
Trajectory-Based Dynamic Map Labeling

Andreas Gemsa, Benjamin Niedermann, and Martin Nöllenburg

Karlsruhe Institute of Technology (KIT), Germany

Abstract. In this paper we introduce trajectory-based labeling, a new variant
of dynamic map labeling, where a movement trajectory for the map viewport is
given. We define a general labeling model and study the active range maximiza-
tion problem in this model. The problem isNP-complete andW[1]-hard. In the
restricted, yet practically relevant case that no more than k labels can be active at
any time, we give polynomial-time algorithms. For the general case we present a
practical ILP formulation with an experimental evaluation as well as approxima-
tion algorithms.

1 Introduction

In contrast to traditional static maps, dynamic digital maps support continuous move-
ment of the map viewport based on panning, rotation, or zooming. Creating smooth
visualizations under such map dynamics induces challenging geometric problems, e.g.,
continuous generalization [11] or dynamic map labeling [2]. In this paper, we focus
on map labeling and take a trajectory-based view on it. In many applications, e.g., car
navigation, a movement trajectory is known in advance and it becomes interesting to
optimize the visualization of the map locally along this trajectory.

Selecting and placing a maximum number of non-overlapping labels for various
map features is an important cartographic problem. Labels are usually modeled as rect-
angles and a typical objective in a static map is to find a maximum (possibly weighted)
independent set of labels. This is known to be NP-complete [6]. There are several
approximation algorithms and PTAS’s in different labeling models [1, 5], as well as
practically useful heuristics [12, 13].

With the increasing popularity of interactive dynamic maps, e.g., as digital globes
or on mobile devices, the static labeling problem has been translated into a dynamic
setting. Due to the temporal dimension of the animations occurring during map move-
ment, it is necessary to define a notion of temporal consistency or coherence for map
labeling as to avoid distracting effects such as jumping or flickering labels [2]. Previ-
ously, consistent labeling has been studied from a global perspective under continuous
zooming [3] and continuous rotation [7]. In practice, however, an individual map user
with a mobile device, e.g., a tourist or a car driver, is typically interested only in a spe-
cific part of a map and it is thus often more important to optimize the labeling locally
for a certain trajectory of the map viewport than globally for the whole map.

We introduce a versatile trajectory-based model for dynamic map labeling, and de-
fine three label activity models that guarantee concistency. We apply this model to point
feature labeling for a viewport that moves and rotates along a differentiable trajectory
in a fixed-scale base map in a forward-facing way. Although we present our approach in

ar
X

iv
:1

30
9.

39
63

v1
 [

cs
.C

G
]

 1
6

Se
p

20
13

R

T (t)
R

0

1

T (t)

α(t)

Fig. 1: Illustration of the viewport moving along a trajectory. Left the user’s view and right a
general view of the map and the viewport.

a very specific problem setting, our model is very general. Our approach can be applied
for every dynamic labeling problem that can be expressed as a set of label availability
intervals over time and a set of conflict intervals over time for pairs of labels. The exact
algorithms hold for the general model, the approximation algorithm itself is also appli-
cable, but the analysis of the approximation ratio requires problem-specific geometric
arguments, which must be adjusted to the specific setting.
Contribution. For our specific problem, we show that maximizing the number of vis-
ible labels integrated over time in our model is NP-complete; in fact it is evenW[1]-
hard and thus it is unlikely that a fixed-parameter tractable algorithm exists. We present
an integer linear programming (ILP) formulation for the general unrestricted case,
which is supported by a short experimental evaluation. For the special case of unit-
square labels we give an efficient approximation algorithm with different approximation
ratios depending on the actual label activity model. Moreover, we present polynomial-
time algorithms for the restricted case that no more than k labels are active at any time
for some constant k. We note that limiting the number of simultaneously active labels is
of practical interest as to avoid overly dense labelings, in particular for dynamic maps
on small-screen devices such as in car navigation systems.

2 Trajectory-Based Labeling Model

LetM be a labeled north-facing, fixed-scale map, i.e., a set of points P = {p1, . . . , pN}
in the plane together with a corresponding set L = {`1, . . . , `N} of labels. Each label `i
is represented by an axis-aligned rectangle of individual width and height. We call the
point pi the anchor of the label `i. Here we assume that each label has an arbitrary but
fixed position relative to its anchor, e.g., with its lower left corner coinciding with the
anchor. The viewport R is an arbitrarily oriented rectangle of fixed size that defines the
currently visible part of M on the map screen. The viewport follows a trajectory that
is given by a continuous differentiable function T : [0, 1] → R2. For an example see
Fig. 1. More precisely, we describe the viewport by a function V : [0, 1]→ R2×[0, 2π].
The interpretation of V (t) = (c, α) is that at time t the center of the rectangle R is
located at c and R is rotated clockwise by the angle α relatively to a north base line of
the map. Since R moves along T we define V (t) = (T (t), α(t)), where α(t) denotes
the direction of T at time t. For simplicity, we sometimes refer toR at time t as V (t). To

ensure good readability, we require that the labels are always aligned with the viewport
axes as the viewport changes its orientation, i.e., they rotate around their anchors by the
same angle α(t), see Fig. 1. We denote the rotated label rectangle of ` at time t by `(t).

We say that a label ` is present at time t, if V (t) ∩ `(t) 6= ∅. As we consider the
rectangles `(t) and V (t) to be closed, we can describe the points in time for which `
is present by closed intervals. We define for each label ` the set Ψ` that describes all
disjoint subintervals of [0, 1] for which ` is present, thus Ψ` = {[a, b] | [a, b] ⊆ [0, 1] is
maximal so that ` is present at all t ∈ [a, b]}. Further, we define the disjoint union Ψ =
{([a, b], `) | [a, b] ∈ Ψ` and ` ∈ L} of all Ψ`. We abbreviate ([a, b], `) ∈ Ψ by [a, b]`
and call [a, b]` ∈ Ψ a presence interval of `. In the remainder of this paper we denote
the number of presence intervals by n.

Two labels ` and `′ are in conflict with each other at time t if `(t) ∩ `′(t) 6= ∅.
If `(t) ∩ `′(t) ∩ V (t) 6= ∅ we say that the conflict is present at time t. As in [7] we can
describe the occurrences of conflicts between two labels `, `′ ∈ L by a set of closed
intervals: C`,`′ = {[a, b] ⊆ [0, 1] | [a, b] is maximal and ` and `′ are in conflict at
all t ∈ [a, b]}. We define the disjoint union C = {([a, b], `, `′) | [a, b] ∈ C`,`′ and
`, `′ ∈ L} of all C`,`′ . We abbreviate ([a, b], `, `′) ∈ C as [a, b]`,`′ and call it a conflict
interval of ` and `′. Two presence intervals [a, b]` and [c, d]`′ are in conflict if there is a
conflict [f, g]`,`′ ∈ C s.t. the intersection of the intervals [f, g]`,`′ ∩ [a, b]`∩ [c, d]`′ 6= ∅.

The tuple (P,L, Ψ,C) is called an instance of trajectory-based labeling. Note that
the essential information of T is implicitly given by Ψ and C and that for each la-
bel ` ∈ L there can be several presence intervals. In this paper we assume that Ψ and C
is given as input. In practice, however, we usually first need to compute Ψ and C given
a continuous and differentiable trajectory T . An interesting special case is that T is a
continuous, differentiable chain of m circular arcs (possibly of infinite radius), e.g., ob-
tained by approximating a polygonal route in a road network. Niedermann [10] showed
that in this case the set Ψ can be computed inO(m ·N) time and the set C inO(m ·N2)
time. His main observation was that for each arc of T the viewport can in fact be treated
as a huge label and that “conflicts” with the viewport correspond to presence intervals.
We refer to [10, Chapter 15] for details.

Next we define the activity of labels, i.e., when to actually display which of the
present labels on screen. We restrict ourselves to closed and disjoint intervals describing
the activity of a label ` and define the set Φ` = {[a, b] ⊆ [0, 1] | [a, b] is maximal such
that ` is active at all t ∈ [a, b]}, as well as the disjoint union Φ = {([a, b], `) | [a, b] ∈ Φ`
and ` ∈ L} of all Φ`. We abbreviate ([a, b], `) ∈ Φ with [a, b]` and call [a, b]` ∈ Φ an
active interval of `.

It remains to define an activity model restricting Φ in order to obtain a reasonable
labeling. Here we propose three activity models AM1, AM2, AM3 with increasing
flexibility. All three activity models exclude overlaps of displayed labels and guarantee
consistency criteria introduced by Been et al. [2], i.e., labels must not flicker or jump.
To that end they share the following properties (A) a label ` can only be active at time t
if it is present at time t, (B) to avoid flickering and jumping each presence interval of `
contains at most one active interval of `, and (C) if two labels are in conflict at a time t,
then at most one of them may be active at t to avoid overlapping labels.

What distinguishes the three models are the possible points in time when labels can
become active or inactive. The first and most restrictive activity model AM1 demands
that each activity interval [a, b]` of a label ` must coincide with a presence interval of `.
The second activity model AM2 allows an active interval of a label ` to end earlier than
the corresponding presence interval if there is a witness label `′ for that, i.e., an active
interval for ` may end at time c if there is a starting conflict interval [c, d]`,`′ and the
conflicting label `′ is active at c. However, AM2 still requires every active interval to
begin with the corresponding presence interval. The third activity model AM3 extends
AM2 by also relaxing the restriction regarding the start of active intervals. An active
interval for a label ` may start at time c if a present conflict [a, c]`,`′ involving ` and an
active witness label `′ ends at time c. In this model active intervals may begin later and
end earlier than their corresponding presence intervals if there is a visible reason for the
map user to do so, namely the start or end of a conflict with an active witness label.

A common objective in both static and dynamic map labeling is to maximize the
number of labeled points. Often, however, certain labels are more important than oth-
ers. To account for this, each label ` can be assigned a weight W` that corresponds
to its significance. Then we define the weight of an interval [a, b]` ∈ Φ as w([a, b]`) =
(b−a)·W`. Given an instance (P,L, Ψ,C), then with respect to one of the three activity
models we want to find an activity Φ that maximizes

∑
[a,b]`∈Φ w([a, b]`); we call this

optimization problem GENERALMAXTOTAL. If we require that at any time t at most k
labels are active for some k, we call the problem k-RESTRICTEDMAXTOTAL. In par-
ticular the latter problem is interesting for small-screen devices, e.g., car navigation
systems, that should not overwhelm the user with additional information.

3 Solving GENERALMAXTOTAL

We first prove that GENERALMAXTOTAL is NP -complete. The membership of GEN-
ERALMAXTOTAL in NP follows from the fact that the start and the end of an active
interval must coincide with the start or end of a presence interval or a conflict interval.
Thus, there is a finite number of candidates for the endpoints of the active intervals so
that a solution L can be guessed. Verifying that L is valid in one of the three models and
that its value exceeds a given threshold can obviously be checked in polynomial time.

For theNP -hardness we apply a straight-forward reduction from theNP-complete
maximum independent set of rectangles problem [6]. We simply interpret the set of
rectangles as a set of labels with unit weight, choose a short vertical trajectory T and a
viewport R that contains all labels at any point of T . Since the conflicts do no change
over time, the reduction can be used for all three activity models. By means of the
same reduction and Marx’ result [9] that finding an independent set for a given set of
axis-parallel unit squares isW[1]-hard we derive the next theorem.

Theorem 1. GENERALMAXTOTAL is NP-complete and W[1]-hard for all activity
models AM1–AM3.

As a consequence, GENERALMAXTOTAL is not fixed-parameter tractable unless
W[1] = FPT . Note that this also means that for k-RestrictedMaxTotal we cannot

expect to find an algorithm that runs in O(p(n) · C(k)) time, where p(n) is a poly-
nomial that depends only on the number n of presence intervals and the computable
function C(k) depends only on the parameter k.

3.1 Integer Linear Programming for GENERALMAXTOTAL

Since we are still interested in finding an optimal solution for GENERALMAXTOTAL
we have developed integer linear programming (ILP) formulations for all three activity
models. We present the formulation for the most involved model AM3 and then argue
how to adapt it to the simpler models AM1 and AM2.

`1

1 2 3 4 5 6 8 9 11

`2
`3
E 12

c`1,`2

c`2,`3

13 1410

Fig. 2: Depiction of presence intervals
(light gray), active intervals (hatched), and
conflicts (dark gray).

We define E to be the totally ordered set
of the endpoints of all presence and all con-
flict intervals and include 0 and 1; see Fig. 2.
We call each interval [c, d] between two con-
secutive elements c and d in E an atomic seg-
ment and denote the i-th atomic segment ofE
by E(i). Further, let X(`, i) be the set of la-
bels that are in conflict with ` duringE(i−1),
but not during E(i), i.e., the conflicts end
with E(i−1). Analogously, let Y (`, i) be the
set of labels that are in conflict with ` during E(i + 1), but not during E(i), i.e., the
conflicts begin with E(i + 1). For each label ` we introduce three binary variables
bi, xi, ei ∈ {0, 1} and the following constraints.

b`i = x`i = e`i = 0 ∀1 ≤ i ≤ |E| s.t. ∀[c, d] ∈ Ψ` : E(i) ∩ [c, d] = ∅ (1)∑
j∈J

b`j ≤ 1 and
∑
j∈J

e`j ≤ 1 ∀[c, d] ∈ Ψ` where J = {j | E(j) ⊆ [c, d]} (2)

x`i + x`
′

i ≤ 1 ∀1 ≤ i ≤ |E| ∀[c, d]`,`′ ∈ C : E(i) ⊆ [c, d] (3)

x`i−1 + b`i = x`i + e`i−1 ∀1 ≤ i ≤ |E| (set x0 = e0 = 0) (4)

b`j ≤
∑

`′∈X(`,j)

x`
′

j−1 ∀[c, d]` ∈ Ψ ∀E(j) ⊂ [c, d]` with c 6∈ E(j) (5)

e`j ≤
∑

`′∈Y (`,j)

x`
′

j+1 ∀[c, d]` ∈ Ψ ∀E(j) ⊂ [c, d]` with d 6∈ E(j) (6)

Subject to these constraints we maximize
∑
`∈L

∑|E|−1
i=1 x`i · w(E(i)). The intended

meaning of the variables is that x`i = 1 if ` is active during E(i) and otherwise x`i = 0.
Variable b`i = 1 if and only if E(i) is the first atomic segment of an active interval
of `, and analogously e`i = 1 if and only if E(i) is the last atomic segment of an
active interval of `. Recall the properties of the activity models as defined in Section 2.
Constraints (1)–(3) immediately ensure properties (A)–(C), respectively. Constraint (4)
means that if ` is active during E(i − 1) (x`i−1 = 1), then it must either stay active
during E(i) (x`i = 1) or the active interval ends with E(i − 1) (e`i−1 = 1), and if `
is active during E(i) (x`i = 1) then it must be active during E(i − 1) (x`i−1 = 1)
or the active interval begins with E(i) (b`i = 1). Constraint (5) enforces that for ` to
become active with E(j) at least one witness label of X(`, j) is active during E(j−1).
Analogously, constraint (6) enforces that for ` to become inactive with E(j) at least

`1

`2

t
E

Fig. 3: The light gray intervals show presence intervals, the hatched intervals active intervals
and the dark gray intervals conflicts between labels. Further, the bottom line illustrates possible
atomic segments, when assuming that there is a third label that induces the segmentation at time t.

one witness label of Y (`, j) is active during E(j + 1). Note that without the explicit
constraints (5) and (6) two conflicting labels could switch activity at any point during
the conflict interval rather than only at the endpoints. For an example see Fig. 3. The
drawing shows an optimal solution that is valid for the ILP formulation if the constraints
(5) and (6) are omitted. In particular `1 becomes inactive at time t, although t is not the
right boundary of the corresponding presence interval and there is no conflict of `1
that begins at t such that the corresponding opponent is active from t on. Analogous
observations can be made for `2. Consequently, this solution does not satisfy AM3.

Theorem 2. Given an instance I = (P,L, Ψ, C), the ILP (1)–(6) computes an optimal
solution Φ of GENERALMAXTOTAL in AM3. It uses O(N · (|Ψ |+ |C|)) variables and
constraints.

Proof. Every solution of the ILP corresponds to an activity Φ by defining for every
label ` the set Φ` as the set of all maximal intervals in

⋃
i:x`

i=1E(i). Conversely, every
valid activity Φ in AM3 can be expressed in terms of the variables of the ILP. To show
that we first observe that for every valid activity interval [a, b]` in AM3 the endpoints
a and b are necessarily endpoints of a conflict interval or a presence interval of `. Thus
[a, b]` can be expressed as the union of consecutive atomic segments represented by the
variables x`i .

It is clear that the objective function computes the weight of a solution Φ correctly.
Thus it remains to show that the constraints (1)–(6) indeed model AM3, i.e., every so-
lution of the ILP satisfies AM3 and every activity in AM3 is a solution of the ILP. It
follows immediately from the definition of constraints (1)–(3) that they model proper-
ties (A)–(C), assuming that the start- and endpoint of every activity interval is indeed
marked by setting b`i = 1 and e`j = 1 for its first and last atomic segments E(i) and
E(j). But this is achieved by the constraints (4) as discussed above. Now in AM3 a
label can only become active (inactive) at the start (end) of its presence interval or at
the end (start) of a conflict interval if the conflicting label is active as a witness. We
show that constraint (5) yields that the start of an activity interval is correct according
to AM3. The argument for the end of an activity interval follows analogously from con-
straint (6). Let E(i) be the first atomic segment in an activity interval of the label `.
Then by constraint (4) we have b`i = 1 and x`i = 1. If E(i) is the first segment of a
presence interval then this is a valid start according to AM3. Note that constraint (5) is
not present in that case and thus does not restrict b`i . Otherwise let E(i) be not the first
segment of a presence interval. Then for this segment the ILP contains constraint (5). If

no conflict interval of ` ends with E(i− 1) then (5) sets b`i = 0 anyways, so this is not
possible. If some conflict intervals of ` end with E(i−1) but none of them are active in
E(i− 1) then constraint (5) also yields b`i = 0. So the only two possibilities for b`i = 1
are that eitherE(i) is the first segment of a presence interval orE(i) is the first segment
after a conflict interval of ` for which a witness label is active. Thus every solution of
the ILP satisfies AM3.

Conversely, let Φ be valid according to AM3. Since Φ satisfies properties (A)–(C),
the corresponding assignment of binary values to the variables x`i , b

`
i , and e`i satisfy

constraints (1)–(4). It remains to show that the constraints (5) and (6) hold. Let [a, b]` ∈
Φ be a particular activity interval and letE(i) be the atomic segment starting at a. If a is
the start of a presence interval of ` then there is no constraint (5) for ` and the segment
E(i) and thus it is possible to have b`i = 1. Otherwise, a is the end of a conflict interval
of `with another label `′ that is an active witness in the atomic segmentE(i−1) ending
at a. This means that x`

′

i−1 = 1 and thus constraint (5) is satisfied for b`i = 1. Analogous
reasoning for the endpoints of all activity intervals and constraint (6) yield that Φ can
indeed be represented as a solution to the ILP.

Since the number of atomic segments is O(|Ψ | + |C|) and there are N labels the
bound on the size of the ILP follows. ut

We can adapt the above ILP to AM1 and AM2 as follows. For AM2 we replace
the right hand side of constraint (5) by 0, and for AM1 we also replace the right hand
side of constraint (6) by 0. This excludes exactly the start- and endpoints of the activity
intervals that are forbidden in AM1 or AM2. It is easy to see that these ILP formulations
can be modified further to solve k-RESTRICTEDMAXTOTAL by adding the constraint∑
`∈L x

`
i ≤ k for each atomic segment E(i).

Corollary 1. Given an instance I = (P,L, Ψ, C), GENERALMAXTOTAL and k-RE-
STRICTEDMAXTOTAL can be solved in AM1, AM2, and AM3 by an ILP that uses
O(N · (|Ψ |+ |C|)) variables and constraints.

3.2 Experiments.

We have evaluated the ILP in all three models using Open Street Map data of the
city center of Karlsruhe (Germany) which contains more than 2,000 labels. To this
end we generated 1,000 shortest paths on the road network of Karlsruhe by selecting
source and target vertices uniformly at random and transformed those shortest paths
into trajectories consisting of circular arcs. We fixed the viewport’s size to that of a typ-
ical mobile device (640 × 480 pixels) and considered the map scales 1:2000, 1:3000,
and 1:4000, which corresponds to areas with dimensions 339m×254m, 508m×381m
and 678m × 508m, respectively. The experiments were performed on a single core of
an AMD Opteron 6172 processor running Linux 3.4.11. The machine is clocked at 2.1
Ghz, and has 256 GiB RAM. Our implementation is written in C++, uses Gurobi 5.1.
as ILP solver, and was compiled with GCC 4.7.1 using optimization -O3.

For plots and a table depicting the results of the experimental evaluation see Fig. 4.
We observe that for a scale factor of 1:2000 the running times for the vast majority
of instances remained below one second, while no instances required more than ten

seconds to be solved. Since for the scale factors 1:3000 and 1:4000 the density of labels
increases, the running times increase, too. Still 75% of the instances were solved in less
than three seconds.

It is remarkable that for the scale factor 1:2000 over 99% of the instances and for the
scale factor 1:3000 over 75% of the instances can be solved in less than a second, while
for the scale factor 1:4000 over 75% of the instances can still be solved in less than
three seconds. However, for 1:3000 there are runs that needed almost 50 seconds and
for 1:4000 there are runs that needed almost 475 seconds. Note that due to these outliers,
for a scale factor of 1:4000 the average running time lies above the third quartile, but
still does not exceed six seconds. Two instances for 1:4000 exceeded a timeout of 600
seconds, were aborted and not included in the analysis. For the scale factors 1:2000
and 1:3000 the average running time is less than one second. Considering the same scale
factor the three models do not differ much from each other, except for some outliers. As
the number of labels and conflicts to be considered depends on the applied scale factor
and the concrete trajectory the table summarizes the number of considered labels and
conflicts in maximum and average over all trajectories. As to be expected for a scale
factor of 1:4000 the number of considered conflicts is significantly greater than for a
scale factor of 1:2000. This also explains the different running times.

In conclusion, our brief evaluation indicates that the ILP formulations are indeed
applicable in practice.

3.3 Approximation of GENERALMAXTOTAL

In this section we describe a simple greedy algorithm for GENERALMAXTOTAL in all
three activity models assuming that all labels are unit squares anchored at their lower-
left corner. Further, we assume that the weight of each presence interval [a, b]` is its
length w([a, b]`) = b− a.

Starting with an empty solution Φ, our algorithm GREEDYMAXTOTAL removes the
longest interval I from Ψ and adds it to Φ, i.e., I is set active. Then, depending on the
activity model, it updates all presence intervals that have a conflict with I in Ψ and
continues until the set Ψ is empty.

For AM1 the update process simply removes all presence intervals from Ψ that
are in conflict with the newly selected interval I . For AM2 and AM3 let Ij ∈ Ψ and
let I1j , . . . , I

k
j be the longest disjoint sub-intervals of Ij that are not in conflict with the

selected interval I . We assume that I1j , . . . , I
k
j are sorted by their left endpoint. The

update operation for AM2 replaces every interval Ij ∈ Ψ that is in conflict with I
with I1j . In AM3 we replace Ij by I1j , if I1j is not fully contained in I . Otherwise,
Ij is replaced by Ikj . Note that this discards some candidate intervals, but the chosen
replacement of Ij is enough to prove the approximation factor. Note that after each
update all intervals in Ψ are valid choices according to the specific model. Hence, we
can conclude that the result Φ of GREEDYMAXTOTAL is also valid in that model.

In the following we analyze the approximation quality of GREEDYMAXTOTAL. To
that end we first introduce a purely geometric packing lemma. Similar packing lemmas
have been introduced before, but to the best of our knowledge for none of them it is
sufficient that only one prescribed corner of the packed objects lies within the container.

●●●●●●
●●●●●●●

●

●

●

●
●●●●●●●
●
●
●●
●●
●●●
●
●●

●

●●●
●●●●●●●
●
●●
●
●●●●●
●
●●●●●●
●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

1:2000 1:3000 1:4000

scale factor

ru
nn

in
g

tim
e

in
 s

ec
on

ds

0.001

0.1

1

10

100

500

(a) AM1

●●●●●●●●●●
●●

●

●

●

●●●●●●●

●
●●●●●
●
●

●

●●

●

●●
●●●●●●●●
●●●●●
●●

●
●●●

●●
●

●
●

●

●
●

●

●
●
●●●

●

●
●

●

●●

●●

●

●

●●

●

●
●
●

●
●

●

●

●

●

●●●
●●
●
●●

●

●
●
●●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●●●●

●

●
●

●

●●
●

●

●●

●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●●●
●
●

●

●●

●

●
●

●

●●
●

1:2000 1:3000 1:4000

scale factor

ru
nn

in
g

tim
e

in
 s

ec
on

ds
0.001

0.1

1

10

100

500

(b) AM2

●●●●
●●●●●●●

●

●

●

●●●●●●●
●
●●●●
●
●

●

●●

●

●●●●●●●●
●●●●●●●

●
●●●●

●

●●
●

●
●

●

●
●
●

●
●
●●
●●

●

●
●

●

●●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●●
●
●
●
●
●●

●

●
●
●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●
●

●

●

●
●
●
●●●●●

●

●●

●

●
●

●

●

●
●●●
●
●

●

●

●

●

●

●

●

●
●

●

●

●●●●●

●

●●

●

●
●

●

●●

●

1:2000 1:3000 1:4000

scale factor

ru
nn

in
g

tim
e

in
 s

ec
on

ds

0.001

0.1

1

10

100

500

(c) AM3

Max. Avg.

1:2000 Labels 655 162
Conflicts 247 58

1:3000 Labels 823 236
Conflicts 624 157

1:4000 Labels 971 313
Conflicts 1383 336

(d) Statistics for 1, 000 trajectories

Fig. 4: Results of the experimental evaluation. In order to limit the vertical axis in the plots we
rounded up all running times below 1ms to 1ms.

sl sr l2l1
sm

1 1

1 1

C

Fig. 5: Illustration for the proof of Lemma 1.

Lemma 1. Let C be a circle of radius
√
2 in the plane and let Q be a set of non-

intersecting closed and axis-parallel unit squares with their bottom-left corner in C.
Then Q cannot contain more than eight squares.

Proof. First, we show that Q cannot contain more than nine squares and extend the
result to the claim of the lemma. We begin by proving the following claim.

(S) At most three squares of Q can be stabbed by a vertical line. In order to prove
(S) let Q′ ⊆ Q be a set of squares that is stabbed by an arbitrary vertical line l and
let qt be the topmost square stabbed by l and let qb be the bottommost square stabbed
by l. Since both the bottom-left corner of qt and qb are in C, their vertical distance is
at most 2

√
2. Consequently, there can be at most one other square in Q′ that lies in

between qt and qb, which shows the claim (S).
Now let l1 be the left vertical tangent of C and let l2 be its right vertical tangent; see

Fig. 5. We defineQl ⊆ Q to be the set of squares whose bottom-left corner has distance
of at most 1 to l1. Hence, there must be a vertical line that stabs all squares inQl. By (S)
it follows that |Ql| ≤ 3. We can analogously define the set Qr ⊆ Q whose bottom-left
corner has distance of at most one to the vertical line l2. By the same argument it follows
that |Qr| ≤ 3. Further, the bottom-left corners of the squares Qm = Q\{Ql, Qr}must
be contained in a vertical strip of width 2

√
2−2 < 1. Hence, there is a vertical line that

stabs all squares of Qm and |Qm| ≤ 3 follows. We conclude that the set Q contains at
most nine squares; in fact, |Q| ≤ 8 as we show next.

For the sake of contradiction we assume that |Q| = 9, i.e., |Ql| = |Qm| = |Qr| = 3.
We denote the topmost square in Ql by tl and the bottommost square by bl, and define
tr and br forQr analogously. Further, let sm be the vertical line through the center ofC,
let sl be the vertical line that lies one unit to the left of sm and let sr be the vertical line
that lies one unit to the right of sm. Note that the length of the segment of sl and sr
that is contained in C has length 2. Since the bottom-left corners of tl and bl must have
vertical distance strictly greater than 2, both squares must lie to the right of sl. Hence,
tl and bl intersect sm. Analogously, the bottom-left corners of tr and br must lie to the
left of sr, and, hence intersect sr. The line sm is intersected by two squares of Ql. By
(S) there can be at most one additional square of Qm that intersects sm. Thus, there
must be two squares in Qm whose anchors lie to the right of sm. But then they both
intersect sr which itself is already intersected by at least the squares tr and br. This is
a contradiction to (S), and concludes the proof. ut

C

Fig. 6: Example configuration of eight axis-aligned, non-intersecting, unit-squares with their
bottom-left corner inside a circle C with radius

√
2.

Fig. 6 shows that the bound is tight. Based on Lemma 1 we now show that for any
label with anchor p there is no point of time t ∈ [0, 1] for which there can be more than
eight active labels whose anchors are within distance

√
2 of p. We call a set X ⊆ Ψ

conflict-free if it contains no pair of presence intervals that are in conflict. Further, we
say that X is in conflict with I ∈ Ψ if every element of X is in conflict with I , and we
say that X contains t ∈ [0, 1] if every element of X contains t.

Lemma 2. For every t ∈ [0, 1] and every I ∈ Ψ any maximum cardinality conflict-free
set XI(t) ⊆ Ψ that is in conflict with I and contains t satisfies |XI(t)| ≤ 8.

Proof. Assume that there is a time t and an interval I such that there is a set XI(t)
that contains more than eight intervals. Let ` be the label that corresponds to I . For an
interval I ′ ∈ XI(t) to be in conflict with I the anchors of the two corresponding labels
must have a distance of at most

√
2. Hence, there are |XI(t)| labels corresponding to the

intervals in XI(t) with anchors of distance at most
√
2 to the anchor of `. By Lemma 1

we know that two of these labels must overlap. This implies that there is a conflict
between the corresponding intervals contained in XI(t), which is a contradiction. ut

With this lemma we can finally obtain the approximation guarantees for GREEDYMAX-
TOTAL for all activity models.

Theorem 3. Assuming that all labels are unit squares and w([a, b]) = b−a, GREEDY-
MAXTOTAL is a 1/24-, 1/16-, 1/8-approximation for AM1–AM3, respectively, and needs
O(n log n) time for AM1 and O(n2) time for AM2 and AM3.

Proof. To show the approximation ratios, we consider an arbitrary step of GREEDY-
MAXTOTAL in which the presence interval I = [a, b]` is selected from Ψ . Let CI` be
the set of presence intervals in Ψ that are in conflict with I .

Consider the model AM1. Since I is the longest interval in Ψ when it is chosen,
the intervals in CI` must be completely contained in J = [a− w(I), b+ w(I)]. As CI`
contains all presence intervals that are in conflict with I it is sufficient to consider J to
bound the effect of selecting I . Obviously, the interval J is three times as long as I . By

Lemma 2 we know that for any XI(t) it holds that |XI(t)| ≤ 8 for all t ∈ J . Hence, in
an optimal solution there can be at most eight active labels at each point t ∈ J that are
discarded when [a, b]` is selected. Thus, the cost of selecting [a, b]` is at most 3·8·w(I).

For AM2 we apply the same arguments, but restrict the interval J to J = [a, b +
w(I)], which is only twice as long as I . To see that consider for an interval [c, d]`′ ∈ CI`
the prefix [c, a] if it exists. If [c, a] does not exist (because a < c), removing [c, d]`′

from Ψ changes Ψ only in the range of J . If [c, a] exists, then again Ψ is only changed
in the range of I , because by definition [c, d]`′ is shortened to an interval that at least
contains [c, a] and is still contained in Ψ . Thus, the cost of selecting I is at most 2·8w(I).

Analogously, for AM3 we can argue that it is sufficient to consider the interval J =
[a, b]. By definition of the update operation of GREEDYMAXTOTAL at least the prefix
or suffix subinterval of each [c, d]`′ ∈ CI` remains in Ψ that extends beyond I (if such
an interval exists). Thus, selecting I influences only the interval J and its cost is at most
8w(I). The approximation bounds of 1/24, 1/16, and 1/8 follow immediately.

We use a heap to achieve the time complexity O(n log n) of GREEDYMAXTOTAL
for AM1 since each interval is inserted and removed exactly once. For AM2 and AM3
we use a linear sweep to identify the longest interval contained in Ψ . In each step we
need O(n) time to update all intervals in Ψ , and we need a total of O(n) steps. Thus,
GREEDYMAXTOTAL needs O(n2) time in total for AM2 and AM3. ut

4 Solving k-RESTRICTEDMAXTOTAL

Corollary 1 showed that k-RESTRICTEDMAXTOTAL can be solved by integer linear
programming in all activity models. In this section we prove that unlike GENERAL-
MAXTOTAL the problem k-RESTRICTEDMAXTOTAL can actually be solved in poly-
nomial time. We give a detailed description of our algorithm for AM1, and then show
how it can be extended to AM2. Note that solving k-RESTRICTEDMAXTOTAL is re-
lated to finding a maximum cardinality k-colorable subset of n intervals in interval
graphs. This can be done in polynomial time in both n and k [4]. However, we have to
consider additional constraints due to conflicts between labels, which makes our prob-
lem more difficult. First, we discuss how to solve the case for k = 1, then give an
algorithm that solves k-RESTRICTEDMAXTOTAL for k = 2, and extend this result re-
cursively to any constant k > 2. Since the running times of the presented algorithms
are, even for small k, prohibitively expensive in practice, we finally propose an approx-
imation algorithm for k-RESTRICTEDMAXTOTAL.

4.1 An Algorithm for 2-RESTRICTEDMAXTOTAL in AM1

We start with some definitions before giving the actual algorithm. We assume that the
intervals of Ψ = {I1, . . . , In} are sorted in non-decreasing order by their left endpoints;
ties are broken arbitrarily. First note that for the case that at most one label can be active
at any given point in time (k = 1), conflicts between labels do not matter. Thus, it is
sufficient to find an independent subset of Ψ of maximum weight. This is equivalent
to finding a maximum weight independent set on interval graphs, which can be done
in O(n) time using dynamic programming given n sorted intervals [8]. We denote this

Ii

Ij

Ip

Iq

Fig. 7: Illustration of presence intervals. Intervals that are in conflict are connected by a dotted
line. Both (Ii, Ij) and (Ip, Iq) are separating pairs. The intervals ofL2[i, j] (R2[p, q]) are marked
by a left (right) arrow.

algorithm by A1. Let L1[Ij] be the set of intervals that lie completely to the left of the
left endpoint of Ij . AlgorithmA1 basically computes a table T1 indexed by the intervals
in Ψ , where an entry T1[Ij] stores the value of a maximum weight independent set Q of
L1[Ij] and a pointer to the rightmost interval in Q.

We call a pair of presence intervals (Ii, Ij), i < j, a separating pair if Ii and Ij
overlap and are not in conflict with each other. Further, a separating pair v = (Ip, Iq)
is smaller than another separating pair w = (Ii, Ij) if and only if p < i or p = i and
q < j. This induces a total order and we denote the ordered set of all separating pairs by
S2={v1, . . . ,vz}. The weight of a separating pair v is defined as w(v) =

∑
I∈v w(I).

We observe that a separating pair v = (Ii, Ij) contained in a solution of 2-RE-
STRICTEDMAXTOTAL splits the set of presence intervals into two independent subsets.
Specifically, a left (right) subset L2[v] (R2[v]) that contains only intervals which lie
completely to the left (right) of the intersection of Ii and Ij and are neither in conflict
with Ii nor Ij ; see Fig. 7.

We are now ready to describe our dynamic programming algorithm A2. For ease
of notation we add two dummy separating pairs to S2. One pair v0 with presence in-
tervals strictly to the left of 0 and one pair vz+1 with presence intervals strictly to the
right of 1. Since all original presence intervals are completely contained in [0, 1] every
optimal solution contains both dummy separating pairs. Our algorithm computes a one-
dimensional table T2, where for each separating pair v there is an entry T2[v] that stores
the value of the optimal solution for L2[v]. We compute T2 from left to right starting
with the dummy separating pair v0 and initialize T2[v0] = 0. Then, we recursively de-
fine T2[vj] for every vj ∈ S2 as T2[vj] = maxi<j{T2[vi]+w(vi)+A1(vi,vj) | vi ∈
S2, vi ⊆ L2[vj], vj ⊆ R2[vi]}. Additionally, we store a backtracking pointer to the
predecessor pair that yields the maximum value. In other words, for computing T2[vj]
we consider all possible direct predecessors vi ∈ S2 with i < j, vi ∩ vj = ∅, and no
conflict with vj . Each such vi induces a candidate solution whose value is composed
of T2[vi], w(vi), and the value of an optimal solution of algorithm A1 for the intervals
between vi and vj with vi and vj active.

Since by construction L2[vz+1] = Ψ ∪ v0, the optimal solution to 2-RESTRIC-
TEDMAXTOTAL is stored in T2[vz+1] once v0 is removed. To compute a single entry
T2[vj] our algorithm needs to consider all possible separating pairs preceding vj , and
for each of them obtain the optimal solution from algorithm A1 under some additional
constraints. For the call A1(vi,vj) in the recursive equation above, we distinguish two
cases. If the rightmost endpoint of vi is to the left of the leftmost endpoint of vj then we
run algorithmA1 on the set of intervalsL2[vj]∩R2[vi] and obtain the valueA1(vi,vj).

Otherwise, there is an overlap between an interval Ia of vi and an interval Ib of vj .
Since for k = 2 no other interval can cross this overlap, we actually make two calls
to A1, once on the set R2[vi] ∩ L2[(Ia, Ib)] and once on the set R2[(Ia, Ib)] ∩ L2[vj].
We add both values to obtain A1(vi,vj). Since we run algorithm A1 for each of O(z)
separating pairs, the time complexity to compute a single entry of T2 is O(nz). To
compute the whole table the algorithm repeats this stepO(z) times, which yields a total
time complexity of O(nz2). Note that the number of separating pairs z is in O(n2).

We prove the correctness of the algorithm by contradiction. Assume that there exists
an instance for which our algorithm does not compute an optimal solution and let OPT
be an optimal solution. This means, that there is a smallest separating pair vj for which
the entry in T2[vj] is less than the value of OPT for L2[vj]. Note that vj cannot be
the dummy separating pair v0 since T2[v0] is trivially correct. Let vi be the rightmost
separating pair in OPT that precedes vj and is disjoint from it (possibly vi = v0). Since
there is no other disjoint separating pair between vi and vj in OPT, all intervals in OPT
between vi and vj form a subset of R2[vi] ∩ L2[vj] that is a valid configuration for
k = 1. We can obtain an optimal solution for k = 1 of the intervals inR2[vi]∩L2[vj] by
computing A1(vi,vj) as described above. Since, by assumption, T2[vi] is optimal, A1

is correct [8], and our algorithm explicitly considers all possible preceding separating
pairs including vi, the entry T2[vj] must be at least as good as OPT for L2[vj]. This is
a contradiction and the correctness of A2 follows.

Theorem 4. AlgorithmA2 solves 2-RESTRICTEDMAXTOTAL in AM1 in O(nz2) time
and O(z) space, where z is the number of separating pairs in the input instance.

4.2 An Algorithm for k-RESTRICTEDMAXTOTAL in AM1

In the following we extend the dynamic programming algorithm A2 to a general algo-
rithmAk for the case k > 2. To this end, we extend the definition of separating pairs to
separating k-tuples. A separating k-tuple v is a set of k presence intervals that are not
in conflict with each other and that have a non-empty intersection Yv =

⋂
I∈v I . We

say a separating k-tuple v is smaller than a separating k-tuple w if Yv begins to the left
of Yw. Ties are broken arbitrarily. This lets us define the ordered set Sk = {v1, . . . ,vz}
of all separating k-tuples of a given set of presence intervals. We say a set C of pres-
ence intervals is k-compatible if no more than k intervals in C intersect at any point
and there are no conflicts in C. Two separating k-tuples v and w are k-compatible
if they are disjoint and v ∪ w is k-compatible. The definitions of the sets R2[v] and
L2[v] extend naturally to the sets Rk[v] and Lk[v] of all intervals completely to the
right (left) of Yv and not in conflict with any interval in v. Now, we recursively de-
fine the algorithm Ak that solves k-RESTRICTEDMAXTOTAL given a pair of active
k-compatible boundary k-tuples. Note that in the recursive definition these boundary
tuples may remain k-dimensional even in Ak′ for k′ < k. For Ak we define as bound-
ary tuples two k-compatible dummy separating k-tuples v0 and vz+1 with all presence
intervals strictly to the left of 0 and to the right of 1, respectively. The algorithm fills a
one-dimensional table Tk. Similarly to the case k = 2, each entry Tk[v] stores the value
of the optimal solution for Lk[v], i.e., the final solution can again be obtained from
Tk[vz+1]. We initialize Tk[v0] = 0. Then, the remaining entries of Tk can be obtained

by computing Tk[vj] = maxi<j{Tk[vi] + w(vi) + Ak−1(ṽi, ṽj) | vi ∈ Sk, vi ⊆
Lk[vj] ∪ v0, vj ⊆ Rk[vi] ∪ vz+1, v0 ∪ vz+1 ∪ vi ∪ vj is k-compatible}, which uses
the algorithm Ak−1 recursively on a suitable subset of presence intervals between the
boundary tuples ṽi and ṽj . Here ṽi is defined as the union of the tuple vi and all inter-
vals in v0 ∪ vz+1 that intersect the right endpoint of Yvi

; analogously ṽj is defined as
the union of the tuple vj and all intervals in v0 ∪ vz+1 that intersect the left endpoint
of Yvi

. This makes sure that in each subinstance all active intervals that are relevant for
that particular subinstance are known. Note that by the k-compatibility condition ṽi and
ṽj contain at most k elements each. In fact, Ak−1(ṽi, ṽj) uses ṽi and ṽj as boundary
k-tuples (and thus does not create dummy boundary tuples) and the set Rk[vi]∩Lk[vj]
as the set of presence intervals from which separating (k − 1)-tuples can be formed.

Theorem 5. AlgorithmAk solves k-RESTRICTEDMAXTOTAL in AM1 inO(nk
2+k−1)

time and O(nk) space.

Proof. We show the correctness of Ak by induction on k. Theorem 4 shows that the
statement is true for k = 2. Let k > 2. Since Ak only considers solutions where ad-
jacent separating k-tuples are k-compatible with each other and the boundary k-tuples,
we cannot produce an invalid solution, i.e., a solution with conflicts or more than k
active intervals at any point. We prove the correctness by contradiction. So assume that
there is an instance Ψ for which Ak does not compute an optimal solution and let OPT
be an optimal solution. There must be a smallest separating k-tuple vj , j > 0, for which
Tk[vj] is less than the value of OPT for Lk[vj]. Let vi, i < j be the rightmost disjoint
separating k-tuple in OPT that precedes vj such that the set v0 ∪ vi ∪ vj ∪ vz+1 is
k-compatible. By our assumption Tk[vi] has the same value as OPT on Lk[vi]. For the
set of intervals Lk[vj] ∩ Rk[vi] there are at most k − 1 active intervals at any point
(otherwise vi is not rightmost). This means that when we run algorithm Ak−1 on that
instance with the boundary tuples ṽi and ṽj , i.e., vi and vj enriched by all relevant
intervals in v0 ∪ vz+1, we obtain by induction a solution that is at least as good as the
restriction of OPT to that instance. Since vi is a valid predecessor k-tuple for vj the al-
gorithmAk considers it. So Tk[vj] ≥ Tk[vi]+w(vi)+Ak−1(ṽi, ṽj), which is at least
as good as OPT restricted to Lk[vj]. This is a contradiction and proves the correctness.

For proving the time and space complexity let zi be the number of separating i-
tuples in an instance for 1 < i ≤ k. Each zi is in O(ni). We again use induction on
k. For A2 Theorem 4 yields O(n5) time and O(n2) space, which match the bounds
to be shown. So let k > 2. The table Tk has O(zk) ⊆ O(nk) entries and each of
the recursive computations of Ak−1 need O(nk−1) space by the induction hypothesis.
Thus the overall space is dominated by Tk and the bound follows. Checking whether a
separating k-tuple vi ∈ Sk is a feasible predecessor for a particular vj can easily be
done in O(k2) time, which is dominated by the time to compute Ak−1(ṽi, ṽj). So for
the running time we observe that each entry in Tk makesO(zk) calls toAk−1 and hence
the overall running time is indeed O(n2k · n(k−1)2+(k−1)−1) = O(nk

2+k−1). ut

4.3 Extending the algorithm for k-RESTRICTEDMAXTOTAL to AM2

With some modifications and at the expense of another polynomial factor in the run-
ning time we can extend algorithm Ak of the previous section to the activity model

AM2, which shows that k-RESTRICTEDMAXTOTAL in AM2 can still be solved in
polynomial time. In the following we give a sketch of the modifications. The impor-
tant difference between AM1 and AM2 is that presence intervals can be truncated at
their right side if there is an active conflicting witness label causing the truncation.
We need two modifications to model this behavior. First, we create for each original
presence interval Ii = [ai, bi] in Ψ at most n prefix intervals Iji = [ai, cij], where
cij is the start of the first conflict between Ii and Ij ∈ Ψ . Each interval Iji inher-
its the conflicts of Ii that intersect Iji . We obtain a modified set of presence intervals
Ψ ′ = Ψ ∪ {Iji | Ii, Ij ∈ Ψ and Ii, Ij in conflict} of size O(n2). We create mutual con-
flicts among all intervals that are prefixes of the same original interval. This will enforce
that at most one of them is active. We still have to take care that a truncated interval Iji
can only be active if Ij (or a prefix of Ij) is active at cij as a witness.

In order to achieve this we instantiate the algorithm Ak′ for every k′ ≤ k not only
with its two boundary k-tuples ṽ0 and ṽz+1 but also with a set W of at most k witness
intervals that are k-compatible and must be made active at some stage of the algorithm.
In a valid solution we haveW ⊆ Lk′ [v]∪v for the leftmost separating k′-tuple v, since
otherwise more than k′ intervals are active in Yv . However, the truncated intervals in v
themselves define a family of O(nk

′
) possible witness sets W (v) to be respected to the

right of v. So when we compute the table entry for a separating k′-tuple vj and consider
a particular predecessor k′-tuple vi we must in fact iterate over all possible witness sets
W (vi) as well. We need to make sure that vj is W (vi)-compatible, i.e., vj ∪W (vi)
is k-compatible and W (vi) ⊆ Lk′ [vj]∪ vj . For the recursive call toAk′−1(ṽi, ṽj) the
initial witness set W ′ consists ofW (vi)\vj , i.e., those witness intervals of W (vi) that
are not part of vj .

The increase in running time is caused by dealing with O(n2) intervals in Ψ ′ and
by the fact that instead of one call to Ak−1(ṽi, ṽj) in the computation of table Tk we
make O(nk) calls, one for each possible witness set of vi. By an inductive argument
one can show that the running time is in O(n3k

2+2k).

Theorem 6. k-RESTRICTEDMAXTOTAL in AM2 can be solved in polynomial time.

It remains open whether k-RESTRICTEDMAXTOTAL can be solved in polynomial
time in AM3. Another extension of the dynamic programming algorithm is unlikely,
since in AM3 the left and right subinstances created by a separating k-tuple v may
have dependencies and thus cannot be solved independently any more. This is because
a single original presence interval I can have subintervals both in Lk[v] and Rk[v],
which cannot simultaneously be active.

4.4 Approximation of k-RESTRICTEDMAXTOTAL

Since the running times of our algorithms for k-RESTRICTEDMAXTOTAL are, even for
small k, prohibitively expensive in practice, we propose an approximation algorithm for
k-RESTRICTEDMAXTOTAL based on GREEDYMAXTOTAL.

Our algorithm GREEDYRESTRICTEDMAXTOTAL is a simple extension of GREEDY-
MAXTOTAL. Recall that GREEDYMAXTOTAL greedily removes the longest interval I
from Ψ and adds it to the set Φ that contains the active intervals of the solution. Then, it

updates all intervals contained in Ψ that are in conflict with I . This process is repeated
until Ψ is empty. For approximating k-RESTRICTEDMAXTOTAL we need to ensure
that there is no point in time t that is contained in more than k intervals in Φ. We call
intervals which we cannot add to Φ without violating this property invalid.

Our modification of GREEDYMAXTOTAL is as follows. After adding an interval I
to Φ and handling conflicts as before, we remove intervals from Ψ that became invalid.
We say that we ensure that I is valid. Note that we cannot shorten those intervals be-
cause then we could not ensure that adding an interval from Ψ to Φ is valid according
to our model.

In order to prove approximation ratios we first introduce the following lemma that
describes the structure of a solution of k-RESTRICTEDMAXTOTAL.

Lemma 3. Let S be a set of intervals such that there is no number that is contained in
more than k intervals from S. Then, there is a partition of S into k sets M1, . . . ,Mk,
such that no two intersecting intervals are in the same set Mi.

Proof. Let I1, . . . , Im be all intervals of S sorted by their left endpoints in non-decreasing
order. In the following we describe how to construct the partition.

We start with empty setsM1, . . . ,Mk. First, add I1 toM1. Assume that the first i−1
intervals have been added to the sets M1, . . . ,Mk. We describe how to add Ii. If there
is an empty set Mj then, we simply add Ii to Mj . Otherwise, Let Ii1 , . . . , Iik be the
rightmost intervals in the sets M1, . . . ,Mk, respectively. We denote the set containing
those intervals by R. Let I =

⋂
I∈R I . If I is not empty then, due to the order of

the intervals, the interval Ii cannot begin to the left of I. It also cannot begin in I
because otherwise there would be a number that is contained in k + 1 intervals in S.
Let Mx, 1 ≤ x ≤ k be the set that contains the interval I ∈ R with leftmost right
endpoint among the intervals inR. Since Ii lies completely to the right of I it must also
lie completely to the right of I . Thus we can assign Ii to the setMx without introducing
intersections. If I is empty, then there must be an interval I ∈ R with right endpoint
to the left of another I ′ ∈ R. Let Mx, 1 ≤ x ≤ k be the set that contains the interval
I . Due to the order of the intervals the interval Ii lies completely to the right of I and
hence we assign Ii to Mx without introducing intersections. This concludes the proof.

With this lemma we now can prove the following theorem that makes an statement
about the approximation ratio of GREEDYRESTRICTEDMAXTOTAL

Theorem 7. Assuming that all labels are unit squares and w([a, b]) = b−a, GREEDY-
RESTRICTEDMAXTOTAL is a 1/min{3 + 3k, 27}, 1/min{3 + 2k, 19}, 1/min{3 +
k, 11}-approximation for AM1–AM3, respectively, and needs O(n2).

Proof. We begin by proving its correctness and then we show its time complexity.
Consider the step in which we add an interval I = [a, b] to Φ, and let J = [a −

w(I), b + w(I)]. Let L be a fixed, but arbitrary optimal solution. If I ∈ L, there is no
lost weight compared to the optimal solution when choosing I .

Thus, assume that I 6∈ L. Let C(I) ⊆ L be the set of intervals that are in con-
flict with I . Identically to the proof of Theorem 3 we can argue that w(C(I)) =∑
I∈C w(I) ≤ (4−X) ·8 ·w(I) considering activity model AMX with X ∈ {1, 2, 3}.

We now show that at most 3w(I) weight of the optimal solution is lost when ensur-
ing that I is valid.

By Lemma 3 we can partition L into k sets M1, . . . ,Mk such that no two intersect-
ing intervals are in the same set Mi. If I is in L, then we do not lose any weight com-
pared to the optimal solution. Hence, assume that I is not in L. Take anyMi, 1 ≤ i ≤ k,
remove all intervals of L \ Φ that intersect I , and add I to Mi. We denote the set of re-
moved intervals by R. In the following we bound the cost of removing the intervals
in R. If there are intervals in R that are longer than I , then we have already accounted
for them in previous steps. This relies on the fact that we consider the intervals sorted
by their length in non-ascending order, and, hence if those longer intervals are not in Φ,
we must have removed them in an earlier step. Thus, we only need to bound the length
of intervals inR which have length at most w(I). Those intervals must lie in J , and due
to the definition of Mi they must be disjoint. Hence, the cost is bounded by 3w(I).

All together choosing I causes that at most 3w(I)+ (4−X) ·8 ·w(i) weight is lost
compared to the optimal solution considering activity model AMX with X ∈ {1, 2, 3}.
Finally, this yields an approximation factor of 1/27, 1/19, 1/11 for AM1-3, respectively.

For k < 8 we can improve w(C(I)) ≤ (4−X) · 8 · w(i) to w(C(I)) ≤ (4−X) ·
k · w(i) considering activity model AMX with X ∈ {1, 2, 3} because we know that I
cannot be in conflict with more than k intervals of the optimal solution. Thus, we can
bound the loss of choosing I by 3w(I) + (4 − X) · k · w(i). In total this yields the
claimed approximation ratios for the three activity models.

Finally, we argue the correctness of the claimed running time of O(n2). Since the
worst-case running time of GREEDYMAXTOTAL is O(n2) we only need to argue that
we can delete those intervals from Φ, which are not valid anymore, in O(n) time per
step. To do this we simply sort the intervals in Ψ in non-decreasing order by their left-
endpoint. We also maintain Φ in the same way. Then, we can check for non-valid inter-
vals with a simple linear sweep over Ψ and Φ. Hence, each iteration of the algorithm
requires O(n) time, which yields a total running time of O(n2). ut

5 Conclusions

We have introduced a trajectory-based model for dynamic map labeling that satisfies
the consistency criteria demanded by Been et al. [2], even in a stronger sense, where
each activity change of a label must be explainable to the user by some witness label.
Our model transforms the geometric information specified by trajectory, viewport, and
labels into the two combinatorial problems GENERALMAXTOTAL and k-RESTRIC-
TEDMAXTOTAL that are expressed in terms of presence and conflict intervals. Thus
our algorithms apply to any dynamic labeling problem that can be transformed into such
an interval-based problem; the analysis of the approximation ratios, however, requires
problem-specific geometric arguments, which must be adjusted accordingly.

We showed that GENERALMAXTOTAL is NP-complete and W[1]-hard and pre-
sented an ILP model, which we also implemented and evaluated, and constant-factor
approximation algorithms for our three different activity models. The problem k-RE-
STRICTEDMAXTOTAL, where at most k labels can be visible at any time, can be solved
in polynomial timeO(nf(k)) in activity models AM1 and AM2 for any fixed k, where f

is a polynomial function. Due to theW[1]-hardness of GENERALMAXTOTAL we can-
not expect to find better results for the running times, apart from improving upon the
function f . We therefore also presented an O(n2)-time approximation algorithm for
k-RESTRICTEDMAXTOTAL in all three activity models.

It remains open whether k-RESTRICTEDMAXTOTAL is polynomially solvable in
activity model AM3. Further, the analysis of the approximation algorithms for both
k-RESTRICTEDMAXTOTAL and GENERALMAXTOTAL significantly relies on the as-
sumption that labels are unit squares. Thus, the question arises, whether constant-factor
approximations exist when this assumption is dropped or softened, e.g., to labels of
unit-height. To answer this question we think that deeper insights into the structure of
conflicts are necessary, e.g., does the geometric information based on trajectory, view-
port and labels imply a useful structure on the induced label conflict graph?

References

1. P. K. Agarwal, M. van Kreveld, and S. Suri. Label placement by maximum independent set
in rectangles. Comput. Geom. Theory & Appl., 11(3-4):209–218, 1998.

2. K. Been, E. Daiches, and C. Yap. Dynamic map labeling. IEEE Trans. Visualization and
Computer Graphics, 12(5):773–780, 2006.

3. K. Been, M. Nöllenburg, S.-H. Poon, and A. Wolff. Optimizing active ranges for consistent
dynamic map labeling. Comput. Geom. Theory & Appl., 43(3):312–328, 2010.

4. M. C. Carlisle and E. L. Lloyd. On the k-coloring of intervals. Discr. Appl. Math., 59(3):225–
235, 1995.

5. P. Chalermsook and J. Chuzhoy. Maximum independent set of rectangles. In ACM-SIAM
Symp. Discr. Algorithms (SODA’09), pages 892–901, 2009.

6. R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing and covering in the plane
are NP-complete. Inform. Process. Lett., 12(3):133–137, 1981.

7. A. Gemsa, M. Nöllenburg, and I. Rutter. Consistent labeling of rotating maps. In F. Dehne,
J. Iacono, and J.-R. Sack, editors, Int. Symp. Algorithms & Data Structures (WADS’11),
volume 6844 of LNCS, pages 451–462. Springer, 2011.

8. J. Y. Hsiao, C. Y. Tang, and R. S. Chang. An efficient algorithm for finding a maximum
weight 2-independent set on interval graphs. Inform. Process. Lett., 43(5):229 – 235, 1992.

9. D. Marx. Efficient approximation schemes for geometric problems?. In G. Brodal and
S. Leonardi, editors, European Symposium on Algorithms (ESA’05), volume 3669 of LNCS,
pages 448–459. Springer, 2005.

10. B. Niedermann. Consistent labeling of dynamic maps using smooth trajectories. Master’s
thesis, Karlsruhe Institute of Technology, June 2012.

11. M. Sester and C. Brenner. Continuous generalization for visualization on small mobile de-
vices. In P. F. Fisher, editor, Developments in Spatial Data Handling (SDH’04), pages 355–
368. Springer, 2004.

12. F. Wagner and A. Wolff. A practical map labeling algorithm. Comput. Geom. Theory &
Appl., 7:387–404, 1997.

13. F. Wagner, A. Wolff, V. Kapoor, and T. Strijk. Three rules suffice for good label placement.
Algorithmica, 30:334–349, 2001.

	Trajectory-Based Dynamic Map Labeling

