Principles of Solomonoff Induction and AIXI

Peter Sunehag! and Marcus Hutter!?
{Peter.Sunehag,Marcus.Hutter}@anu.edu.au

'Research School of Computer Science, Australian National University
Canberra, ACT, 0200, Australia
2Department of Computer Science, ETH Ziirich, Switzerland

November 2011

Abstract

We identify principles characterizing Solomonoff Induction by demands on
an agent’s external behaviour. Key concepts are rationality, computability,
indifference and time consistency. Furthermore, we discuss extensions to the
full AI case to derive AIXI.

Contents
Introduction
Background
Choosing a Program
Representation
Sequence Prediction
The AIXI Agent
Remarks on Stochastic Lower
Semi-computable Environments
8 Conclusions
References

—

arXiv:1111.6117v1 [cs.Al] 25 Nov 2011

n—u—lE

Keywords

computability; representation; rationality; Solomonoff induction.

http://arxiv.org/abs/1111.6117v1

1 Introduction

Ray Solomonoff [Sol60] introduced a universal sequence prediction method that in
[Sol96|, Hut07, RHI1I] is argued to solve the general induction problem. [Hut05]
extended Solomonoff induction to the full Al (general reinforcement learning) set-
ting where an agent is taking a sequence of actions that may affect the unknown
environment to achieve as large amount of reward as possible. The resulting agent
was named AIXI. Here we take a closer look at what principles underlie Solomonoff
induction and the AIXI agent. We are going to derive Solomonoff induction from
four general principles and discuss how AIXI follows from extended versions of the
same.

Our setting consists of a reference universal Turing machine (UTM), a binary
sequence (produced by an environment program (not revealed) on the reference
machine) fed incrementaly to the agent and a loss function (or reward structure). We
give the agent in question the task of choosing a program for the reference machine
so as to minimize the loss. The loss is in general defined to be a function from a pair
of programs, an environment program and an agent program, to real numbers. The
loss function can be such that it is only the prediction (for a certain number of bits)
produced by the program that matters or it can care about exactly which program
was presented. A loss function of the latter kind leads to the agent performing the
task of prediction, which is what Solomonoff induction is primarily concerned with
while the latter can be viewed as identifying an explanatory hypothesis, which is
more closely related to the minimum message length principle [WB68, WD99, [Wal05]
or the minimum description length principle [Ris78| [Grii07, Ris10]. Solomonoff
induction is using a mixture of hypothesis to achieve the best possible prediction.
Note that the fact that we pick one program does not rule out that the choice
is internally based on a mixture. In the case when the loss only cares about the
prediction, the program is only a representation of that prediction and not really a
hypothesis.

The principles are designed to avoid stating what the internal workings of the
agent should be and instead derive those as a consequence of the demands on the
behaviour. Thus we demand rationality instead of stating explicitly that the agent
should have probabilistic beliefs and we demand time consistency instead of ex-
plicitly stating probabilistic conditioning. The computability principle is avoiding
saying that the agent should have a hypothesis class that consists of all computable
environments by instead demanding that it deliver a computation procedure (a
program for our reference machine) that produces its prediction for the next few
bits. The indifference principle states what the initial preferences of the agent must
be, i.e. a demand for how the initial decision should be taken. The choice is based
on symmetry with respect to a chosen representation scheme for sequences, e.g. pro-
grams on a reference machine. In other words we do not allow the agent to be biased
in a certain sense that depends on our reference machine. Informally we state the
principles as follows:

1. Computability: If we are going to guess the future of a sequence, we should
choose a computation procedure (a program for the reference machine) that
produces the predicted bits

2. Rationality: We should choose our predicted sequence such that the depen-
dence on the priorities (formalized by a reward (or loss) structure) is consistent.

3. Indifference: The initial choice between programs only depends on their
length and the priorities (again formalized by reward (or loss))

4. Time Consistency: The choice of program does not change by a new ob-
servation if the program’s output is consistent with the oberservation and the
reward structure is still the same and concerned with the same bits

Our reasoning leading from external behavioural principles to a completely de-
fined internal procedure can be summarized as follows; The rationality principle tells
us that we need to have probabilistic beliefs over some set of alternatives; The com-
putability principle tells us what the alternatives are, namely programs; The indiffer-
ence principle leads to a choice of the original beliefs; The time-consistency principle
leads to a simple procedure for updating the beliefs that the second principle tells
us must exist, namely conditioning. In total it leads to Solomonoff Induction.

We can not remove any of the principles without losing the complete specification
of a procedure. The first property is part of the set up of what we ask the agent
to do. Without the second we lose the restriction that we take decisions based on
maximum expected utility with respect to probabilistic beliefs and one could then
have an agent that always chose the same program (e.g. a very short one). Without
the third principle we could have any apriori beliefs and without the fourth the
agent could after a while change its mind regarding what beliefs it started with.

1.1 Setup

We are considering a setting where we give an agent a task that is defined by a
reference machine (a UTM), a reward structure (or loss function if we negate) and a
binary sequence that is presented one bit at a time. The binary sequence is generated
by a program for the reference machine.

The agent must (as stated by the first principle) chose a program (whose output
must be consistent with anything that we have seen in case we have made obser-
vations) for the reference machine and then use its output (which can be of finite
or infinite length) as a prediction. If we want to predict at least h bits we have to
restrict ourself to machines that output at least h bits. We will consider an enumer-
ation of all programs 7T;. We are also going to consider a class of reward structures
R; ;. The meaning is that if we guess that the sequence is (as the output of) T;
and the actual sequence is 7}, then we receive reward R; ;. Note that for any finite
string there are always Turing machines that computes it. We will furthermore sup-
pose that Vi, R;; — 0 as j — oo. This means that we consider it to be a harder

3

and harder task to guess T as j gets really large. This assumption is not strictly
necessary as we will discuss later.

1.2 Outline

Section [2] provides background on Solomonoff induction and AIXI. In Section
we deal with the first two principles mentioned above about rationality and com-
putability. In Section M, we discuss the third principle which defines a prior from
a (Universal Turing Machine) representation. Section [0l describes the sequence pre-
diction algorithm that results from adding the fourth principle to what has been
achieved in the previous sections. Section [0] extends our analysis to the case where
an agent takes a sequence of actions that may affect its environment. Section [7] con-
cerns equivalence between our beliefs over deterministic environments and beliefs
over a much larger class of stochastic environments.

2 Background

2.1 Sequence Prediction

We consider both finite and infinite sequences from a finite alphabet X'. We denote
the finite strings by X* and we use the notation x1., := x1, 2o, ..., x; for the first ¢
elements in a sequence x. A function p : X* — [0, 1] is a probability measure if

pla) = plaa) Vi € X" (1)

aeX

and p(e) = 1 where € is the empty string. Such a function describes a priori proba-
bilistic beliefs about the sequence. If the equality in () is instead > and p(e) < 1
then we have a semi-measure. We define the probability of seeing the string a after
seeing x as being p(a|z) := p(za)/p(x). If we have a loss function L : X x X — R,
we ([Hut07]) choose, after seeing the string x, to predict

aragergin > L(a,b)p(b|x). (2)

More generally, if we have an alphabet) of actions we can take and a loss function
L:Y x X — R we make the choice

argmin Y L(a,b)p(b|z). (3)

€Y pex

2.2 The Solomonoff Prior

Ray Solomonoff [Sol60] defined a set of priors that only differ by a multiplicative
constant. We call them Solomonoff priors. To define them we need to first introduce
some notions about Turing machines [Tur36].

4

A monotone Turing machine T (which we will just call Turing machine and
whose exact technical definition can be found in [LV0S]) is a function from a set of
(binary) strings to binary sequences that can either be finite or infinite. We demand
that it be possible to describe the function as a machine with unidirectional input
and output tapes, read/write heads, a bidirectional work tape and a finite state
machine that decides the next action of the machine given the symbols under the
head on the input and work tape. The input tape is read only and the output tape
is write only. We write that T'(p) = x* if output of T starts with = when given input
(program) p.

A universal Turing machine is a Turing machine that can emulate all other
Turing machines in the sense that for every Turing machine T there is at least one
prefix p, such that when pzx is fed to the universal Turing machine, it computes the
same output as 7" would when fed = (See [LVO0S8| [Hut05] for further details).

A sequence is called computable if some Turing machine outputs it, or in other
words, if for every universal Turing machine there is a program p that leads to this
sequence being the output.

We can also define what we will call a computable environment from a Turing
machine. A computable environment is something which you (an agent) feed an
action to and the environment outputs a string which we call a perception. We can
for example have a finite number of possible actions and we put one after another on
the input tape of the machine. We wait until the previous input has been processed
and one of finitely many outputs has been produced. The machine might halt after
a finite number of actions have been processed or it might run for ever.

Definition 1 (Semi-measure from Turing machine). Given a Turing machine T, we
let
Ap(z) = > 27 (4)

p:T(p)=a*

where [(p) is the length of the program (input) p and T (p) = x*x means that T starts
with outputting x when fed p, though it might continue and output more afterwards.

If the Turing machine T in Definition [is universal we call Ay a Solomonoff
distribution. Solomonoff induction is defined by letting p in Section 2.1] be the
Solomonoff prior for some universal Turing machine. If U is a universal Turing
machine and 7" is any Turing machine there exists a constant ¢ > 0 (namely 27/@
where ¢ is the prefix that encodes 7" in U) such that

Av(z) > eAr(z) Vo € X", (5)

The set {\r | T' Turing} can be identified with [LVO§|] with all lower semi-computable
semi-measures (see [LVOS§] for definitions and proofs). The property expressed by (5

is called universality (or dominance) and is the key to proving the strong convergence
results of Solomonoff Induction [Sol78, LV0S, Hut05, Hut07].

5

2.3 AIXI

In the active case where an agent is taking a sequence of actions to achieve some
sort of objective, we are trying to determine the best policy 7w, defined as a function
from a history aiqi, ..., a;q; of actions a; and perceptions ¢; to a choice of the next
action a;11. The function p from the sequence prediction case is in the active case
of the form p(qy, ..., ¢|a1, ..., a;) and represent the probability of seing ¢, ..., ¢; given
that we have chosen actions ay,...,a;. We can again define a “learning” algorithm
by conditioning on what we have seen to define

p(q1>"'7qt+k|a'l>"'aa't+k) (6)
p(q1, -y qilag, ..., ay)

p(qt—i-la sy Qt+k|(J1> cey g, Ay - a’t-i-k) =

If a; = m(a1q1, ..., ai-1q;—1) Vt and ¢ = qi, qa, ..., then we also write p(g|m) for the
left hand side in ({@).

Suppose that we have an enumerated set of policies {m;} to choose from. Given
a definition of reward R(q) for a sequence of percepts ¢ = ¢i,¢q, ... that can for
example be defined as in reinforcement learning by splitting ¢, into observation o,
and reward r; and using a discounted reward sum Y, v'r; [SB98, [Hut05], then we

can define
R(r) :==E,R(q) = > _ R(q)p(qlm) (7)

and make the choice

" := argmax R(7). (8)
If we have a class of environments {7} (say the computable environments) and if p
is defined by saying that we assign probability p; to 7} being the true environment,
then we let R; ; = R(q) if ¢ is the sequence of perceptions resulting from using policy
m; in environment 7. Then R(m;) = 3, p;R;; and we choose the policy with index

argmax Z piRi ;. 9)

As outlined in [Hut05], one can choose a Solomonoff distribution also over active
environments. The resulting agent is referred to as AIXI.

3 Choosing a Program

In this section we describe the setup of the second principle mentioned in the intro-
duction, namely rationality. The section is much briefer than what is suitable for
the topic and we refer the reader to our companion paper [SH11] for a more compre-
hensive treatment. Rationality is meant in the sense of internal consistency [Sug91],
which is how it has been used in [NM44] and [Savb4]. We set up simple axioms
for a rational decision maker, which implies that the decisions can be explained (or
defined) from probabilistic beliefs. The approach to probability by [Ram31), [del'37]

6

is interpreting probabilities as fair betting odds. There is an intuitive similarity
between our setup to the idea of explaining/deriving probabilities as a bookmaker’s
betting odds as done in [deF37] and [Ram31].

Before we consider the question regarding which program we want to choose we
will first consider the question if we are prepared to accept guessing T; for a given
R = {R,;} (i.e. accepting this bet). We suppose that the alternative is to abstain
(reject) and receive zero reward. We introduce rationality axioms and prove that we
must have probabilistic beliefs over the possible sequences. Note that for any given
i, we have a sequence R;; in ¢y (the space of real valued sequences that converge to
0). We will set up some common sense rationality axioms for the way we make our
decisions. We will demand that a decision can be taken for any reward structure
r (R;; with fixed 7) from cy. If 7 is acceptable and A > 0 then we want Ar to be
acceptable since this is simply a multiple of the same. We also want the sum of two
acceptable reward structures to be acceptable. If we cannot lose (receive negative
reward) we are prepared to accept while if we are guaranteed to gain we are not
prepared to reject it. We cannot remove any axiom without losing the conclusion.

Definition 2 (Rationality). Suppose that we have a function z : ¢ — {—1,1,0}
defining the decision reject/accept/either (—1/1/0) and Z = {r € ¢ | z(r) € {0,1}}.

1. z(r) € {0,1} if and only if z(—r) € {—1,0}
2.r,s€Z, \,y>0then \r +vys € Z
3. If rp. > 0 VEk then r € Z while if r, > 0 Yk then z(r) = 1.

The following theorem connects our Rationality axioms with the Hahn-Banach
theorem [Kre89] and concludes that rational decisions can be described with a pos-
itive continuous linear functional on the space of reward structures. The Banach
space dual of ¢y is ¢; which gives us a probabilistic representation of underlying
beliefs.

Theorem 3 (Linear separation). Given the assumptions in Definition[2 there exists
a positive continuous linear functional f : co — R defined by f(r) = >, r;p; where
r={r;}, p; >0 and ijj < 00, such that

{z | f(r)>0}CZC{r| f(r) =0} (10)

Proof. The second property tells us that Z and —Z are convex cones. The first
and third property tells us that Z # R™. Suppose that there is a point r that
lies in both the interior of Z and of —Z. Then the same is true for —r according
to the first property and for the origin. That a ball around the origin lies in Z
means that Z = R™ which is not true. Thus the interiors of Z and —Z are disjoint
open convex sets and can, therefore, be separated by a hyperplane (according to
the Hahn-Banach theorem) which goes through the origin (since according to the
first and third property z(0) = 0). The first property tell us that Z U —Z = R™.

7

Given a separating hyperplane (between the interiors of Z and —Z), Z must contain
everything on one side. This means that Z is a half space whose boundary is a
hyperplane that goes through the origin and the closure Z of Z is a closed half
space and can be written as {r | f(r) > 0} for some f in the Banach space dual
¢y = {1 of ¢g. The third property tells us that f is positive. O

Theorem [3 also leads us to how to choose between different options. If we
consider picking T; over T}, we will do (accept) that if R;. — Ry is accepted. This is
the case if > p;R; j > > p; Rk ;. The conclusion is that if we are presented with R; ;
and a class {7} and we assign probability p; to T; being the truth, then we choose

argmaxz R, ipj. (11)

J

Remark 4. If we replace the space ¢y by ls as the space of reward structures in
Theorem[3, the conclusion (see [SH11]) is instead that f is in the Banach space dual
U’ of ls which contains ¢, (the countably additive measures) but also functions that
cannot be written on the form f(r) =3_;r;p;. l,, is sometimes called the ba space
[Die84)] and it consists of all finitely additive measures.

4 Representation

In this section we will discuss how indifference together with a representation leads
to a choice of prior weights. The representation will be given in terms of codes that
are strings of letters from a finite alphabet and it tells us which distinctions we will
apply our indifference principle to. Choosing the first bit can be viewed as choosing
between two propositions, e.g. x is a vegetable or z is a fruit. More choices follow
until a full specification (a code word for the given reference machine) is reached.
The section describes the usual material on the Solomonoff distribution (see [LVOS§])
in a way that highlights in what sense it is based on indifference. The indifference
principle itself is an external behavioural principle.

Definition 5 (Indifference). Given a reward structure for two alternative outcomes
of an event where we receive Ry or Ry depending on the outcome, then if we are
indifferent we accept this bet if Ry + Ry > 0. For an agent with probabilistic beliefs
that mazximize expected utility this means that equal probability is assigned to both
possibilities.

We will discuss examples that are based on considering the set {apple, orange,
carrot} and the representation that is defined by first separating fruit from vegetables
and then the fruits into apples and oranges.

Example 6. We are about to open a box within which there is either a fruit or a
vegetable. We have no other information (except possibly, a list of what is a fruit
and what is a vegetable).

Example 7. We are about to open a box within which there is either an apple, or
an orange or a carrot. We have no other information.

Consider a representation where we use binary codes. If the first digit is a 0
it means a vegetable, i.e. a carrot. No more digits are needed to describe the
object. If the first digit is a 1 it means a fruit. If the next digit after the 1 is
a 0 its an apple and if it is a 1 its an orange. In the absence of any other back-
ground knowledge/information and given that we are going to be indifferent for this
choice, we assign uniform probabilities for each choice of letter in the string. For
our examples this results in probabilities Pr(fruit) = Pr(vegetable) = 1/2. After
concluding this we consider the next distinction and conclude that Pr(apple|fruit) =
Pr(orangel|fruit) = 1/2. This means that the decision maker has the prior beliefs
Pr(carrot) = 1/2, Pr(apple) = Pr(orange) = 1/4.

An alternative representation would be to have a trinary alphabet and give each
object its own letter. The result of this is Pr(apple) = Pr(orange) = Pr(carrot) =
1/3, Pr(fruit) = 2/3 and Pr(vegetable) = 1/3.

The following formalizes the definition of a code and a prefix free code. Since
we are assuming that the possible outcomes are never special cases of each other
we need our code to be prefix free. Furthermore, Kraft’s inequality says that
ZCEC 9-length(c) < 1 if the set of codes C is prefix free.

Definition 8 (Codes). A code for a set A is a set of strings C of letters from a
finite alphabet B and a surjective map from C to A. We say that a code is prefix-free
if no code string is a proper prefiz of another.

Definition 9 (Computable Representation). We say that a code is a computable
representation if the map from code-strings to outcomes is a Turing machine.

In the definition below we provide the formula for how a binary representation
of the letters in an alphabet leads to a choice of a distribution. It is easily extended
to non-binary representations.

Definition 10 (Distribution from representation). Given a binary prefiz-free code
for A (our possible outcomes), the expression

w, = Z 2—length(c)’ ae A

¢ code for a

defines a measure over A.

Though the formula in Definition [I0] uniquely determines the weights given a
representation, there is still a very wide choice of representations. We are going to
deal with this concern to restrict ourself to the class of universal representations with
the property that given any other computable representation, the universal weights
are at least a constant times the weights resulting from the other representation. See
[Sol60, LVO8, [Hut05] for a more extensive treatment. These universal representations
are defined by having a universal Turing machine (in our case the given reference
machine) as the map from codes to outcomes.

9

Definition 11 (Universal Representation). If a universal Turing machine is used
for defining the map from codes to outcomes we say that we have a universal (com-
putable) representation.

The weights that result from using a universal representation w? satisfy the
property that if w, are the resulting weights from another computable representa-
tion, then there is C' > 0 such that wg > Cw, Ya € A. This follows directly from
the universality of the Turing machine, which means that any other Turing machine
can be simulated on the universal one by adding an extra prefix (interpreter) to each
code. That is, feeding ic to the universal machine gives the same output as feeding
¢ to the other machine. The constant C' is 2-9th().

Theorem 12. Applying Definition[Ill together with a representation of finite strings
based on a universal Turing machine gives us the Solomonoff semi-measure.

Proof. Given a universal Turing machine U we create a set of codes C from all
programs that generate an output of at least h bits. We let the code ¢ € C represent
the finite string x € X* with [(x) = h if U(c) = x*. We show below that this
representation together with Definition [I0] leads to the Solomonoff distribution for
the next h bits. By considering all A > 1 we recover the Solomonoff semi-measure
over X*.

Formally, given x € X* we let (in Definition [I0) a = = and we define p(z) := w,

and conclude that
p(x) _ Z 2—length(p)

U(p)=z*

which is the Solomonoff semi-measure. O

Remark 13 (Unique Representation). Given a universal Turing machine, we could
choose to let only the shortest program that generates a certain output represent that
output, and not all the programs that generate this output. The length of the shortest
program p that gives output x is called the Kolmogorov complexity K(x) of x. Using
only the shortest program leads to the slightly different weights

w, = 27 K@
compared to Definition[I0. Both weighting schemes are, however, equivalent within
a multiplicative constant [LV0§].
5 Sequence Prediction

We will in this section summarize how Solomonoff Induction as described in [Hut07]
follows from what we have presented in Section [3] and Section Ml together with our
fourth principle of time consistency. Consider a binary sequence that is revealed to
us one bit at a time. We are trying to predict the future of the sequence, either

10

one bit, several bits or all of them. By combining the conclusions of Section [3] and
[, we can define a sequence prediction algorithm which turns out to be Solomonoff
Induction. The results from Section B tells us that if we are going to be able to
make rational guesses about which computable sequence we will see, we need to
have probabilistic beliefs.

If we are interested in predicting a finite number of bits we need to design the
reward structure in Section [3] to reflect what we are interested in. If we want to
predict the next bit we can let R;; = 1 if 7T; and 7} have the same next bit and
R, ; = —1 otherwise. This leads to (a weighted majority decision to) predicting 1
if JIT; produces 105 > > JIT; produces 0 P and 0 if the reverse inequality is true. The
reasoning and result generalizes naturally to predicting finitely many bits and we
can interpret this as minimizing the expected number of errors.

5.1 Updating

Suppose that we have observed a number of bits of the sequences. This result in
contradictions with many of the sequences and they can be ruled out. We next
formally state the fourth principle from the introduction.

Definition 14 (Time-consistency). Suppose that we are observing a sequence
x1,To,... one bit at a time (xy; at time t). Suppose that we (at time t) want to
predict the next h bits of a sequence and our decisions (for any t and h) are defined
by a function z. from the set of all reward structures (R™™ where m = 2" in the
binary case) to the set of strings of length h.

Suppose that if zj, (r) = y and y starts with x,41. If it then follows that
2T (1) = y where v’ is the restriction of r to the strings that start with v,y (and we
identify such a string of length h+1 with the string of length h that follow the first bit)
and if this implication is true for any t,r,h we say that we have time-consistency.

Theorem 15. Suppose that we have a semi-measure p : X* — [0, 1] and that we at
time 0 (given any loss L) predict the next h bits according to

argmin Y~ L(y1, y2)p(y2)- (12)

y16X yzGXh

If we furthermore assume time-consistency and observe x € X'*, then we predict

argmin Z L(y1, y2) p(wya|z). (13)

Proof. Suppose that there are v, y, and z such that 2 ig;li + Z gzl This obviously

contradicts time-consistency. In other words, tlme—con81stency 1mphes that relative
beliefs in strings that are not yet contradicted remains the same. Therefore, the
decision function after seeing x can be described by a semi-measure where the in-
consistent alternatives have been ruled out and the others just renormalized. This

11

is what (I3]) is describing. The only remaining point to make is that we have ex-
pressed (I2) and (I3)) in terms of loss instead of reward though it is simply a matter
of changing the sign and max for min. O

6 The AIXI Agent

In this section we discuss extensions to the case where an agent is choosing a sequence
of actions that affect the environment it is in. We will simply replace the principle
that says that we predict computable sequences by one that says that we predict
computable environments. The environments are such that the agent takes an action
that is fed to the environment and the environment responds with an output that we
call a perception. There is a finite alphabet for the action and one for the perception.

Our aim is to choose a policy for the agent. This is a function from the history
of the actions and perceptions that has appeared so far, to the action which the
agent chooses next. Suppose that a class {m;} of policies, a class of (all) computable
environments {7} and a reward structure R;; which is the total reward for using
policy 7; in environment 7j. To assume the property that lim; R; ; = 0 Vi, would
mean that we assume that the stakes are lower in the environments of high index.
This somewhat restrictive and there are alternatives to making this assumption
(that the reward structure is in ¢g) and we investigate the result of assuming that
we instead have the larger space (o, (see Remark [)) in a separate article [SH11] on
rationality axioms and conclude that the difference is that we get finite additivity
instead of countable additivity for the probability measure but that we can get back
to countable additivity by adding an extra monotonicity assumption. The arguments
in Section Blimply (given ¢y reward structure) that we must assign probabilities {p,}
for the environment being 7 and choose a policy with index

argmax Z R; jp;. (14)

J

This is what the AIXI agent described in [Hut05] is doing. The AIXI choice of
weights p; correspond to the choice 275 ™) (as in Remark [[3)), but for the class of
lower semi-computable v discussed below in Section [7.

The same updating technique as in Section [B where we eliminate the environ-
ments which are inconsistent with what has occurred, is being used. This is deduced
from the same time-consistency principle as for sequence prediction, just stating that
the relative belief in environments that are still consistent will remain unchanged.
This leads to the AIXI agent from [Hut05].

12

7 Remarks on Stochastic Lower
Semi-computable Environments

Having the belief that the environment is computable does seem like a restrictive as-
sumption though we will here argue that it is in an interesting way equivalent to hav-
ing beliefs over all lower semi-computable stochastic environments. The Solomonoff
prior is based on having belief 27/®) in having input program p defining the envi-
ronment. We can (proven up to a multiplicative factor in [LVO§| and exact identity
in [WSHI11]), however, rewrite this prior as a mixture) w,v over all lower semi-
computable environments v where w, > 0 for all v. Therefore, acting according to
our Solomonoff mixture over computable enviroments is identical to acting according
to beliefs over a much larger set of environments where we have randomness.

8 Conclusions

We defined four principles for universal sequence prediction and showed that
Solomonoff induction and AIXI are determined from them. These principles are
computability, rationality, indifference and time consistency. Computability tells
us that Turing machines are the explanations we consider for what we are seeing.
Rationality tells us that we have probabilistic beliefs over these. Time-consistency
leads to the conclusion that we update these beliefs based on conditional probability
and the principle of indifference tells us how to chose the original beliefs based on
how compactly the various Turing machines can be implemented on the reference
machine.

Acknowledgement. This work was supported by ARC grant DP0988049.

References

[deF37] B. deFinetti. La prevision: Ses lois logiques, ses sources subjectives. In Annales
de UInstitut Henri Poincare 7, pages 1-68. Paris, 1937.

[Die84] J. Diestel. Sequences and series in Banach spaces. Springer-Verlag, 1984.

[Grii07] P. Grinwald. The Minimum Description Length Principle. MIT Press Books.
The MIT Press, 2007.

[Hut05] M. Hutter. Universal Artificial Intelligence: Sequential Decisions based on Algo-
rithmic Probability. Springer, Berlin, 2005.

[Hut07] M. Hutter. On universal prediction and Bayesian confirmation. Theoretical Com-
puter Science, 384:33-48, 2007.

[Kre89] E. Kreyszig. Introductory Functional Analysis With Applications. Wiley, 1989.

13

[LVO8]
[NM44]

[Ram31]

[RH11]
[Ris78]
[Ris10]

[Savh4]
[SB9S]

[SH11]

[Sol60]
[Sol78]

[Sol96]

[Sugd1]
[Tur36]
[Wal05]
[WB6S]

[WD99]

M. Li and P. Vitanyi. Kolmogorov Complezity and its Applications. Springer,
2008.

J. Neumann and O. Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, 1944.

F. Ramsey. Truth and probability. In R. B. Braithwaite, editor, The Foundations
of Mathematics and other Logical Essays, chapter 7, pages 156-198. Brace & Co.,
1931.

S. Rathmanner and M. Hutter. A philosophical treatise of universal induction.
Entropy, 13(6):1076-1136, 2011.

J. Rissanen. Modeling By Shortest Data Description. Automatica, 14:465-471,
1978.

J. Rissanen. Minimum description length principle. In C. Sammut and G. Webb,
editors, Encyclopedia of Machine Learning, pages 666—668. Springer, 2010.

L. Savage. The Foundations of Statistics. Wiley, New York, 1954.

R. Sutton and A. Barto. Reinforcement Learning: An Introduction (Adaptive
Computation and Machine Learning). The MIT Press, March 1998.

P. Sunehag and M. Hutter. Axioms for rational reinforcement learning. In Proc.
of 22nd International Conf. on Algorithmic Learning Theory, Espoo, Finland,
2011.

R. Solomonoff. A Preliminary Report on a General Theory of Inductive Inference.
Report V-131, Zator Co, Cambridge, Ma., 1960.

R.J. Solomonoff. Complexity-based induction systems: comparisons and conver-
gence theorems. IEEE Transactions on Information Theory, 24:422-432, 1978.

R.J. Solomonoff. Does algorithmic probability solve the problem of induction?
In Proceedings of the Information, Statistics and Induction in Science Conferece,
1996.

R. Sugden. Rational choice: A survey of contributions from economics and
philosophy. Economic Journal, 101(407):751-85, July 1991.

A. M. Turing. On Computable Numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc., 2(42):230-265, 1936.

C.S. Wallace. Statistical and Inductive Inference by Minimum Message Length.
Springer-Verlag (Information Science and Statistics), 2005.

C. S. Wallace and D.M. Boulton. An information measure for classification.
Computer Journal, 11:185-194, 1968.

C. S. Wallace and D. L. Dowe. Minimum message length and Kolmogorov com-
plexity. Computer Journal, 42:270-283, 1999.

[WSH11] 1. Wood, P. Sunehag, and M. Hutter. (Non-)Equivalence of universal priors. In

Proc. of Solomonoff Memorial Conference, Melbourne, Australia, 2011.

14

	1 Introduction
	2 Background
	3 Choosing a Program
	4 Representation
	5 Sequence Prediction
	6 The AIXI Agent
	7 Remarks on Stochastic Lower Semi-computable Environments
	8 Conclusions
	References

