Skip to main content

An Analysis of a Selecto-Lamarckian Model of Multimemetic Algorithms with Dynamic Self-organized Topology

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8273))

Abstract

Multimemetic algorithms (MMAs) are memetic algorithms that explicitly represent and evolve memes (computational representations of problem solving methods) as a part of solutions. We use an idealized selecto-Lamarckian model of MMAs in order to analyze the propagation of memes in spatially structured populations. To this end, we focus on the use of dynamic self-organized spatial structures, based on the stimergic communication among solutions, and compare these with regular static lattices and unstructured (panmictic) populations. An empirical analysis indicates that these dynamic lattices are capable of promoting memetic diversity and provide better results in terms of survival of high-quality memes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Transactions on Evolutionary Computation 9, 126–142 (2005)

    Article  Google Scholar 

  2. Alba, E., Luque, G.: Growth curves and takeover time in distributed evolutionary algorithms. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 864–876. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Castillo, P., Arenas, M.G., Castellano, J.G., Merelo, J.J., Prieto, A., Rivas, R.: Lamarckian evolution and the Baldwin effect in evolutionary neural networks. In: Alba, E., et al. (eds.) AEB 2002, pp. 284–293. Universidad de Extremadura (2002)

    Google Scholar 

  4. Dawkins, R.: The Selfish Gene. Clarendon Press, Oxford (1976)

    Google Scholar 

  5. Fernandes, C.M., Merelo, J., Cotta, C., Rosa, A.: Towards a 2-dimensional self-organized framework for structured population-based metaheuristics. In: 2012 International Conference on Complex Systems, pp. 1–6. IEEE Press (2012)

    Google Scholar 

  6. Fernandes, C.M., Guervós, J.J.M., Laredo, J.L.J., Cotta, C., Rosa, A.C.: Partially connected topologies for particle swarm. In: Blum, C., Alba, E. (eds.) GECCO 2013 (Companion), pp. 11–12. ACM (2013)

    Google Scholar 

  7. Fernandes, C.M., Rosa, A.C., Laredo, J.L., Cotta, C., Merelo, J.J.: A study on time-varying partially connected topologies for the particle swarm. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 2450–2456 (2013)

    Google Scholar 

  8. Giacobini, M., Tomassini, M., Tettamanzi, A., Alba, E.: Selection intensity in cellular evolutionary algorithms for regular lattices. IEEE Transactions on Evolutionary Computation 9(5), 489–505 (2005)

    Article  Google Scholar 

  9. Hart, W.E., Krasnogor, N., Smith, J.E.: Memetic Evolutionary Algorithms. In: Hart, W.E., Smith, J., Krasnogor, N. (eds.) Recent Advances in Memetic Algorithms. STUDFUZZ, vol. 166, pp. 3–27. Springer-, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Krasnogor, N., Blackburne, B., Burke, E., Hirst, J.: Multimeme algorithms for protein structure prediction. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 769–778. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Krasnogor, N., Gustafson, S.: A study on the use of “self-generation” in memetic algorithms. Natural Computing 3(1), 53–76 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Laredo, J.L.J., Castillo, P.A., Mora, A.M., Merelo, J.J., Fernandes, C.M.: Resilience to churn of a peer-to-peer evolutionary algorithm. International Journal of High Performance Systems Architecture 1(4), 260–268 (2008)

    Article  Google Scholar 

  13. Laredo, J.L.J., Eiben, A.E., van Steen, M., Merelo, J.J.: Evag: A scalable peer-to-peer evolutionary algorithm. Genetic Programming and Evolvable Machines 11(2), 227–246 (2010)

    Article  Google Scholar 

  14. Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. Tech. Rep. Caltech Concurrent Computation Program, Report. 826, California Institute of Technology, Pasadena, California, USA (1989)

    Google Scholar 

  15. Moscato, P.: Memetic algorithms: A short introduction. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization. Mcgraw-Hill’s Advanced Topics In Computer Science Series, pp. 219–234. McGraw-Hill, London (1999)

    Google Scholar 

  16. Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 57, pp. 105–144. Kluwer Academic Press, New York (2003)

    Google Scholar 

  17. Neri, F., Cotta, C., Moscato, P.: Handbook of Memetic Algorithms. SCI, vol. 379. Springer, Heidelberg (2012)

    Book  Google Scholar 

  18. Nogueras, R., Cotta, C.: Analyzing meme propagation in multimemetic algorithms: Initial investigations. In: Federated Conference on Computer Science and Information Systems, Cracow, Poland (forthcoming, 2013)

    Google Scholar 

  19. Ong, Y.S., Lim, M.H., Chen, X.: Memetic computation-past, present and future. IEEE Computational Intelligence Magazine 5(2), 24–31 (2010)

    Article  Google Scholar 

  20. Rudolph, G., Sprave, J.: A cellular genetic algorithm with self-adjusting acceptance threshold. In: 1st IEE/IEEE International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, London, UK, pp. 365–372 (1995)

    Google Scholar 

  21. Sarma, J., De Jong, K.: An analysis of local selection algorithms in a spatially structured evolutionary algorithm. In: Bäck, T. (ed.) 7th International Conference on Genetic Algorithms, pp. 181–186. Morgan Kaufmann (1997)

    Google Scholar 

  22. Whitacre, J.M., Sarker, R.A., Pham, Q.: The self-organization of interaction networks for nature-inspired optimization. IEEE Transactions on Evolutionary Computation 12, 220–230 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nogueras, R., Cotta, C., Fernandes, C.M., Jiménez Laredo, J.L., Merelo, J.J., Rosa, A.C. (2013). An Analysis of a Selecto-Lamarckian Model of Multimemetic Algorithms with Dynamic Self-organized Topology. In: Dediu, AH., Martín-Vide, C., Truthe, B., Vega-Rodríguez, M.A. (eds) Theory and Practice of Natural Computing. TPNC 2013. Lecture Notes in Computer Science, vol 8273. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45008-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45008-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45007-5

  • Online ISBN: 978-3-642-45008-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics