Skip to main content

A Study on the Specification of a Scalarizing Function in MOEA/D for Many-Objective Knapsack Problems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7997))

Abstract

In recent studies on evolutionary multiobjective optimization, MOEA/D has been frequently used due to its simplicity, high computational efficiency, and high search ability. A multiobjective problem in MOEA/D is decomposed into a number of single-objective problems, which are defined by a single scalarizing function with evenly specified weight vectors. The number of the single-objective problems is the same as the number of weight vectors. The population size is also the same as the number of weight vectors. Multiobjective search for a variety of Pareto optimal solutions is realized by single-objective optimization of a scalarizing function in various directions. In this paper, we examine the dependency of the performance of MOEA/D on the specification of a scalarizing function. MOEA/D is applied to knapsack problems with 2-10 objectives. As a scalarizing function, we examine the weighted sum, the weighted Tchebycheff, and the PBI (penalty-based boundary intersection) function with a wide range of penalty parameter values. Experimental results show that the weighted Tchebycheff and the PBI function with an appropriate penalty parameter value outperformed the weighted sum and the PBI function with no penalty parameter in computational experiments on two-objective problems. However, better results were obtained from the weighted sum and the PBI function with no penalty parameter for many-objective problems with 6-10 objectives. We discuss the reason for these observations using the contour line of each scalarizing function. We also suggest potential usefulness of the PBI function with a negative penalty parameter value for many-objective problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11, 712–731 (2007)

    Article  Google Scholar 

  2. Chang, P.C., Chen, S.H., Zhang, Q., Lin, J.L.: MOEA/D for flowshop scheduling problems. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1433–1438 (2008)

    Google Scholar 

  3. Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 203–208 (2009)

    Google Scholar 

  4. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13, 284–302 (2009)

    Article  Google Scholar 

  5. Ishibuchi, H., Sakane, Y., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization by NSGA-II and MOEA/D with large populations. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, pp. 1820–1825 (2009)

    Google Scholar 

  6. Zhang, Q., Liu, W., Tsang, E., Virginas, B.: Expensive multiobjective optimization by MOEA/D with Gaussian process model. IEEE Trans. Evol. Comput. 14, 456–474 (2010)

    Article  Google Scholar 

  7. Tan, Y.Y., Jiao, Y.C., Li, H., Wang, X.K.: A modification to MOEA/D-DE for multiobjective optimization problems with complicated pareto sets. Inf. Sci. 213, 14–38 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Trans. Evol. Comput. 16, 442–446 (2012)

    Article  Google Scholar 

  9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  10. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. TIK-Report 103, Department of Electrical Engineering, ETH, Zurich (2001)

    Google Scholar 

  11. Ishibuchi, H., Hitotsuyanagi, Y., Ohyanagi, H., Nojima, Y.: Effects of the existence of highly correlated objectives on the behavior of MOEA/D. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 166–181. Springer, Heidelberg (2011)

    Google Scholar 

  12. Ishibuchi, H., Sakane, Y., Tsukamoto, N., Nojima, Y.: Simultaneous use of different scalarizing functions in MOEA/D. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 519–526 (2010)

    Google Scholar 

  13. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3, 257–271 (1999)

    Article  Google Scholar 

  14. Ishibuchi, H., Hitotsuyanagi, Y., Ohyanagi, H., Nojima, Y.: Effects of the existence of highly correlated objectives on the behavior of MOEA/D. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 166–181. Springer, Heidelberg (2011)

    Google Scholar 

  15. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Dordrecht (1999)

    MATH  Google Scholar 

  16. Hughes, E. J.: Evolutionary many-objective optimisation: many once or one many? In: Procedings of IEEE Congress on Evolutionary Computation, pp. 222–227 (2005)

    Google Scholar 

  17. Purshouse, R.C., Fleming, P.J.: On the evolutionary optimization of many conflicting objectives. IEEE Trans. Evol. Comput. 11, 770–784 (2007)

    Article  Google Scholar 

  18. Sato, H., Aguirre, H.E., Tanaka, K.: Local dominance and local recombination in MOEAs on 0/1 multiobjective knapsack problems. Eur. J. Oper. Res. 181, 1708–1723 (2007)

    Article  MATH  Google Scholar 

  19. Ishibuchi, H., Tsukamoto, N., Hitotsuyanagi, Y., Nojima, Y.: Effectiveness of scalability improvement attempts on the performance of NSGA-II for many-objective problems. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 649–656 (2008)

    Google Scholar 

  20. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: a short review. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 2424–2431 (2008)

    Google Scholar 

  21. Kowatari, N., Oyama, A., Aguirre, H., Tanaka, K.: Analysis on population size and neighborhood recombination on many-objective optimization. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II.LNCS, vol. 7492, pp. 22–31. Springer, Heidelberg (2012)

    Google Scholar 

  22. Ishibuchi, H., Nojima, Y., Doi, T.: Comparison between single-objective and multi-objective genetic algorithms: performance comparison and performance measures. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 3959–3966 (2006)

    Google Scholar 

  23. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Diversity improvement by non-geometric binary crossover in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 14, 985–998 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisao Ishibuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ishibuchi, H., Akedo, N., Nojima, Y. (2013). A Study on the Specification of a Scalarizing Function in MOEA/D for Many-Objective Knapsack Problems. In: Nicosia, G., Pardalos, P. (eds) Learning and Intelligent Optimization. LION 2013. Lecture Notes in Computer Science(), vol 7997. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44973-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-44973-4_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-44972-7

  • Online ISBN: 978-3-642-44973-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics