, M., Gómez-Gardeñes, J., Latora, V., Moreno, Y.: Effects of mobility in a population of prisoner’s dilemma players. Physical Review E 79(6), 067101 (2009)

    Article  Google Scholar 

  31. Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)

    Article  Google Scholar 

  32. Nowak, M.A., May, R.M.: The spatial dilemmas of evolution. International Journal of Bifurcation and Chaos 3, 35–78 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ono, M., Ishizuka, M.: Prisoner’s dilemma game on network. In: Lukose, D., Shi, Z. (eds.) PRIMA 2005. LNCS, vol. 4078, pp. 33–44. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  34. O’Reilly, G.B., Ehlers, E.: Synthesizing stigmergy for multi agent systems. In: Shi, Z.-Z., Sadananda, R. (eds.) PRIMA 2006. LNCS (LNAI), vol. 4088, pp. 34–45. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  35. Perrin, N., Goudet, J.: Inbreeding, kinship, and the evolution of natal dispersal. In: Clobert, J., Danchin, E., Dhondt, A.A., Nichols, J.D. (eds.) Dispersal, pp. 123–142. Oxford University Press (2001)

    Google Scholar 

  36. Santos, F.C., Pacheco, J.M.: Scale-free networks provide a unifying framework for the emergence of cooperation. Physical Review Letters 95, 098104 (2005)

    Article  Google Scholar 

  37. Schtickzelle, N., Fjerdingstad, E.J., Chaine, A., Clobert, J.: Cooperative social clusters are not destroyed by dispersal in a ciliate. BMC Evolutionary Biology 9, 251 (2009)

    Article  Google Scholar 

  38. Sicardi, E.A., Fort, H., Vainstein, M.H., Arenzon, J.J.: Random mobility and spatial structure often enhance cooperation. Journal of Theoretical Biology 256, 240–246 (2009)

    Article  MathSciNet  Google Scholar 

  39. Suzuki, S., Kimura, H.: Oscillatory dynamics in the coevolution of cooperation and mobility. Journal of Theoretical Biology 287, 42–47 (2011)

    Article  MathSciNet  Google Scholar 

  40. Sysi-Aho, M., Saramäki, J., Kertész, J., Kaski, K.: Spatial snowdrift game with myopic agents. The European Physical Journal B 44(1), 129–135 (2005)

    Article  Google Scholar 

  41. Szabó, G., Fáth, G.: Evolutionary games on graphs. Physics Reports 446, 97–216 (2007)

    Article  MathSciNet  Google Scholar 

  42. Vainstein, M.H., Silva, A.T.C., Arenzon, J.J.: Does mobility decrease cooperation? Journal of Theoretical Biology 244, 722–728 (2007)

    Article  MathSciNet  Google Scholar 

  43. Weidlich, W.: Sociodynamics: A Systematic Approach to Mathematical Modelling in the Social Sciences. Harwood Academic Publishers, Amsterdam (2000)

    Google Scholar 

  44. Yang, H.X., Wang, W.X., Wang, B.H.: Universal role of migration in the evolution of cooperation. physics.soc-ph, page arXiv:1005.5453v1 (2010)

    Google Scholar 

  45. Yang, H.-X., Wu, Z.-X., Wang, B.-H.: Role of aspiration-induced migration in cooperation. Physical Review E 81(6), 065101 (2010)

    Article  MathSciNet  Google Scholar 

  46. Yao, X., Darwen, P.: An experimental study of N-person iterated prisoner’s dilemma games. Informatica 18(4), 435–450 (1994)

    MATH  Google Scholar 

  47. Zhang, J., Wang, W.-Y., Du, W.-B., Cao, X.-B.: Evolution of cooperation among mobile agents with heterogenous view radii. Physica A: Statistical Mechanics and its Applications 390, 2251–2257 (2011)

    Article  Google Scholar 

  48. Zhang, J., Zhang, C., Chu, T.: The evolution of cooperation in spatial groups. Chaos, Solitons and Fractals 44, 131–136 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chiong, R., Kirley, M. (2013). A Multi-agent Based Migration Model for Evolving Cooperation in the Spatial N-Player Snowdrift Game. In: Boella, G., Elkind, E., Savarimuthu, B.T.R., Dignum, F., Purvis, M.K. (eds) PRIMA 2013: Principles and Practice of Multi-Agent Systems. PRIMA 2013. Lecture Notes in Computer Science(), vol 8291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44927-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-44927-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-44926-0

  • Online ISBN: 978-3-642-44927-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics