
Algorithms to Measure Diversity and Clustering
in Social Networks through Dot Product Graphs

Matthew Johnson1, Daniël Paulusma1, and Erik Jan van Leeuwen2

1 School of Engineering and Computer Science, Durham University, England
{matthew.johnson2,daniel.paulusma}@durham.ac.uk

2 Max-Planck Institut für Informatik, Saarbrücken, Germany
erikjan@mpi-inf.mpg.de

Abstract. Social networks are often analyzed through a graph model
of the network. The dot product model assumes that two individuals
are connected in the social network if their attributes or opinions are
similar. In the model, a d-dimensional vector av represents the extent to
which individual v has each of a set of d attributes or opinions. Then two
individuals u and v are assumed to be friends, that is, they are connected
in the graph model, if and only if au · av ≥ t, for some fixed, positive
threshold t. The resulting graph is called a d-dot product graph.
We consider two measures for diversity and clustering in social networks
by using a d-dot product graph model for the network. Diversity is mea-
sured through the size of the largest independent set of the graph, and
clustering is measured through the size of the largest clique. We obtain
a tight result for the diversity problem, namely that it is polynomial-
time solvable for d = 2, but NP-complete for d ≥ 3. We show that the
clustering problem is polynomial-time solvable for d = 2. To our knowl-
edge, these results are also the first on the computational complexity of
combinatorial optimization problems on dot product graphs.
We also consider the situation when two individuals are connected if their
preferences are not opposite. This leads to a variant of the standard dot
product graph model by taking the threshold t to be zero. We prove in
this case that the diversity problem is polynomial-time solvable for any
fixed d.

1 Introduction

Social networks are often modeled by a graph in order to use advanced algorith-
mic (or statistical) tools. Indeed, there is a large body of literature on (random)
graph models for social networks (see, for example, the surveys by Newman [23]
and Snijders [32]). Many of these studies verify that a particular model has prop-
erties that have been observed in real-world social networks, such as a power-law
degree distribution or the small-world principle, but do not consider why con-
nections are made in the first place. This has led to the development of models
that do take such reasons into account (a partial overview is in Liben-Nowell and
Kleinberg [21]). For example, the models of Simon [31], Price [26], and Barabási
and Albert [3] famously pose that if you have many friends, you are more likely

to befriend more people. A similar type of engagement was recently considered
from an algorithmic perspective by Bhawalkar et al. [6].

We consider a different predictor for connections in a social network, namely
the degree of similarity of attributes and opinions of different individuals. Gen-
erally, individuals with similar attributes or opinions are more likely to be con-
nected. This is known as the homophily principle and has a long tradition within
sociological research (see, for example, the survey by McPherson et al. [22]). To
model the attributes of an individual u, we can associate them with a vector au,
where an entry aui expresses the extent to which u has an attribute or opin-
ion i [33]. For example, a positive value of aui could indicate that u likes item i,
whereas a negative value suggests that u dislikes item i. We call this a vector
model.

There are many ways to measure similarity using a vector model (see, for
example, [1, 14, 19, 33]). We will use the dot product as a similarity measure,
leading to the dot product model for social networks. Formally, this model is de-
fined as follows. Consider a social network that consists of a set V of individuals,
together with a vector model {au | u ∈ V }. Let

sim(u, v) = au · av =
∑d

i=1 a
u
i a

v
i .

If the similarity sim(u, v) is at least some specified threshold t > 0, then we view
the preferences of u and v to be sufficiently close together for u and v to be
connected, that is, to be friends within the network. This immediately implies a
graph G = (V,E), where (u, v) ∈ E if and only if sim(u, v) ≥ t. Such a graph is
called a dot product graph of dimension d, or a d-dot product graph. The vector
model {au | u ∈ V } together with the threshold t is called a d-dot product
representation of G.

The dot product graph as a model for social networks was recently formalized
by Nickel, Scheinerman, Tucker, and Young [24, 30, 34, 35]. Their studies were
motivated by earlier work of Papadimitriou et al. [25] and Caldarelli et al. [7].
However, dot product graphs have a much longer tradition, both in sociology
(see, for example, Breiger [5]) and in graph theory. We briefly survey known
graph-theoretic results. Reiterman et al. [27–29] and particularly Fiduccia et
al. [10] proved several structural results. The work of Fiduccia et al. [10] implies
that 1-dot product graphs can be recognized in polynomial time. However, Kang
and Müller [17] showed the problem of deciding whether a graph has dot product
dimension d is NP-hard for all fixed d ≥ 2 (membership of NP is still open).
They also proved that an exponential number of bits is sufficient and can be
necessary to store a d-dot product representation of a dot product graph. There
are several papers that consider the minimum dimension d such that a graph is a
d-dot product graph (the dot product dimension of a graph) [16, 20], deriving for
example a tight bound of 4 on the dot product dimension of a planar graph [16].
Finally, dot product graphs share some ideas with low-complexity graphs [2].

In this paper, we consider the complexity of computing advanced structural
measures of social networks through the dot product model. Note that many
standard structural measures, such as the graph diameter and the clustering co-

efficient, are easy to compute. Therefore, we consider two more advanced mea-
sures for diversity and clustering. These are related to classic graph optimization
problems whose computational complexity on dot product graphs was unknown.
In fact, to the best of our knowledge, our work provides the first complexity re-
sults for graph optimization problems on dot product graphs.

First, we consider a measure for diversity, by finding (the size of) a largest
group of individuals in the network that are different-minded, and thus pairwise
disconnected. This corresponds to the well-known Independent Set problem,
which is NP-complete, W[1]-complete, and very hard to approximate on general
graphs [18, 9, 13], but its complexity on dot product graphs is open. We settle
this by proving that Independent Set is polynomial-time solvable on 2-dot
product graphs, but becomes NP-complete on 3-dot product graphs.

Second, we consider a measure for clustering, by finding (the size of) a largest
group of individuals in the network that are like-minded, and thus pairwise con-
nected. This corresponds to the well-known Clique problem, which is also NP-
complete, W[1]-complete, and very hard to approximate on general graphs [18,
9, 13], but its complexity has not been analyzed on dot product graphs. We
give initial insights into the complexity of this problem and show that it is
polynomial-time solvable on 2-dot product graphs.

To complement these results, we consider two variants of the dot product
model. For the first variant, we model the scenario in which two individuals
are connected if their preferences are not opposite. That is, consider the graph
where two individuals u, v are connected if and only if au ·av ≥ 0. We call such a
graph a d0-dot product graph. Recall that in d-dot product graphs, the threshold
t for connectivity must be greater than zero, and hence the definition of d0-dot
product graphs is different. Moreover, the structure of d0-dot product graphs
is substantially different from that of d-dot product graphs. To illustrate this,
we prove that Independent Set is polynomial-time solvable on d0-dot product
graphs for any fixed d and that Clique is polynomial-time solvable if d ≤ 3.

For the second variant, we model the situation in which two individuals are
connected in the model if their preferences are neither opposite nor orthogonal.
Consider the graph that is obtained when two vertices u, v are adjacent if and
only if au ·av > 0. We call this a d+-dot product graph. It follows from Fiduccia et
al. [10] that the graph class where two vertices are adjacent if and only if au ·av >
t for some t > 0 is equivalent to the class of d-dot product graphs. However, we
prove that the structure of d+-dot product graphs is different from that of d-
dot product graphs and that of d0-dot product graphs. Still, we can show that
Independent Set is polynomial-time solvable on d0-dot product graphs for
any fixed d, as is Clique when d ≤ 3.

We provide an overview of our results in Table 1.

2 Preliminaries

All graphs that we consider are finite, undirected, and have neither loops nor
multiple edges. For undefined graph terminology we refer to Diestel [8].

Setting Independent Set Clique

d-DPG (≥ 1) in P for d ≤ 2 in P for d ≤ 2
NP-complete for d ≥ 3 ? for d ≥ 3

d0-DPG (≥ 0) in P for d ≥ 0 in P for d ≤ 3
? for d ≥ 4

d+-DPG (> 0) in P for d ≥ 0 in P for d ≤ 3
? for d ≥ 4

Table 1. An overview of our results for the problems Independent Set and Clique
on d-dot product graphs (the first row), d0-dot product graphs (the second row), and
d+-dot product graphs (the third row), respectively, for fixed dimension d.

Let G = (V,E) be a graph. We denote the neighbourhood of a vertex u ∈ V
by N(u) = {v | (u, v) ∈ E}. A subset U ⊆ V is independent if no two vertices
in U are joined by an edge, and U is a clique if every two vertices of U are
adjacent. Given U ⊆ V , G[U] denotes the subgraph of G induced by U , that
is, it has vertex set U and an edge between two vertices of U if and only if G
has an edge between them. The complement of G has vertex set V and an edge
between two distinct vertices if and only if these vertices are not adjacent in G.

A graph is a comparability graph if there exists an assignment of exactly one
direction to each of its edges such that (a, c) is a directed edge whenever (a, b)
and (b, c) are directed edges. The complement of a comparability graph is called
a co-comparability graph. A graph is p-partite if its vertex set can be partitioned
into at most p independent sets. If p = 2, then the graph is called bipartite. The
complement of a p-partite graph is called a co-p-partite graph. Observe that the
vertex set of a co-p-partite graph can be partitioned into at most p cliques. The
complement of a bipartite graph is called co-bipartite.

3 Structure of d-Dot Product Graphs

In this section, we describe some of the structure of d-dot product graphs, which
we need in our algorithms later on. Fiduccia et al. [10, Theorem 20] proved that
1-dot product graphs have at most two nontrivial components, each of which are
threshold graphs. We show that d-dot product graphs, and in particular 2-dot
product graphs, exhibit similar interesting structural properties.

From now we assume that d ≥ 2. The reason for doing this is that our
polynomial-time results on Independent Set and Clique in Section 4 for the
case d = 2 readily carry over to the case d = 1: we can represent a (d − 1)-dot
product graph as a d-dot product graph for all d ≥ 2 by adding a zero entry to
all vectors of any of its (d− 1)-dot product representations.

We call a d-dot product representation of a graph clean if it contains no two
vectors au and av with au = γav for some γ ≥ 0.

Lemma 1. (F)3 Given a d-dot product graph G without isolated vertices and a
d-dot product representation of G, we can compute a clean d-dot product repre-
sentation of G in polynomial time.

3 Proofs marked with a star have been omitted due to page restrictions.

Throughout the remainder of this section, we assume that we are given a
d-dot product graph G = (V,E) for some d ≥ 2 together with a d-dot product
representation with vectors {au | u ∈ V } and threshold t. For solving Indepen-
dent Set and Clique, we can preprocess G by removing any isolated vertices.
Hence, by Lemma 1, we may assume without loss of generality that the given
representation is clean.

We will use the notation θuv for the angle between au and av, which is the
smaller of the two angles between au and av in the plane defined by au and av.
We assume some fixed direction of rotation so θuv = −θvu.

We say that a vertex u is short if ||au|| ≤
√
t; otherwise, it is long. Note

that we can decide whether u is short in polynomial time by checking whether
||au||2 ≤ t. We first provide two lemmas about short vertices.

Lemma 2. (F) Let v be a short vertex. Then G[N(v)] is co-2d−1-partite.

The lemma shows in particular that G[N(v)] is co-bipartite if d = 2.

Lemma 3. (F) The set of short vertices is an independent set.

We say that a vertex v is between vertices u and w if av can be written as
a nonnegative linear combination of au and aw. In other words, v is between u
and w if av lies in the plane defined by au and aw and av lies within the smaller
of the two angles defined by au and av in this plane.

We now present two lemmas about the neighbourhoods of vertices.

Lemma 4. (F) Let L = {u ∈ V | ‖au‖ >
√
t}. If d = 2, then G[N(v) ∩ L] is a

co-comparability graph for all v ∈ V .

Lemma 5. (F) Let u, v, w ∈ V be such that v is between u and w. If u is
adjacent to w and ‖av‖ ≥ ‖aw‖, then u is adjacent to v.

We also require a result that is implied by Lemma 28 of Fiduccia et al. [10].

Lemma 6. Suppose d = 2. Let u, v, and w be vertices such that v is between u
and w. If u is adjacent to w, and v is adjacent to neither u nor w, then v is short.

4 Diversity and Clustering in Social Networks

In this section, we consider the complexity of computing our two measures of
diversity and clustering in social networks, i.e. Independent Set and Clique,
respectively, on a dot product graph model of the network. We first prove that
Independent Set is polynomial-time solvable if d ≤ 2 and NP-complete if
d ≥ 3. We then prove that Clique is polynomial-time solvable if d ≤ 2.

As before, throughout we have a d-dot product graph G = (V,E) and a clean
d-dot product representation with vectors {au | u ∈ V } and threshold t.

We first consider Independent Set in the case d ≤ 2. Recall that we may
assume without loss of generality that d = 2. Armed with the structural results
of the previous section, we can prove the following theorem.

Theorem 1. Independent Set is solvable in O(n3) time on 2-dot product
graphs on n vertices.

Proof. Let G be a 2-dot product graph. We describe how to find a maximum
size independent set of G. In fact, we will describe how to find, for each long
vertex u of G, the maximum size independent set of G that contains u. This
is sufficient as the maximum size set of G is either the largest of these sets, or
the set of all short vertices which is also independent by Lemma 3; we use this
latter fact repeatedly in this proof. So let u be a fixed long vertex of G. Let
Gu be the graph obtained by removing all vertices that neighbour u and their
incident edges. If we can find the maximum size independent set of Gu, we will
have found the maximum size independent set of G that contains u.

We define a total (or linear) ordering ≺ of the vertices of Gu by ordering the
vertices by increasing angle of their vector representation from au. Using the
square of the cosine formula, ≺ can be computed in quadratic time using just
dot-products. We wish to relate this ordering to betweenness. Suppose that two
vertices v and w are adjacent in Gu and that θvw is positive. Any vertex between
v and w is, by Lemma 6, either short or adjacent to one of them, and we know
that u is a long vertex with no neighbours. So if x is between v and w, we have
v ≺ x ≺ w. The converse is clearly true, giving us:

Claim 1 : Let v, w, x be vertices in Gu where v and w are adjacent. Then x is
between v and w and θvw is positive if and only if v ≺ x ≺ w.

For a long vertex v in Gu, let J(v) be a largest independent set containing
v in the subgraph of Gu that contains all vertices up to v in the ordering ≺,
and let j(v) = |J(v)|. For a pair of long vertices v and w in Gu with w ≺ v, let
S(w, v) be the set of vertices x such that x is short, w ≺ x ≺ v and x is not
adjacent to either v or w. Let s(w, v) = |S(w, v)|.

Claim 2 : For each pair of non-adjacent long vertices v and w with w ≺ v in Gu,
j(v) ≥ j(w) + s(w, v) + 1.

Proof. Note that the claim will follow if we can show that J(w) ∪ S(w, v) ∪ {v}
is an independent set. All we need to show is that no vertex in S(w, v) ∪ {v} is
adjacent to a vertex in J(w).

Suppose that v is adjacent to a vertex x in J(w). We know v and w are not
adjacent so x 6= w and x ≺ w ≺ v. Hence, w is between x and v (by Claim 1), and
the adjacency of x and v implies, by Lemma 6, that w is short; a contradiction.

If a vertex y ∈ S(w, v) is adjacent to any vertex x in J(w), then x 6= w by the
definition of S(w, v). But x is adjacent to w using Lemma 5 and noting that w
is long, y is short and w is between x and y. This contradiction proves Claim 2.

Claim 3 : For each long vertex v 6= u in Gu, j(v) is the maximum, over all long
vertices w with w ≺ v and v and w non-adjacent, of j(w) + s(w, v) + 1.

Proof. Note that the set of long vertices that precede v includes the isolated
vertex u so the maximum is well-defined, and the previous claim tells us that

j(v) is no less than this maximum. We must show that it is no larger. Let w be the
long vertex that is last in the ordering amongst all long vertices in J(v)\{v} (as
J(v) contains u we can always find such a vertex). The subset of J(v) containing
only w and preceding vertices is independent and contains at most j(w) vertices.
The only other vertices in J(v) are short vertices between w and v and v itself.
Thus j(v) ≤ j(w) + s(w, v) + 1, and Claim 3 is proved.

Note that j can easily be computed since j(u) = 1, and Claim 3 tells us that
if we consider the vertices in order we can find the remaining values.

For each long vertex v in Gu, let S+(v) contain each vertex w such that w
is short, v ≺ w and v is not adjacent to w. Let s+(v) = |S+(v)|. Let m be the
maximum, over all long vertices v in Gu, of j(v) + s+(v).

Claim 4 : Let J be a maximum size independent set in Gu. Then |J | = m.

Proof. Let v be a long vertex in Gu. We shall show that J(v) ∪ S+(v) is an
independent set. Let w be a vertex in S+(v) and suppose that x is a vertex in
J(v) adjacent to w. By the definition of S+(v), we have x 6= v, so x ≺ v ≺ w. By
Claim 1, v is between x and w and, by Lemma 6, v is either short or adjacent
to x or w. This contradiction shows that J(v)∪S+(v) is an independent set. So
|J | ≥ j(v) + s+(v) for all long vertices v and hence |J | is at least m.

Now let z be the long vertex in J that is latest in the ordering. Let J1 be the
subset of J containing z and preceding vertices. Hence, |J1| ≤ j(z). The vertices
of J \ J1 are short vertices later than z in the ordering, so there are at most
s+(z) of them. Thus |J | ≤ j(z) + s+(z) ≤ m, and Claim 4 is proved.

We omit the details but it is straightforward to show that j and s+, and so
also m, can be computed in O(n2) time. The corresponding sets of vertices, and
thus a maximum size independent set of Gu, can also be found. By repeating for
each u, a maximum size independent set of G is found in time O(n3). ut

We contrast this positive result by the following result.

Theorem 2. (F) For any d ≥ 3, Independent Set is NP-complete on d-dot
product graphs 4.

The structural results of the previous section provide enough structure to
solve Clique in polynomial time on 2-dot product graphs.

Theorem 3. (F) Clique is solvable in O(n4) time on 2-dot product graphs on
n vertices, even if no 2-dot product representation is given.

5 Structure and Complexity for Variants of the Model

In this section, we consider two variants of the dot product graph model, which
model that two individuals are connected if and only if their preferences are not

4 Here the problem input consists of the graph, but not (necessarily) a representation.

opposite, or are neither opposite nor orthogonal. In the introduction, we defined
the d0-dot product graph and the d+-dot product graph model for these cases.
Recall that if {au | u ∈ V } is a representation of G = (V,E), then

– (u, v) ∈ E if and only if au · av ≥ 0 when G is a d0-dot product graph, and
– (u, v) ∈ E if and only if au · av > 0 when G is a d+-dot product graph.

We study the complexity of computing the diversity and clustering measures
on these models, that is, of Independent Set and Clique, on d0-dot product
graphs and d+-dot product graphs.

Note that vertices of length 0 are adjacent to all other vertices in a d0-dot
product graph and are isolated in a d+-dot product graph, and so do not, in
either case, influence Independent Set or Clique. Hence, without loss of
generality all vectors in this section have non-zero length.

First, we describe the structure of independent sets in d0-dot product graphs.
The following lemma is equivalent to Lemma 18 of Fiduccia et al. [10].

Lemma 7. For all d ≥ 1, every independent set in a d0-dot product graph has
size at most d+ 1.

Independent sets in d+-dot product graphs have a different structure.

Lemma 8. (F) For all d ≥ 1, every independent set in a d+-dot product graph
has size at most 2d.

The proofs of Lemmas 7 and 8 can be turned into constructions to show that
the given bounds are tight. The lemmas show that d0-dot product graphs and
d+-dot product graphs have different structure, which is also different from the
structure of d-dot product graphs. Moreover, using exhaustive enumeration, the
two lemmas immediately imply the following.

Theorem 4. For all d ≥ 1, Independent Set is solvable in O(nd+1) time on
d0-dot product graphs and in O(n2d) time on d+-dot product graphs on n vertices,
even if no representation is given.

We now consider Clique on d0-dot product and d+-dot product graphs. For
d = 2, it suffices to observe that a set of vertices forms a clique if and only if
their corresponding vectors lie in the nonnegative quadrant (after an appropriate
rotation). However, this structural observation does not generalize to higher
dimensions, as is evident from the counterexamples by Gray and Wilson [12]
for d = 3 and d ≥ 5. Instead, we follow a different approach, which leads to a
polynomial-time algorithm for all d ≤ 3.

For any hyperplane h with normal n, let h+ be the half-space {p | p · n ≥ 0}
and let h− be the half-space {p | p · n ≤ 0}. Note that any two vectors a,b
induce a hyperplane with normal a×b, where × is the cross product operation.
We refer to the monograph by Barvinok [4] for any undefined terminology on
cones.

Theorem 5. For all d ≤ 3, Clique can be solved in O(n4.5) time on d0-dot
product graphs and d+-dot product graphs on n vertices.

Proof. We assume that d = 3 (fewer dimensions are a special case). Let G =
(V,E) be a 30-dot product graph or a 3+-dot product graph with representation
{av | v ∈ V }. We first give a structural result, where we essentially show that
any clique C of G induces a basis such that the vectors of C lie in two octants
with respect to this basis. Then, we give an algorithm that finds this basis for a
maximum clique by guessing limited information about the clique, and uses the
basis to obtain a maximum clique of G.

We start with the structural result. Let C be any clique of G. Let K denote
the conic hull of av for all vertices v ∈ C, that is, K = {

∑
v∈C λva

v | λv ≥ 0}. We
call K the cone corresponding to C. The structural result considers the case that
K is not a ray (a ray is the conic hull of a single vector). Since K is generated
by a finite set, its extreme rays are vectors that correspond to vertices of C. Let
u be any vertex such that au spans an extreme ray of K, and let hu denote the
hyperplane with normal au. Because K is the conic hull of vectors corresponding
to a clique, p ·au ≥ 0 for any p ∈ K (this is true both when G is a 30-dot product
graph or a 3+-dot product graph). Hence, K ⊆ h+u .

Let w be any vertex such that aw spans an extreme ray of K that is not
spanned by u and such that the hyperplane huw induced by au and aw contains
a facet of K. Since huw contains a facet of K, either K ⊆ h+uw or K ⊆ h−uw.
Assume without loss of generality that K ⊆ h+uw, and let t denote the normal
of huw that lies in h+uw. Finally, let w′ denote the projection of aw onto hu. By
definition, t, au, w′ are pairwise orthogonal. Moreover, as K ⊆ h+u ∩ h+uw and
h+u ∩ h+uw is the union of two octants in the basis induced by t,au,w′, we find
that K is a subset of two octants in the basis induced by t, au, w′.

We use the structural result in an algorithm that consists of two phases.

In the first phase of the algorithm, we ensure that we find a maximum clique
if the cone corresponding to some maximum clique is a ray. Therefore, we iterate
over all v ∈ V (G) and find the set X of vertices u for which au spans the same ray
as av. The set X is a clique irrespective of whether G is a 30-dot product graph or
a 3+-dot product graph. We keep a maximum clique found over all choices of v.

In the second phase of the algorithm, we ensure that we find a maximum
clique if the cone corresponding to some maximum clique is not a ray. Iterate
over all n2 ordered pairs (u,w) of the vertices of G such that au and aw do not
span the same ray. Define hu as the plane with normal au, and define huw as the
plane induced by au and aw. Consider h+u ∩h+uw (we also consider h+u ∩h−uw in a
similar way). Let t denote the normal of huw that lies in h+uw and let w′ denote
the projection of aw onto hw. Note that h+u ∩ h+uw is the union of two octants in
the basis induced by t, au, w′. As any octant induces a clique, h+u ∩h+uw induces
a co-bipartite graph H. We can find H in linear time as the graph induced by
the vertices whose corresponding vectors have positive or strictly positive dot
product with both au and t. Since H is co-bipartite, we can find a maximum
clique of H in O(n2.5) time, as it reduces to finding a maximum matching in a
bipartite graph, which takes O(n2.5) time [15]. We then keep a maximum clique
over all choices of u,w. The output of the algorithm is a largest of the two cliques
kept in the first and second phase.

The algorithm runs in O(n4.5) time, as claimed. To see correctness, let C be
a maximum clique. If the cone corresponding to C is a ray, then the algorithm
considers C in the first phase. If the cone corresponding to C is not a ray, then
by our structural result there will be a choice of u,w for which u,w ∈ C and
huw contains a facet of K, where K is the cone corresponding to C. ut

6 Conclusions

This paper provided the first study of algorithms that measure diversity and
clustering in social networks that are modeled as dot product graphs. The diver-
sity and clustering measures considered correspond to Independent Set and
Clique on dot product graphs.

Our exploration of the complexity of Clique on d-dot product graphs leaves
further open problems. The current approach for d = 2 does not seem to extend
to d-dot product graphs for d ≥ 3, as our structural results (Lemma 2 for exam-
ple) seem to indicate that we need to solve clique on co-p-partite graphs for p ≥ 3.
However, this problem is NP-complete, as Independent Set is NP-complete on
2-subdivisions of planar graphs [11]. Hence, further structural insight into d-dot
product graphs is needed to resolve the complexity of Clique on these graphs.

We observe that our polynomial-time algorithms for Independent Set and
Clique on 2-dot product graphs generalize well-known polynomial-time algo-
rithms for these problems on interval graphs, because interval graphs have a
2-dot product representation [10, Theorem 21]. At the same time, we are un-
aware of any nontrivial superclasses of 2-dot product graphs, in particular for
which Independent Set and Clique are polynomial-time solvable. Finally,
we note that the dot product graph model of social networks might be able to
capture more problems for social networks as graph optimization problems.

References

1. L.A. Adamic, E. Adar, Friends and neighbors on the Web, Social Networks 25
(2003) 211–230.

2. S. Arora, D. Steurer, A. Wigderson, Towards a Study of Low-Complexity Graphs,
Proc. ICALP 2009, LNCS 5555 (2009) 119–131.

3. A.-L. Barabási and R. Albert, Emergence of Scaling in Random Networks, Science
286 (1999) 509–512.

4. A. Barvinok, A Course in Convexity, American Mathematical Society, 2003.
5. R.L. Breiger, The Duality of Persons and Groups, Social Forces 53 (1974) 181–190.
6. K. Bhawalkar, J.M. Kleinberg, K. Lewi, T. Roughgarden and A. Sharma, Prevent-

ing Unraveling in Social Networks: The Anchored k-Core Problem, Proc. ICALP
2012, LNCS 7392 (2012) 440–451.

7. G. Caldarelli, A. Capocci, P. de Los Rios, M.A. Muñoz, Scale-Free Networks from
Varying Vertex Intrinsic Fitness, Phys. Rev. Lett. 89 (2002), 258702.

8. R. Diestel, Graph Theory, Springer-Verlag, 2005.
9. R.G. Downey and M.R. Fellows, Fixed-parameter tractability and completeness II:

On completeness for W[1], Theoretical Computer Science 141 (1995) 109–131.

10. C.M. Fiduccia, E.R. Scheinerman, A. Trenk and J.S. Zito, Dot product represen-
tations of graphs, Discrete Mathematics 181 (1998) 113–138.

11. M.R. Garey, D.S. Johnson and L. Stockmeyer, Some simplified NP-complete graph
problems, Theor. Comp. Sci. 1 (1976) 237–267.

12. L.J. Gray and D.G. Wilson, Nonnegative factorization of positive semidefinite non-
negative matrices, Linear Algebra and its Applications 31 (1980) 119–127.

13. J. H̊astad, Clique is hard to approximate within n1−ε, Acta Mathematica 182
(1999) 105–142.

14. P.D. Hoff, A.E. Raftery, M.S. Handcock, Latent Space Approaches to Social Net-
work Analysis, J. Am. Stat. Assoc. 97 (2002) 1090–1098.

15. J.E. Hopcroft, R.M. Karp, An n5/2 Algorithm for Maximum Matchings in Bipartite
Graphs, SIAM J. Comput. 2 (1973) 225–231.

16. R.J. Kang, L. Lovász, T. Müller and E.R. Scheinerman, Dot product representa-
tions of planar graphs. Electr. J. Comb. 18 (2011).

17. R.J. Kang and T. Müller, Sphere and dot product representations of graphs, Dis-
crete and Computational Geometry 47 (2012) 548–568.

18. R.M. Karp, Reducibility among Combinatorial Problems”, Complexity of Com-
puter Computations, Plenum Press (1972) 85–103.

19. M. Kim, J. Leskovec, Multiplicative Attribute Graph Model of Real-World Net-
works, Proc. WAW 2010, LNCS 6516 (2010) 62–73.

20. A. Kotlov, L. Lovász and S. Vempala, The Colin de Verdiére number and sphere
representations of a graph, Combinatorica 17 (1997) 483–521.

21. D. Liben-Nowell, J. Kleinberg, The Link Prediction Problem for Social Networks,
Proc. CIKM 2003 (2003) 556–559.

22. M. McPherson, L. Smith-Lovin, J.M. Cook, Birds of a Feather: Homophily in Social
Networks, Annual Rev. Sociology 27 (2001) 415–444.

23. M.E.J. Newman, The Structure and Function of Complex Networks, SIAM Review
45 (2003) 167–256.

24. C.M.L. Nickel, Random Dot Product Graphs: A Model for Social Networks, PhD
dissertation, Johns Hopkins University, 2007.

25. C.H. Papadimitriou, P. Raghavan, H. Tamaki, S. Vempala, Latent Semantic In-
dexing: A Probabilistic Analysis, J. Comput. Syst. Sci. 61 (2000) 217–235.

26. D.J. de S. Price, A general theory of bibliometric and other cumulative advantage
processes, J. American Society for Information Science 27 (1976) 292–306.

27. J. Reiterman, V. Rödl and E. Šinǎjová, Embeddings of graphs in Euclidean spaces,
Discrete and Computational Geometery 4 (1989) 349–364.

28. J. Reiterman, V. Rödl and E. Šinǎjová, Geometrical embeddings of graphs. Discrete
Mathematics 74 (1989) 291–319.

29. J. Reiterman, V. Rödl and E. Šinǎjová, On embedding of graphs into Euclidean
spaces of small dimension, J. Combin. Theory B 56 (1992) 1–8.

30. E.R. Scheinerman, K. Tucker, Modeling graphs using dot product representations,
Computational Statistics 25 (2010) 1–16.

31. H.A. Simon, On a class of skew distribution functions, Biom. 42 (1955) 425–440.
32. T.A.B. Snijders, Statistical Models for Social Networks, Annual Rev. Sociology 37

(2011) 131–153.
33. D.J. Watts, P.S. Dodds, M.E.J. Newman, Identity and Search in Social Networks,

Science 296 (2002) 1302–1305.
34. S.J. Young and E.R. Scheinerman, Random dot product graph models for social

networks, Proc. WAW 2007, LNCS 4863 (2007) 138–149.
35. S.J. Young and E.R. Scheinerman, Directed random dot product graphs, Internet

Mathematics 5(2008) 91–111.

