Skip to main content

Computational Modelling of the Interruptional Activities between Transposable Elements

  • Conference paper
  • 581 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8273))

Abstract

Transposable elements (TEs) are DNA sequences that can either move or copy themselves to new positions within a genome. They constitute approximately 45% of the human genome. Knowing the evolution of TEs is helpful in understanding the activities of these elements and their impacts on genomes. In this paper, we devise a formal model providing notations/definitions that are compatible with biological nomenclature, while still providing a suitable formal foundation for computational analysis. We define sequential interruptions between TEs that occur in a genomic sequence to estimate how often TEs interrupt other TEs, useful in predicting their ages. We also define the recursive interruption context-free grammar to capture the recursive nature in which TEs nest themselves into other TEs. We then associate probabilities to convert the context-free grammar into a stochastic context-free grammar, and discuss how to use the CYK algorithm to find a most likely parse tree predicting TE nesting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batzer, M., Deininger, P., Hellmann-Blumberg, U., Jurka, J., Labuda, D., Rubin, C., Schmid, C., Zietkiewicz, E., Zuckerkandl, E.: Standardized Nomenclature for Alu Repeats. Journal of Molecular Evolution 42(1), 3–6 (1996)

    Article  Google Scholar 

  2. Belancio, V., Roy-Engel, A., Deininger, P.: All y’all need to know ’bout retroelements in cancer. In: Seminars in Cancer Biology, vol. 20, pp. 200–210. Elsevier (2010)

    Google Scholar 

  3. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  4. Giordano, J., Ge, Y., Gelfand, Y., Abrusán, G., Benson, G., Warburton, P.: Evolutionary History of Mammalian Transposons Determined by Genome-wide Defragmentation. PLoS Computational Biology 3(7), e137 (2007)

    Google Scholar 

  5. Gregory, T.: The Evolution of the Genome. Academic Press (2005)

    Google Scholar 

  6. Hopcroft, J.E.: Introduction to Automata Theory, Languages, and Computation, 3/E. Pearson Education India (2008)

    Google Scholar 

  7. Jones, N.C., Pevzner, P.: An Introduction to Bioinformatics Algorithms. MIT press (2004)

    Google Scholar 

  8. Jurka, J., Kapitonov, V., Pavlicek, A., Klonowski, P., Kohany, O., Walichiewicz, J.: Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research 110(1-4), 462–467 (2005)

    Article  Google Scholar 

  9. Kapitonov, V., Jurkal, J.: The Age of Alu Subfamilies. Journal of Molecular Evolution 42(1), 59–65 (1996)

    Article  Google Scholar 

  10. Kronmiller, B.A., Wise, R.P.: TEnest: Automated Chronological Annotation and Visualization of Nested Plant Transposable Elements. Plant Physiology 146(1), 45–59 (2008)

    Article  Google Scholar 

  11. Lander, E., Linton, L., Birren, B., Nusbaum, C., Zody, M., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al.: Initial Sequencing and Analysis of the Human Genome. Nature 409(6822), 860–921 (2001)

    Article  Google Scholar 

  12. Lerat, E.: Identifying Repeats and Transposable Elements in Sequenced Genomes: How to Find Your Way through the Dense Forest of Programs. Heredity 104(6), 520–533 (2009)

    Article  Google Scholar 

  13. Smit, A., Toth, G., Riggs, A., Jurka, J.: Ancestral, Mammalian-wide Subfamilies of LINE-1 Repetitive Sequences. Journal of Molecular Biology 246(3), 401–417 (1995)

    Article  Google Scholar 

  14. Smit, A.F.A., Hubley, R., Green, P.: RepeatMasker Open-3.0 (1996-2010), http://www.repeatmasker.org

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jin, L., McQuillan, I. (2013). Computational Modelling of the Interruptional Activities between Transposable Elements. In: Dediu, AH., Martín-Vide, C., Truthe, B., Vega-Rodríguez, M.A. (eds) Theory and Practice of Natural Computing. TPNC 2013. Lecture Notes in Computer Science, vol 8273. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45008-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45008-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45007-5

  • Online ISBN: 978-3-642-45008-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics