
Oversized Populations and Cooperative

Selection: Dealing with Massive Resources in

Parallel Infrastructures

Juan Luis Jiménez Laredo1 and Bernabe Dorronsoro3 and Carlos Fernandes2,4

and Juan Julian Merelo4 and Pascal Bouvry1

1 FSTC-CSC/SnT
University of Luxembourg, Luxembourg

e-mail: {juan.jimenez,pascal.bouvry}@uni.lu
2 Laseeb

Technical University of Lisbon, Portugal
e-mail: cfernandes@laseeb.org

3 Laboratoire d’Informatique Fondamentale de Lille
University of Lille, France

e-mail: bernabe.dorronsoro diaz@inria.fr
4 Geneura Lab

University of Granada, Spain
e-mail: jmerelo@geneura.ugr.es

Abstract. This paper proposes a new selection scheme for Evolutionary
Algorithms (EAs) based on altruistic cooperation between individuals.
Cooperation takes place every time an individual undergoes selection:
the individual decreases its own fitness in order to improve the mat-
ing chances of worse individuals. On the one hand, the selection scheme
guarantees that the genetic material of fitter individuals passes to sub-
sequent generations as to decrease their fitnesses individuals have to be
firstly selected. On the other hand, the scheme restricts the number of
times an individual can be selected not to take over the entire population.
We conduct an empirical study for a parallel EA version where cooper-
ative selection scheme is shown to outperform binary tournament: both
selection schemes yield the same qualities of solutions but cooperative
selection always improves the times to solutions.

Keywords: Selection schemes, evolutionary algorithms, parallelization,
execution times

1 Introduction

We seek after a more efficient exploitation of massively large infrastructures
in parallel EAs by balancing population size and selection pressure parameters.
To that aim, we assume platforms in which the number of resources can be
always considered sufficient (see e.g. [5]), i.e. large enough to allow a parallelized
population to eventually converge to problem optima. The challenging issue here

is to make an efficient use of such resources since a too large population size can
be considered oversized: a parametrization error leading to unnecessary wastes
of computational time and resources [8]. We show that, in the case of oversized
populations, selection pressure can be increased to high values in such a way that
computing time is minimized and the solution quality is not damaged. Hence, the
population sizing problem can be redefined into a twofold question that we call
the selection dominance criterion; a selection scheme A can be said to dominate
other selection scheme B if:

a) any arbitrary population size P sufficient to B is always sufficient to A. In
our case, we set up the sufficiency criterion to the algorithm performing with
a success rate (SR) greater or equal to 0.98 (SR ≥ 0.98).

b) the execution time due to the pair (A,P) is strictly smaller than the execution
time due to (B,P).

Under the selection dominance perspective, it is a good practice to tune the
selection pressure to maximum values which still respect the sufficiency criterion.
Nevertheless, by doing that we may fall in the following well-known dilemma:
On the one hand, a high selection pressure will eventually make the algorithm
converge faster but with the risk of losing diversity and getting stuck in local-
optima. On the other hand, a low selection pressure will improve the success
rate expectations at the cost of a worse parallel execution time.

In the ideal case, a selection operator should be able to self-regulate the se-
lection pressure according to the problem features and the given population size.
However, in this paper, we limit the scope of the research to demonstrate a new
selection scheme that is better than binary tournament (s2) in the sense that
s2 solutions are always dominated: binary tournament is shown to be outper-
formed in execution times while both selection schemes have equivalent sizing
requirements, i.e. same population sizes are sufficient in both cases.

The new selection scheme –introduced in section 2– is inspired by reciprocal
altruism, a simple form of natural cooperation in which the fittest individuals
decrease their own fitnesses in order to allow breedings of less fitter ones. An
experimental analysis is conducted in section 3. Finally, some conclusions and
future lines of research are exposed in section 4.

2 Cooperative Selection

The design of new selection schemes is an active topic of research in EC. In
addition to canonical approaches such as ranking, roulette wheel or tournament
selection [3], other selection schemes have been designed to trade off exploration
and exploitation [1] or to be able to self-adapt the selection pressure on-line [2],
just to mention a few. Cooperation has been also considered in the design of
co-evolutionary EAs [9] in which sub-populations represent partial solutions to
a problem and have to collaborate in order to build up complete solutions. How-
ever, to the extent of our knowledge, there have been no attempts for designing
selection schemes inspired by cooperation.

Cooperative selection, in this early approach, is not more than a simple ex-
tension of the classical tournament selection operator. As in the latter, a set
of randomly chosen individuals −→s = {random1(P), . . . , randoms(P)} compete
for reproduction in a tournament of size s. The best ranked individual is then
selected for breeding. The innovation of the new operator consists of each indi-
vidual having two different measures for fitness. The first is the standard fitness
function f which is calculated in the canonical way while the second is the
cooperative fitness fcoop which is utilized for competing. Since we analyze the
operator in a generational scheme context, at the beginning of every generation
fcoop is initialized with the current fitness value (f) of the individual. There-
fore, every first tournament within every generation is performed the same way
as with the classical tournament selection. The novelty of the approach relies
on the subsequent steps: after winning a competition of a tournament −→s , the
fcoop of the fittest individual is modified to be the average of the second and the
third, which means that, in the following competitions, the winning individual
will yield its position to the second. Since each fcoop is restarted with the f
value every generation, it is likely that fitter individuals reproduce at least once
per generation but without taking over the entire population. The details of the
cooperative selection scheme are described in procedure 1.

Procedure 1 Pseudo-code of Cooperative Selection

procedure CooperativeSelection(s)

#1. Ranking step:

Competing individuals in −→s are ranked according to their cooperative fitnesses frank
coop

rank(−→s)← {f1
coop, f

2
coop, f

3
coop, . . . , f

s
coop}

#2. Competition step:

The individual with the highest cooperative fitness f1

coop is selected

winner ← rank1(−→s)

#3. Altruistic step:

After being selected, the winner of the competition decreases its own fitness

f1
coop ←

f2

coop+f3

coop

2

return winner

end procedure

As in tournament selection, the only parameter to adjust in cooperative se-
lection is the tournament size. We performed preliminary studies in order to
tune such a parameter. In those experiments, we found out that a cooperative
tournament size of 16 (Coop s16) is equivalent to binary tournament s2 in terms
of selection pressure. Therefore, all experiments will be conducted for such a
parameter value.

3 Analysis of results

In order to analyze the performance of the cooperative selection scheme, we con-
duct simple experiments in a master-slave GA [4] and tackle an instance of length
L = 200 of the onemax problem [10]. The GA, in addition to be parallel, follows a
1-elitism generational scheme. Besides, only a simple point crossover was consid-
ered as breeding operator1 and three different types of selection parametrization:
two of them using tournament selection with tournament sizes of 2 (s2) and 16
(s16), and one using cooperative selection with a tournament size of 16 (Coop
s16). Then every setting is analyzed for population sizes scaling so that the SR
can be estimated and the sufficiency criterion met. Our method to estimate op-
timal population sizes starts with a population size of P = 40, doubling P in
every step until P = 20480. Each parametrization is run independently 50 times
so that a fair estimation of the success rate (SR) can be made.

For the sake of simplicity, we assume that each individual is sent for evalu-
ation to a single processor so as to apply the following execution time metrics
[6]:

– Tsec: is the sequential optimization time and refers to the number of function
evaluations until the first global optimum is evaluated.

– Tpar: is the parallel optimization time and accounts for the number of gen-
erations it takes to find the problem optimum.

Figure 1(a) shows the scalability of the SR with respect to the population
size for the three different selection operators. The SR scales in all cases with
a sigmoid shape in which smaller population sizes perform poorly and larger
ones reach the sufficiency SR ≥ 0.98. The only remarkable difference between
parametrizations rely on the transition phase of the sigmoid. Such transitions oc-
cur much earlier in s2 and Coop s16 than in s16. This allows smaller populations
to be sufficient for the formers while not for the latter.

In figure 1(b), the analysis of the trade offs Tsec/Tpar shows that, whenever
a given population size is sufficient in the three settings, the winning strategy is
s16, i.e. the maximum selection pressure. Nevertheless, such results do not imply
that s16 dominates s2 since s16 requires of larger population sizes to achieve bet-
ter performance. Coop s16, however, outperforms parallel and sequential times
of s2 while having the same population requirements. Therefore, it can be said
that Coop s16 dominates s2 under any setting.

4 Conclusions and Future Works

In this paper, we have proposed the cooperative selection scheme, an extension of
tournament selection that, by implementing an altruistic behavior in winners of
the competitions, is able to outperform binary tournament. Without assuming

1 We follow here the selectorecombinative approach of Lobo and Lima [7] for studying
the scalability of the population size.

(a) Scalability of the success rate (SR)
as a function of the population size
(P). Marks in bold show a SR ≥
0.98.

(b) Tradeoff between Tsec and Tpar for
SR ≥ 0.98 and different population
and tournament sizes.

Fig. 1. Scalability of a master-slave GA tackling an instance of the onemax problem
with size L = 200. Parameters s2 and s16 represent different tournament sizes of 2 and
16 respectively and Coop s16 stands for cooperative selection with a tournament size of
16. Arrows in sub-figure (b) indicate a ”dominated by” relationship between selection
schemes using equal population sizes. Some circles for s16 are missing in (b) as this
setting does not yield sufficiency (SR ≥ 0.98) for population sizes smaller than 10240.

any knowledge on the problem domain, cooperative selection is shown to out-
perform the utilization of parallel resources in a simple test case: given identical
population sizes (i.e. same computing platform), cooperative selection saves com-
putational efforts with respect to binary tournament and requires of less parallel
execution time to yield the same quality in solutions.

As a future work, we plan two major lines of research. The first is the straight-
forward application of cooperative selection to massively parallel EAs as in the
case of GPU-based EAs or as in volunteer-computing-based EAs. The second
line of research is related to high-dimensional real-parameter optimization. Here
we think that cooperative selection could perform well since, on the one hand,
typical frameworks for benchmarking usually impose restrictions on time and,
on the other hand, problems with high-dimensionality require of large amounts
of resources in order to minimize optimization errors.

Acknowledgments

This work was supported by the Luxembourg FNR Green@Cloud project (IN-
TER/CNRS/11/03) and by the Spanish Ministry of Science Project (TIN2011-
28627-C04). B. Dorronsoro acknowledges the support by the Fonds National de
la Recherche, Luxembourg (AFR contract no 4017742).

References

1. Enrique Alba and Bernabé Dorronsoro. The exploration/exploitation tradeoff
in dynamic cellular genetic algorithms. IEEE Trans. Evolutionary Computation,
9(2):126–142, 2005.

2. A. E. Eiben, M. C. Schut, and A. R. De Wilde. Boosting genetic algorithms with
self-adaptive selection. In In Proceedings of the IEEE Congress on Evolutionary
Computation, pages 1584–1589, 2006.

3. Agoston E. Eiben and J. E. Smith. Introduction to Evolutionary Computing.
SpringerVerlag, 2003.

4. Daniel Lombraña Gonzalez, Juan Luis Jiménez Laredo, Francisco Fernández
de Vega, and Juan Julián Merelo. Characterizing fault-tolerance of genetic algo-
rithms in desktop grid systems. In Peter I. Cowling and Peter Merz, editors, Evo-
COP, volume 6022 of Lecture Notes in Computer Science, pages 131–142. Springer,
2010.

5. Juan Luis Jiménez Laredo, A. E. Eiben, Maarten van Steen, and Juan
Julián Merelo Guervós. Evag: a scalable peer-to-peer evolutionary algorithm. Ge-
netic Programming and Evolvable Machines, 11(2):227–246, 2010.

6. Jörg Lässig and Dirk Sudholt. General scheme for analyzing running times of par-
allel evolutionary algorithms. In Robert Schaefer, Carlos Cotta, Joanna Kolodziej,
and Günter Rudolph, editors, Parallel Problem Solving from Nature, PPSN XI, vol-
ume 6238 of Lecture Notes in Computer Science, pages 234–243. Springer Berlin /
Heidelberg, 2010.

7. Fernando Lobo and Claudio Lima. Adaptive population sizing schemes in genetic
algorithms. In Fernando Lobo, Claudio Lima, and Zbigniew Michalewicz, editors,
Parameter Setting in Evolutionary Algorithms, volume 54 of Studies in Computa-
tional Intelligence, pages 185–204. Springer Berlin / Heidelberg, 2007.

8. Fernando G. Lobo and David E. Goldberg. The parameter-less genetic algorithm
in practice. Inf. Sci. Inf. Comput. Sci., 167(1-4):217–232, December 2004.

9. Mitchell A. Potter and Kenneth A. De Jong. A cooperative coevolutionary ap-
proach to function optimization. In Proceedings of the 3rd International Conference
on Parallel Problem Solving from Nature, pages 249–257. Springer-Verlag, 1994.

10. J. David Schaffer and Larry J. Eshelman. On crossover as an evolutionarily viable
strategy. In Richard K. Belew and Lashon B. Booker, editors, ICGA, pages 61–68.
Morgan Kaufmann, 1991.

