Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7070))

Abstract

Inductive inference has been a subject of intensive research efforts over several decades. In particular, for classification problems substantial advances have been made and the field has matured into a wide range of powerful approaches to inductive inference. However, a considerable challenge arises when deriving principles for an inductive supervised classifier in the presence of unpredictable or unanticipated events corresponding to unknown alphabets of observable features. Bayesian inductive theories based on de Finetti type exchangeability which have become popular in supervised classification do not apply to such problems. Here we derive an inductive supervised classifier based on partition exchangeability due to John Kingman. It is proven that, in contrast to classifiers based on de Finetti type exchangeability which can optimally handle test items independently of each other in the presence of infinite amounts of training data, a classifier based on partition exchangeability still continues to benefit from a joint prediction of labels for the whole population of test items. Some remarks about the relation of this work to generic convergence results in predictive inference are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Solomonoff, R.J.: A formal theory of inductive inference. Part I. Inf. Control 7, 1–22 (1964)

    Google Scholar 

  2. Hunt, E.B., Marin, J., Stone, P.J.: Experiments in induction. Academic Press, New York (1966)

    Google Scholar 

  3. Chow, C.K., Liu, C.N.: Approximating discrete probability distributions with dependence trees. IEEE Trans. Inf. Theory 14, 462–467 (1968)

    Google Scholar 

  4. Bailey, N.T.J.: Probability methods of diagnosis based on small samples. In: Mathematics and Computer Science in Biology and Medicine. H.M. Stationery Office, London (1965)

    Google Scholar 

  5. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: A review. IEEE Trans. Patt. Anal. Mach. Intell. 22, 4–37 (2000)

    Google Scholar 

  6. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, 2nd edn. Wiley, New York (2000)

    Google Scholar 

  7. Bishop, C.M.: Pattern recognition and machine learning. Springer, New York (2007)

    Google Scholar 

  8. Hand, D.J., Yu, K.: Idiot’s Bayes: not so stupid after all. Int. Stat. Rev. 69, 385–398 (2001)

    Google Scholar 

  9. Jeffrey, R.: Probabilism and induction. Topoi 5, 51–58 (1986)

    Google Scholar 

  10. Zabell, S.L.: Predicting the unpredictable. Synthese 90, 205–232 (1992)

    Google Scholar 

  11. Angluin, D., Smith, C.H.: Inductive inference: Theory and methods. ACM Comput. Surv. 15, 237–268 (1983)

    Google Scholar 

  12. Michalski, R.S.: A theory and methodology of inductive learning. Artif. Intell. 20, 111–161 (1983)

    Google Scholar 

  13. Solomonoff, R.J.: Three kinds of probabilistic induction: universal distributions and convergence theorems. Christopher Stewart WALLACE (1933-2004); Memorial Special Issue. Comput. J. 51, 566–570 (2008)

    Google Scholar 

  14. Kingman, J.F.C.: The population structure associated with the Ewens sampling formula. Theor. Pop. Biol. 11, 274–283 (1977)

    Google Scholar 

  15. Kingman, J.F.C.: The representation of partition structures. J. London Math. Soc. 18, 374–380 (1978)

    Google Scholar 

  16. Kingman, J.F.C.: Random partitions in population genetics. Proc. Roy. Soc. A 361, 1–20 (1978)

    Google Scholar 

  17. Kingman, J.F.C.: Uses of exchangeability. Ann. Probab. 6, 183–197 (1978)

    Google Scholar 

  18. Friedman, N., Singer, Y.: Efficient Bayesian parameter estimation in large discrete domains. In: Kearns, M.J., Solla, S.A., Cohn, D.A. (eds.) Advances in Neural Information Processing Systems, vol. 11, pp. 417–423 (1998)

    Google Scholar 

  19. Orlitsky, A., Santhanam, N.P., Zhang, J.: Universal compression of memoryless sources over unknown alphabets. IEEE Trans. Inf. Theory 50, 1469–1481 (2004)

    Google Scholar 

  20. Wang, C., Blei, D.M.: Decoupling sparsity and smoothness in the discrete hierarchical Dirichlet process. In: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 22, pp. 1982–1989 (2009)

    Google Scholar 

  21. Corander, J., Cui, Y., Koski, T., Sirén, J.: Have I seen you before? Principles of predictive classification revisited. Stat. Comput. 23, 59–73 (2013)

    Google Scholar 

  22. Cui, Y., Corander, J., Koski, T., Sirén, J.: Predictive Gaussian classifiers. Submitted to Bayesian Analysis (2013)

    Google Scholar 

  23. Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  24. Nádas, A.: Optimal solution of a training problem in speech recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing 33, 326–329 (1985)

    Google Scholar 

  25. Geisser, S.: Predictive discrimination. In: Krishnajah, P.R. (ed.) Multivariate analysis, pp. 149–163. Academic Press, New York (1966)

    Google Scholar 

  26. Geisser, S.: Predictive Inference: An introduction. Chapman & Hall, London (1993)

    Google Scholar 

  27. Dawson, K.J., Belkhir, K.: A Bayesian approach to the identification of panmictic populations and the assignment of individuals. Genet. Res. 78, 59–77 (2001)

    Google Scholar 

  28. Corander, J., Gyllenberg, M., Koski, T.: Random partition models and exchangeability for Bayesian identification of population structure. Bull. Math. Biol. 69, 797–815 (2007)

    Google Scholar 

  29. Jackson, M.O., Kalai, E., Smorodinsky, R.: Bayesian representation of stochastic processes under learning: de Finetti revisited. Econometrics 67, 875–893 (1999)

    Google Scholar 

  30. Solomonoff, R.J.: Complexity-based induction systems: comparisons and convergence theorems. IEEE Trans. Inf. Theory 24, 422–432 (1978)

    Google Scholar 

  31. Blackwell, D., Dubins, L.: Merging of opinions with increasing information. Ann. Math. Stat. 33, 882–886 (1962)

    Google Scholar 

  32. Joyce, P.: Partition Structures and sufficient statistics J. Appl. Prob. 35, 622–632 (1998)

    Google Scholar 

  33. Dowe, D.L.: Foreword re C. S. Wallace. Christopher Stewart WALLACE (1933-2004); Memorial Special Issue. Comput. J. 51, 523–560 (2008)

    Google Scholar 

  34. Dowe, D.L.: MML, hybrid Bayesian network graphical models, statistical consistency, invariance and uniqueness. In: Bandyopadhyay, P.S., Forster, M.R. (eds.) Handbook of the Philosophy of Science - Philosophy of Statistics, pp. 901–982. Elsevier, Oxford (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Corander, J., Cui, Y., Koski, T. (2013). Inductive Inference and Partition Exchangeability in Classification. In: Dowe, D.L. (eds) Algorithmic Probability and Friends. Bayesian Prediction and Artificial Intelligence. Lecture Notes in Computer Science, vol 7070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44958-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-44958-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-44957-4

  • Online ISBN: 978-3-642-44958-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics