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Abstract

We address the problem of computing a Walrasian equilibrium price
in an ascending auction with gross substitutes valuations. In partic-
ular, an auction market is considered where there are multiple differ-
entiated goods and each good may have multiple units. Although the
ascending auction is known to find an equilibrium price vector in fi-
nite time, little is known about its time complexity. The main aim of
this paper is to analyze the time complexity of the ascending auction
globally and locally, by utilizing the theory of discrete convex analysis.
An exact bound on the number of iterations is given in terms of the
L∞ distance between the initial price vector and an equilibrium, and
an efficient algorithm to update a price vector is designed based on a
min-max theorem for submodular function minimization.
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1 Introduction

We study an ascending auction, where given a set of discrete (or indivisible)
items, the auctioneer aims to find an efficient allocation of items to bidders
as well as a market clearing prices of the items (see [5, 6] for surveys). In
recent years, there has been a growing use of iterative auctions for items
such as spectrum licenses in telecommunication, electrical power, landing
slots at airports, etc. In this paper, we consider the setting where there are
multiple indivisible items for sale and each item may have multiple units;
this is more general than the single-unit setting used extensively in the lit-
erature. A fundamental concept in auctions is the Walrasian equilibrium
(or competitive equilibrium), which is a pair of a price vector and an allo-
cation of items satisfying a certain fundamental property (see below for the
precise definition). The main aim of this paper is to analyze the problem of
computing a Walrasian equilibrium with respect to the time complexity, by
utilizing the theory of discrete convex analysis.

Multi-Item Auction and Walrasian Equilibrium The auction market
model is formulated as follows. In the market, there are n types of items
or goods, denoted by N = {1, 2, . . . , n}, and m bidders, denoted by M =
{1, 2, . . . ,m}. We have u(i) ∈ Z+ units available for each item i ∈ N . The
case with u(i) = 1 (i ∈ N) is referred to as the single-unit auction in this
paper. We denote the integer interval as [0, u]Z = {x ∈ Zn | 0 ≤ x ≤ u};
note that [0,1]Z = {0, 1}n. Each vector x ∈ [0, u]Z is often called a bundle;
a bundle x corresponds to a (multi)-set of items, where x(i) represents the
multiplicity of item i ∈ N . Each bidder j ∈ M has his valuation function
fj : [0, u]Z → R; the value fj(x) represents the degree of satisfaction for a
bundle x. Each fj is assumed to be a monotone nondecreasing and non-
negative integer-valued function. An allocation of items is defined as a set
of bundles x1, x2, . . . , xm ∈ [0, u]Z satisfying

∑m
j=1 xj = u.

In an auction, we want to find an efficient allocation and a competitive
price vector. Given a price vector p ∈ Rn, each bidder j ∈ M wants to have
a bundle x which maximizes the value fj(x)− p⊤x. For j ∈ M and p ∈ Rn,
define

Vj(p) = max{fj(x)− p⊤x | x ∈ [0, u]Z}, (1)

Dj(p) = argmax{fj(x)− p⊤x | x ∈ [0, u]Z}. (2)

We call the function Vj : Rn → R and the set Dj(p) ⊆ [0, u]Z an indirect
utility function and a demand set, respectively. On the other hand, the auc-
tioneer wants to find a price vector under which all items are sold completely.
Hence, all of the auctioneer and bidders are happy if we can find a pair of a
price vector p∗ and an allocation x∗1, x

∗
2, . . . , x

∗
m satisfying the condition that

x∗j ∈ Dj(p
∗) for j ∈ M . Such a pair is called a Walrasian equilibrium; p∗ is
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called a Walrasian equilibrium price vector (see, e.g., [5, 6]). In this paper,
we consider the problem of finding a Walrasian equilibrium in a (multi-unit)
auction.

Although the Walrasian equilibrium possesses a variety of desirable prop-
erties, it does not always exist. It is known that a Walrasian equilibrium
does exist in single-unit auctions under a natural assumption on bidder’s
valuation functions, called gross substitutes condition.

Gross Substitutes Condition and Discrete Concavity We say that
function fj satisfies gross substitutes (GS) condition if it satisfies the follow-
ing:

(GS) ∀p, q ∈ Rn
+ with p ≤ q, ∀x ∈ Dj(p), ∃y ∈ Dj(q)

such that x(i) ≤ y(i) (∀i ∈ N with p(i) = q(i)).

This condition means that a bidder still wants to get items that do not
change in price after the prices of other items increase. The concept of GS
condition is introduced in Kelso and Crawford [13] for a fairly general two-
sided job matching model. Since then, this condition has been widely used
in various models such as matching, housing, and labor markets (see, e.g., [2,
4, 5, 6, 8, 9, 15]). In particular, Gul and Stacchetti [9] show the existence of a
Walrasian equilibrium in a single-unit auction if bidders’ valuation functions
satisfy the GS condition and propose two equivalent conditions to GS; they
also show that the GS condition is an “almost” necessary condition for the
existence of an equilibrium in a single-unit auction.

Various characterizations of GS condition are given in the literature of
discrete convex analysis and auction theory [2, 8, 9]. Among them, Fujishige
and Yang [8] revealed the relationship between GS condition and discrete
concavity called M♮-concavity. A valuation function fj : [0, u]Z → R is said
to be M♮-concave (read “M-natural-concave”) if it satisfies the following:

(M♮-EXC) ∀x, y ∈ [0, u]Z, ∀i ∈ supp+(x− y), ∃k ∈ supp+(x−
y) ∪ {0}:

fj(x) + fj(y) ≤ fj(x− χi + χk) + fj(y + χi − χk).

Here, we denote supp+(x) = {i ∈ N | x(i) > 0}, supp−(x) = {i ∈ N |
x(i) < 0} for a vector x ∈ Rn, χi ∈ {0, 1}n is the characteristic vector of
i ∈ N , and χ0 = 0 = (0, 0, . . . , 0).

The concept of M♮-concave function is introduced by Murota and Shioura
[19] as a class of discrete concave functions (independently of GS condition).
It is an extension of the concept of M-concave function introduced by Murota
[17]. The concepts of M♮-concavity/M-concavity play primary roles in the
theory of discrete convex analysis [18].

It is shown by Fujishige and Yang [8] that GS condition and M♮-concavity
are equivalent in the case of single-unit auctions.
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Theorem 1.1. A valuation function f : {0, 1}n → R defined on 0-1 vectors
satisfies the GS condition if and only if it is an M♮-concave function.

This result initiated a strong interaction between discrete convex analysis
and auction theory; the results obtained in discrete convex analysis are used
in auction theory ([4, 15], etc.), while auction theory provides discrete convex
analysis with interesting applications (see, e.g., [20]).

The GS condition, however, is not sufficient for the existence of an equi-
librium in a multi-unit setting (see, e.g., [16]). In the last decade, several
researchers independently tried to derive conditions for valuation functions
to guarantee the existence of an equilibrium in a multi-unit setting (see, e.g.,
[16, 20]). Murota and Tamura [20] derive a stronger version of GS condition
by using the relationship with M♮-concavity, and prove the existence of an
equilibrium in more general setting (see also [18, Ch. 11]). In this paper, we
use the following alternative condition given in [16], which is obtained by
adding to (GS) an extra inequality:

(SGS) ∀p, q ∈ Rn
+ with p ≤ q, ∀x ∈ Dj(p), ∃y ∈ Dj(q)

s.t. x(i) ≤ y(i) (∀i ∈ N with p(i) = q(i))
and

∑
i∈N x(i) ≥

∑
i∈N y(i).

The extra inequality
∑

i∈N x(i) ≥
∑

i∈N y(i) means that if prices are in-
creased, then a bidder wants less items than before. This condition turns
out to be equivalent to M♮-concavity (see Theorem 1.5 below), and also to
the condition in [20]. Note that for valuation functions on {0, 1}n, the SGS
condition is equivalent to the GS condition (see [16]). Throughout this pa-
per we assume that all of the bidders’ valuation functions satisfy the SGS
condition. Examples of such valuation functions are given in Section A.1.

Iterative Auctions and Ascending Auctions The main theme of this
paper is the computation of a Walrasian equilibrium in an ascending auction.
We focus on the computation of an equilibrium price vector p∗ since an
allocation in the equilibrium can be computed efficiently once we obtain p∗.
In the computation, we assume that bidders’ valuation functions fj are given
implicitly by so-called demand oracles, i.e., we can get the information about
demand set Dj(p) for a price vector p, but no information is available about
the function values of fj . This assumption is very plausible, since bidders
want to preserve their privacy about valuation functions and disclose only
the information that is really needed.

In the auction literature an algorithm called the iterative auction (or
dynamic auction, Walrasian auction, Walrasian tâtonnement process, etc.)
is often used to find an equilibrium [5, 6]. An iterative auction computes an
equilibrium price vector by iteratively updating a current price vector p by
using the information of demand sets Dj(p). The most natural and popular
iterative auction is the ascending auction, in which the current price vector is
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increased monotonically. The ascending auction is a natural generalization
of the classical English auction for a single item, and known to have various
nice properties (see, e.g., [5, 6]); in particular, it is quite natural from the
economic point of view, and easy to understand and implement.

In this paper, we consider the ascending auction1 presented in Ausubel
[1]. This algorithm can be seen as a simplified version of the one in Gul and
Stacchetti [10], where the Lyapunov function defined by

L(p) =

m∑
j=1

Vj(p) + u⊤p (p ∈ Rn) (3)

is used. It is known (see [1, 22]) that p∗ is an equilibrium price vector if
and only if it is a minimizer of the Lyapunov function and that there exists
an integral minimizer p∗ ∈ Zn of the Lyapunov function. Based on this
fact, the ascending auction in [1] tries to find a minimizer of the Lyapunov
function. For X ∈ 2N , we denote by χX ∈ {0, 1}n the characteristic vector
of X.

Algorithm Ascend
Step0: Set p:=p◦, where p◦ is a lower bound of some p∗∈ argminL (e.g.,
p◦ = 0).
Step1: Find X ⊆ N that minimizes L(p+ χX).
Step2: If L(p+ χX) = L(p), then output p and stop.
Step3: Set p := p+ χX and go to Step 1.

It can be shown (cf. [1]) that this algorithm outputs an equilibrium price
vector in a finite number of iterations. While the ascending auction has
various nice properties (see, e.g., [5, 6]), it has a disadvantage that the initial
price vector must be a lower bound of some equilibrium vector. Taking this
into consideration, Ausubel [1] also propose an alternative iterative auction,
which allows us to start with an arbitrary price vector, but has a drawback
that the change of the price vector is not monotone.

Our Contribution The main aim of this paper is to theoretically ana-
lyze the ascending auction and other iterative auctions with respect to their
time complexity. While computational experiments are often used to evalu-
ate the practical performance of iterative auctions (see [3, 21]), there is no
theoretical analysis of the time complexity, even in the case of the single-unit
auction, except for the termination in finite time (see, e.g., [11] for related
results in the case of single-item auctions where there is only one item). This
paper gives the first theoretical analysis in the case of multi-unit auctions.

The results in this paper consist of the following two:

1Our Ascend is slightly different from “Ascending Tâtonnement Algorithm” in [1] in
the choice of X in Step 1; X is a minimal minimizer of L(p + χX) in [1], while it can
be any minimizer in ours, which is easier to find than a minimal minimizer and does not
increase the number of iterations. This is an additional merit of our algorithm.
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(i) Tight bounds on the number of iterations of iterative auctions,
(ii) An efficient algorithm for the update of a price vector.

Our first result is the analysis of the number of iterations required by the
algorithm Ascend. The upper bound established in this paper is useful in
practice by providing bidders with an a priori guarantee for the time period
of the auction process. The exact bound for the number of iterations in
Ascend is given in terms of the distance between the initial price vector
and a minimizer of the Lyapunov function L. For the analysis, we define

µ̂(p) = min{∥p∗ − p∥∞ | p∗ ∈ argminL, p∗ ≥ p} (p ∈ Zn).

It is easy to see that the value µ̂(p) remains the same or decreases by one
in each iteration of the algorithm. Hence, if p◦ is the initial vector, then
µ̂(p◦) + 1 is a lower bound for the number of iterations. We show that this
bound is also an upper bound.

Theorem 1.2. Suppose that the initial vector p◦ in the algorithm Ascend
is a lower bound of some minimizer of the Lyapunov function L. Then, the
algorithm outputs a minimizer of L and terminates in µ̂(p◦) + 1 = ∥p∗ −
p◦∥∞ + 1 iterations.

This result shows that the trajectory of a price vector generated by
Ascend is the “shortest” path between the initial vector and a minimizer
of the Lyapunov function. This reveals a new advantage of the ascending
auction in addition to various known properties. We also propose some other
iterative auctions in this paper and derive tight bounds for the number of
iterations in these algorithms.

Our second result concerns the update of a price vector. The algorithm
Ascend and other iterative auctions considered in this paper update the
price vector by using an optimal solution of the problem min{L(p + χX) |
X ⊆ N} or min{L(p − χX) | X ⊆ N}. It is known that these problems
can be reduced to the submodular function minimization (SFM, for short).
Although polynomial-time algorithms are available for SFM [7, 18], they are
quite slow and complicated.

In this paper, we show that the SFM problems appearing in iterative
auctions can be solved more efficiently than by a straightforward application
of the existing SFM algorithms. We denote U = ∥u∥∞.

Theorem 1.3. For every p ∈ [0, u]Z, the problems min{L(p+χX) | X ⊆ N}
and min{L(p−χX) | X ⊆ N} can be solved in O(mn4 logU log(mnU)) time.

This improvement is achieved by using the merit that valuation functions
are given by demand oracles. Our SFM problems are interesting in their own
right since the submodular functions to be minimized can be represented as
follows by using demand sets; this representation admits a faster algorithm.
For x ∈ Rn and Y ⊆ N , we denote x(Y ) =

∑
i∈Y x(i).
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Lemma 1.4. For p ∈ Zn
+ and X ⊆ N , we have

L(p+ χX)− L(p) = −
∑
j∈M

min{y(X) | y ∈ Dj(p)}+ u(X), (4)

L(p− χX)− L(p) = −
∑
j∈M

max{y(X) | y ∈ Dj(p)}+ u(X). (5)

Our Technique Our proofs of Theorems 1.2 and 1.3 are based on the
equivalence between the SGS condition and M♮-concavity. To show this,
we assume the concave-extensibility for valuation functions as in [16]; a
valuation function f : [0, u]Z → Z is said to be concave-extensible if there
exists a concave function f̄ defined on {x ∈ Rn | 0 ≤ x ≤ u} such that
f̄(x) = f(x) for every x ∈ [0, u]Z.

Theorem 1.5. Let f : [0, u]Z → Z be a concave-extensible function. Then,
f satisfies the SGS condition if and only if it is an M♮-concave function.

Proof is given in Section A.2 in Appendix. We also point out that the Lya-
punov function has a discrete convexity called L♮-convexity. The definition
of L♮-convexity and the proof of the following theorem are given in Section
2.

Theorem 1.6. Suppose that each valuation function fj : [0, u]Z → Z (j ∈
M) is concave-extensible and satisfies the SGS condition. Then, the Lya-
punov function L : Rn → R is an L♮-convex function. In particular, L is a
submodular function.

The concepts of M♮-concavity and L♮-convexity play primary roles in the
theory of discrete convex analysis [18]. On the basis of Theorems 1.5 and
1.6, we can make full use of rich results from discrete convex analysis.

Throughout this paper, we mainly assume that valuation functions take
integer value. This assumption can be removed if we compute an ε-approximate
equilibrium price vector instead of an “exact” one; for ε > 0, an ε-approximate
equilibrium price vector p is defined as a vector such that ∥p− p∗∥∞ < ε for
some equilibrium price vector p∗. In such a case, all results in this paper
can be easily extended with slight modification; see Section A.11 for details.

2 Property of Indirect Utility Functions

In this section, we show that the indirect utility function V (p) = max{f(x)−
p⊤x | x ∈ [0, u]Z} is an L♮-convex function. This observation plays a crucial
role in the analysis of iterative auction algorithms. Since there exists an
integral equilibrium price vector (see Section 3), we may regard indirect
utility functions (and the Lyapunov function) as those defined on integral
vectors Zn, although they are originally defined on Rn.
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Function g : Zn → R is said to be L♮-convex [18] if for every p, q ∈ Zn

and every λ ∈ Z+, it holds that

g(p) + g(q) ≥ g((p+ λ1) ∧ q) + g(p ∨ (q − λ1)),

where 1 = (1, 1, . . . , 1) and for p, q ∈ Rn the vectors p ∧ q and p ∨ q denote,
respectively, the vectors obtained by component-wise minimum and maxi-
mum of p and q. It is easy to see that an L♮-convex function is a submodular
function on Zn, i.e., it satisfies

g(p) + g(q) ≥ g(p ∧ q) + g(p ∨ q) (∀p, q ∈ Zn).

Note that a function g : Zn → R is L♮-convex if and only if it satisfies the
following discrete mid-point convexity (see [18]):

g(p) + g(q) ≥ g(⌈(p+ q)/2⌉) + g(⌊(p+ q)/2⌋) (∀p, q ∈ Zn),

where ⌈x⌉ and ⌊x⌋ denote, respectively, the integer vectors obtained from
x ∈ Rn by component-wise round-up and round-down to the nearest integer.

Proposition 2.1. If fj : [0, u]Z → Z is an M♮-concave function, then its
indirect utility function Vj : Zn → Z is an L♮-convex function.

Using this property (proof is given in Section A.2), we can prove Theorem
1.6 on the L♮-convexity of the Lyapunov function L given by (3), as follows.

Since we assume that each valuation function fj is concave-extensible
and satisfies the SGS condition, it is M♮-concave by Theorem 1.5. Hence,
the indirect utility function Vj of fj is L♮-convex by Proposition 2.1. Since
any linear function is also an L♮-convex function and L♮-convexity is closed
under the addition of functions, the Lyapunov function L is also an L♮-convex
function.

3 Analysis for Number of Iterations in Iterative
Auctions

In this section, we consider the algorithmAscend and several other iterative
auction algorithms, and analyze the number of iterations.

Before starting the analysis, we firstly show that there exists an equilib-
rium price vector which is an integral vector contained in the finite interval
[0, p̄]Z, where p̄ ∈ Zn

+ is given by p̄(i) = maxj∈M{fj(χi)− fj(0)}. Note that
p̄ can be easily computed from bidders’ valuation functions. Proof is given
in Section A.3.

Proposition 3.1. There exists an equilibrium price vector p∗ with p∗ ∈
[0, p̄]Z.
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Hence, the zero vector 0 can be used as an initial vector p◦ in the al-
gorithm Ascend, and the number of iterations is at most

∑
i∈N p̄(i). We

will see below that the bounds for the number of iterations in Ascend and
other iterative auction algorithms are much smaller than

∑
i∈N p̄(i).

We firstly show the statement of Theorem 1.2 that the number of itera-
tions in Ascend is µ̂(p◦) + 1. Its proof is quite nontrivial and can be done
with the aid of some known results in discrete convex analysis; see Section
A.4. Note that any algorithm requires at least µ̂(p◦) + 1 iterations if it in-
creases a price vector by a 0-1 vector in each iteration. Hence, the algorithm
Ascend is the fastest among all iterative auction algorithms of this type,
and the trajectory of a price vector is a “shortest” path from the initial vector
to an equilibrium. In addition, since µ̂(p◦) ≤ maxi∈N{p̄(i)− p◦(i)}, we can
guarantee that the algorithm terminates in at most maxi∈N{p̄(i)−p◦(i)}+1
iterations.

Similarly to Ascend, we can consider an algorithm Descend as in [1],
where a price vector is decreased by a vector χX ∈ {0, 1}n which is a mini-
mizer of L(p−χX). It is easy to see that algorithm Descend enjoys similar
properties as Ascend. We define

µ̌(p) = min{∥p∗ − p∥∞ | p∗ ∈ argminL, p∗ ≤ p}.

Theorem 3.2. Suppose that the initial vector p◦ in the algorithm Descend
is a upper bound of some minimizer of the Lyapunov function L. Then, the
algorithm outputs a minimizer of L and terminates in µ̌(p◦) + 1 = ∥p∗ −
p◦∥∞ + 1 iterations.

An advantage of algorithms Ascend and Descend is that a price vector
is updated monotonically, which is an important property from the view-
point of auctions. They, however, have a drawback that the initial price
vector should be a lower or upper bound for some minimizer of Lyapunov
function L. In contrast, the following two algorithms can start from any
initial price vector and find an equilibrium. Therefore, the number of itera-
tions can be small if we can choose an initial vector which is close to some
minimizer of L.

The next algorithm TwoPhase can be seen as an application ofAscend
with an arbitrary initial vector, followed by Descend. The algorithm has a
merit that a price vector is updated “almost” monotonically.

Step 0: Let p◦ ∈ [0, p̄]Z be any vector. Set p := p◦. Go to Ascending Phase.
Ascending Phase:
Step A1: Find X ⊆ N that minimizes L(p+ χX)− L(p).
Step A2: If L(p+ χX) = L(p), then go to Descending Phase.
Step A3: Set p := p+ χX and go to Step A1.
Descending Phase:
Step D1: Find X ⊆ N that minimizes L(p− χX)− L(p).
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Step D2: If L(p− χX) = L(p), then output p and stop.
Step D3: Set p := p− χX and go to Step D1.

A specialized version of this algorithm to valuation functions defined on
{0, 1}n coincides with the one in [22]. An algorithm called “Global Walrasian
tâtonnement algorithm” in [1] repeats ascending and descending phases until
a minimizer of L is found; our analysis shows that this algorithm terminates
after only one ascending phase and only one descending phase.

To analyze the number of iterations required by TwoPhase, we define

µ(p) = min{∥p∗ − p∥+∞ + ∥p∗ − p∥−∞ | p∗ ∈ argminL} (p ∈ Zn),

∥p∗ − p∥+∞ = max
i∈N

max(0, p∗(i)− p(i)),

∥p∗ − p∥−∞ = max
i∈N

max(0,−p∗(i) + p(i)).

The value µ(p) can be regarded as the “distance” between the vector p and
a minimizer of L. By definition, µ(p) remains the same or decreases by one
if p is updated by adding or subtracting a 0-1 vector. Hence, the algorithm
TwoPhase requires at least µ(p◦) + 1 iterations. In the following, we show
that the number of iterations is bounded by 3µ(p◦) + 2; proof is given in
Section A.5.

Theorem 3.3. The algorithm TwoPhase outputs an equilibrium price vec-
tor in at most 3µ(p◦) + 2 iterations; more precisely, the ascending (resp.,
descending) phase terminates in at most µ(p◦)+1 iterations (resp. 2µ(p◦)+1
iterations).

We finally consider the algorithm Greedy, which can be seen as the
steepest descent (or greedy) algorithm for the minimization of the Lyapunov
function.

Step 0: Let p◦ ∈ [0, p̄]Z be any vector. Set p := p◦.
Step 1: Find ε ∈ {+1,−1} and X ⊆ N that minimize L(p+ εχX).
Step 2: If L(p+ εχX) = L(p), then output p and stop.
Step 3: Set p := p+ εχX and go to Step 1.

This can be seen as an application of the steepest descent algorithm for L♮-
convex function minimization (see [18]), for which the number of iterations
is analyzed in [14]. We give a refined analysis of this algorithm in terms
of the “distance” between the initial vector and a minimizer of L. Proof is
given in Section A.6.

Theorem 3.4. The algorithm Greedy outputs an equilibrium price vector
in at most µ(p◦) + 1 iterations.

As mentioned above, any iterative auction algorithm of this type requires
at least µ(p◦)+1 iterations. Theorem 3.4 shows that Greedy is the fastest
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among all iterative auction algorithms of this type, and the trajectory of a
price vector is a “shortest” path from the initial vector to an equilibrium.
Hence, Greedy has advantages in the choice of the initial vector and in the
number of iterations, but also has a disadvantage that it may repeat the
increment and decrement of a price vector many times, which is not a good
behavior from the viewpoint of auction.

It should be noted that the algorithms as well as their analysis in this
section can also be applied not only to the Lyapunov function but also to
any general L♮-convex function since our proofs do not rely on any special
structure of the Lyapunov function. In particular, the key property in our
proofs is the following property of L♮-convex functions.

Proposition 3.5 ([18, Theorem 7.7]). Let g : Zn → R be an L♮-convex
function. For every p, q ∈ Zn with supp+(p− q) ̸= ∅, it holds that

g(p) + g(q) ≥ g(p− χX) + g(q + χX),

where X = argmaxi∈N{p(i)− q(i)}.

4 Efficient Update of Price Vector

For the update of a price vector in the ascending auction and other iterative
auctions, we repeatedly solve the local optimization problems min{L(p +
χX) | X ⊆ N} and min{L(p−χX) | X ⊆ N}, both of which can be reduced
to the submodular function minimization (SFM, for short). Indeed, the
former problem can be reduced to the minimization of a set function given
by ρ(X) = L(p + χX) − L(p) (X ∈ 2N ), which is submodular since the
Lyapunov function L is submodular by Theorem 1.6. The latter problem
can be also reduced to SFM in the same way. In this section, we show that
by using demand sets Dj(p) obtained from bidders, these problems can be
solved faster than a straightforward application of SFM algorithms.

In the following, we consider the former problem only since the latter
can be solved in the same way. Recall that ρ can be represented as (4)
(see, e.g., [1]; see also Section A.7). Throughout this section, we assume
that demand sets Dj(p) for j ∈ M are given; this means, in particular, that
for each j ∈ M , a vector x◦j ∈ Dj(p) is available and the membership test
in Dj(p) can be done in constant time. This means that the evaluation of
ρ(X) requires solving optimization problems on Dj(p), which can be done
in O(mn2 logU) time, where U = ∥u∥∞ (see Section A.8 for a proof).

Recall that SFM is solvable in polynomial time [7, 18], provided that
the function value can be evaluated in polynomial time. Almost all “com-
binatorial” polynomial-time algorithms for SFM are based on the following
min-max formula (see, e.g, [7, 18]). For a submodular function ρ : 2N → Z,
we define a set

B(ρ) = {x ∈ Zn | x(Y ) ≤ ρ(Y ) (∀Y ⊆ N), x(N) = ρ(N)},

11



which is called a base polyhedron associated with ρ.

Proposition 4.1. For an integer-valued submodular function ρ : 2N → Z,

min{ρ(X) | X ∈ 2N} = max
{∑

i∈N
min{0, x(i)}

∣∣ x ∈ B(ρ)
}

(6)

holds. Moreover, if x∗ ∈ B(ρ) is an optimal solution of the maximization
problem in the right-hand side of (6), then every set X∗ ∈ 2N with {i ∈ N |
x(i) < 0} ⊆ X∗ and {i ∈ N | x(i) > 0} ∩X∗ = ∅ is a minimizer of ρ.

Although the maximization problem in (6) is useful in solving SFM,
it has a drawback that it requires the membership test in B(ρ), which is
known to be essentially equivalent to solving the original SFM. For the
efficient membership test in B(ρ), the existing polynomial-time algorithms
use a technique to represent a vector x as a convex combination of extreme
points in B(ρ), which makes the algorithms slow and complicated. The
fastest (weakly-)polynomial algorithm runs in O((n4EO + n5) log Γ) time
[12], where Γ is an upper bound on |ρ(X)| and EO denotes the time for
function evaluation; Γ = mnU and EO= O(mn2 logU) in our case (see
Section A.8).

In the following, we show that the minimization of ρ can be solved more
efficiently by using the representation (4) of ρ. The next property states that
the base polyhedron B(ρ) can be represented explicitly by using demand sets
Dj(p). Proof is given in Section A.9.

Lemma 4.2. For a submodular function ρ given by (4), it holds that

B(ρ) = {u−
∑
j∈M

xj | xj ∈ D̃j(p) (j ∈ M)},

where D̃j(p) is the set of minimal vectors in Dj(p) for j ∈ M .

Note that D̃j(p) is a base polyhedron (see Section A.7). By Proposition 4.1
and Lemma 4.2, the minimization of ρ is equivalent to the problem

max
{∑

i∈N
min{0, x(i)}

∣∣ x = u−
∑
j∈M

xj , xj ∈ D̃j(p) (j ∈ M)
}
.

Based on this observation, we can prove Theorem 1.3; proof is given in Sec-
tion A.10. The bound O(mn4 logU log(mnU)) in Theorem 1.3 is smaller
than the bound O(mn6 logU log(mnU)) obtained by a straightforward ap-
plication of the SFM algorithm in [12].
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A Appendix

A.1 Examples of Valuation Functions with SGS Condition

We present various examples of valuation functions f : [0, u]Z → R with the
SGS condition (or equivalently, functions with M♮-concavity).

A simplest example of M♮-concave function is a linear function f(x) =
a⊤x x ∈ [0, u]Z with a vector a ∈ Rn. Below we give some nontrivial
examples. See [18] for more examples of M♮-concave functions.

Example 1 (Laminar concave functions). Let T ⊆ 2N be a laminar family,
i.e., X ∩ Y = ∅ or X ⊆ Y or X ⊇ Y holds for every X,Y ∈ T . For
Y ∈ T , let φY : Z+ → R be a univariate concave function. Define a function
f : [0, u]Z → R by

f(x) =
∑
Y ∈T

fY (x(Y )) (x ∈ [0, u]Z),

which is called a laminar concave function [18]. Every laminar concave
function is an M♮-concave function.

Example 2 (Maximum-weight bipartite matching and its extension). Con-
sider a complete bipartite graph G with two vertex sets N and J , where
N and J correspond to workers and jobs, respectively. We assume that for
every (i, v) ∈ N×J , profit w(i, v) ∈ R+ can be obtained by assigning worker
i to job v. Consider a matching M ⊆ N×J between workers and jobs which
maximizes the total profit. Define f : {0, 1}n → R by

f(χX) = max{
∑

(i,v)∈M

w(i, v) | ∃M : matching in G s.t. ∂NM = X} (X ∈ 2N ),

where ∂NM denotes the set of vertices in N covered by edges in M . Then,
f is an M♮-concave function.

We consider a more general setting where each i corresponds to a type
of workers and there are u(i) ∈ Z+ workers of type i. In a similar way as
above, we can define a function f : [0, u]Z → R by

f(x) = max{
∑
i∈N

∑
v∈J

w(i, v)a(i, v) | ∃a : N × J → Z+

s.t.
∑
v∈J

a(i, v) = x(i) (∀i ∈ N)} (x ∈ [0, u]Z).

This f is an M♮-concave function.
A much more general example of M♮-concave functions can be obtained

from the maximum-weight network flow problem (see [18]).
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Example 3 (Quadratic functions). Let A = (a(i, k) | i, k ∈ N) ∈ RN×N be
a symmetric matrix, i.e., a(i, k) = a(k, i) for i, k ∈ N . A quadratic function
f : [0, u]Z → R given by

f(x) =
∑
i∈N

∑
k∈N

a(i, k)x(i)x(k) (x ∈ [0, u]Z)

is M♮-concave if the matrix A satisfies the following condition:

a(i, k) ≤ 0 (∀i, k ∈ N), a(i, k) ≤ max{a(i, ℓ), a(k, ℓ)} if {i, k} ∩ {ℓ} = ∅.

In particular, a quadratic function f : [0, u]Z → R given by

f(x) =
∑
i∈N

a(i)x(i)2 + b
∑
i<k

x(i)x(k) (x ∈ [0, u]Z)

with a ∈ Rn and b ∈ R is M♮-concave if a and b satisfies the condition
0 ≥ b ≥ 2maxi∈N a(i) [18].

Example 4 (Maximum-value functions). Given a nonnegative vector w ∈
Rn
+, we define a function f : {0, 1}n → R+ by

f(χX) =

{
max{a(i) | i ∈ X} (if X ̸= ∅),
0 (if X = ∅).

This corresponds to a valuation function of a bidder who wans only one item.
We can show that f is an M♮-concave function [18].

Example 5 (Weighted rank functions). Let I ⊆ 2N be the family of inde-
pendent sets of a matroid, and w ∈ Rn

+. Define a function f : {0, 1}n → R+

by
f(χX) = max{w(Y ) | Y ⊆ X, Y ∈ I} (X ∈ 2N ),

which is called the weighted rank function. If w(i) = 1 (i ∈ N), then f is an
ordinary rank function of the matroid (N, I). Every weighted rank function
is an M♮-concave function [?].

A.2 Proof of M♮-concavity and L♮-convexity

We firstly give a proof of Theorem 1.5. Let Ñ = {(i, β) | i ∈ N, 1 ≤ β ≤
u(i)}. Given a function f : [0, u]Z → Z, we define a function f̃ : {0, 1}Ñ → Z
as follows:

for x̃ ∈ {0, 1}Ñ , f̃(x̃) = f(x), where x(i) =

u(i)∑
β=1

x̃(i, β) (i ∈ N). (7)

It is known that the SGS condition for f is equivalent to the GS condition
for f̃ .
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Proposition A.1 ([16]). A function f : [0, u]Z → Z satisfies the SGS

condition if and only if the function f̃ : {0, 1}Ñ → Z defined by (7) satisfies
the GS condition.

We can also show the following; the proof is rather straightforward from
the definition of M♮-concavity in Section 2 and therefore omitted.

Proposition A.2. A function f : [0, u]Z → Z is M♮-concave if and only if

the function f̃ : {0, 1}Ñ → Z defined by (7) is M♮-concave.

It is also known that for a valuation function on 0-1 vectors, the GS
condition is equivalent to M♮-concavity.

Proposition A.3 ([8]). A function f̃ : {0, 1}Ñ → Z satisfies the condition
(GS) if and only if it is an M♮-concave function.

Theorem 1.5 can be obtained immediately by combining Propositions
A.1, A.2, and A.3.

We then prove Proposition 2.1 by using the following relation between
M♮-concavity and L♮-convexity.

Proposition A.4 ([18]). Let f : [0, u]Z → Z be a function. Then, f is an
M♮-concave function if and only if the function g : Zn → Z defined by

g(p) = max{f(x)− p⊤x | x ∈ [0, u]Z} (p ∈ Zn)

is an L♮-convex function.

Proposition 2.1 follows immediately from this property.

A.3 Proof of Proposition 3.1

We firstly recall that the existence of an integral equilibrium price vector is
shown in [1]. Let p∗ ∈ Zn be an equilibrium price vector, and suppose that
p∗(i) > p̄(i) for some fixed i ∈ N . Let p′ be the vector obtained from p∗ by
replacing the component p∗(i) with p̄(i). We show that the vector p′ is also
an equilibrium price vector. In the proof, we use the following property.

Proposition A.5 ([18]). Let f : [0, u]Z → R be an M♮-concave function.
Then, f is a submodular function on [0, u]Z. In particular, for x, y ∈ [0, u]Z
with x ≤ y and i ∈ N with y(i) < u(i), it holds that f(x + χi) − f(x) ≥
f(y + χi)− f(y).

Let x∗1, x
∗
2, . . . , x

∗
m be an allocation in a Walrasian equilibrium. That is,

x∗1 + x∗2 + · · · + x∗m = u and x∗j ∈ Dj(p
∗) for all j ∈ M . To show that

the vector p′ is also an equilibrium price vector, it suffices to prove that
x∗j ∈ Dj(p

′) for all j ∈ M .
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Claim 1: x∗j (i) = 0 for all j ∈ M .
[Proof of Claim 1] For every x ∈ [0, u]Z with x(i) > 0, it holds that

{fj(x)− (p∗)⊤x} − {fj(x− χi)− (p∗)⊤(x− χi)}
= fj(x)− fj(x− χi)− p∗(i)

< {fj(x)− fj(x− χi)} − {fj(χi)− fj(0)} ≤ 0,

where the first inequality is by p∗(i) > p̄(i) ≥ fj(χi) − fj(0), and the last
inequality by Proposition A.5. Hence, we have

fj(x)− (p∗)⊤x < fj(x− χi)− (p∗)⊤(x− χi)

for every x ∈ [0, u]Z with x(i) > 0. This implies that if x∗ ∈ Dj(p
∗) then

x∗(i) = 0. Hence, the claim follows. [End of Claim 1]

Claim 2: There exists some x∗ ∈ Dj(p
′) such that x∗(i) = 0.

[Proof of Claim 2] In a similar way as in the proof of Claim 1, we can
show that

fj(x)− (p′)⊤x ≤ fj(x− χi)− (p′)⊤(x− χi)

for every x ∈ [0, u]Z with x(i) > 0. This implies the claim. [End of Claim 2]

By Claims 1 and 2, we have x∗j ∈ Dj(p
′) if and only if

fj(x
∗
j )− (p′)⊤x∗j ≥ fj(y)− (p′)⊤y

holds for all y ∈ [0, u]Z with y(i) = 0. This inequality can be shown as
follows:

{fj(x∗j )− (p′)⊤x∗j} − {fj(y)− (p′)⊤y}
= {fj(x∗j )− (p∗)⊤x∗j} − {fj(y)− (p∗)⊤y} ≥ 0,

where the equality is by y(i) = x∗j (i) = 0 and the inequality is by x∗j ∈
Dj(p

∗). Hence, we have x∗j ∈ Dj(p
′).

By repeating the argument above, we may assume that p∗ ≤ p̄ holds. In
a similar way, we can show that there exists an equilibrium price vector p∗

satisfying both of p∗ ≤ p̄ and p∗ ≥ 0.

A.4 Proof of Theorem 1.2 for Algorithm Ascend

Theorem 1.2 can be proved by using the following property repeatedly.

Proposition A.6. Let p ∈ [0, p̄]Z be a vector with µ̂(p) > 0, and X ⊆ N be
a set minimizing the value L(p+ χX). Then, there exists a minimizer p∗ of
L satisfying

p∗ ≥ p+ χX , ∥p∗ − (p+ χX)∥∞ = µ̂(p+ χX) = µ̂(p)− 1.
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Proof. The inequality µ̂(p + χX) ≥ µ̂(p) − 1 can be shown as follows. By
the triangle inequality, we have ∥p∗− (p+χX)∥∞ ≥ ∥p∗− p∥∞− 1 for every
p∗ ∈ Zn. Taking the minimum over all p∗ ∈ argminL with p∗ ≥ p+χX , we
obtain

µ̂(p+ χX) ≥ min{∥p∗ − p∥∞ | p∗ ∈ argminL, p∗ ≥ p+ χX} − 1

≥ min{∥p∗ − p∥∞ | p∗ ∈ argminL, p∗ ≥ p} − 1 = µ̂(p)− 1.

In the following, we show that there exists a minimizer p∗ of L satisfying

p∗ ≥ p+ χX , ∥p∗ − (p+ χX)∥∞ ≤ µ̂(p)− 1.

Note that ∥p∗ − (p+ χX)∥∞ ≥ µ̂(p+ χX) holds for such p∗.
Let p̂ be a vector in the set {p∗ ∈ argminL | p∗ ≥ p} satisfying ∥p̂ −

p∥∞ = µ̂(p), and assume that p̂ is minimal among all such vectors. We
denote

A = argmax
i∈N

{p̂(i)− p(i)}.

Since ∥p̂− p∥∞ = µ̂(p) > 0, we have p ̸= p̂ and A ̸= ∅.

Claim 1: We have A ⊆ X.
[Proof of Claim 1] Assume, to the contrary, that A \X ̸= ∅ holds. Since
p̂ ̸= p, it holds that supp+(p̂− p) ̸= ∅. Since A ⊆ supp+(p̂− p), we have

supp+(p̂− (p+ χX)) ⊇ A \X ̸= ∅.

We also have
argmax

i∈N
{p̂(i)− (p+ χX)(i)} = A \X.

Hence, Proposition 3.5 implies that

L(p̂)+L(p+χX) ≥ L(p̂−χA\X)+L(p+χX+χA\X) = L(p̂−χA\X)+L(p+χX∪A).
(8)

Since A ⊆ supp+(p̂ − p), we have p̂ ≥ p̂ − χA\X ≥ p, implying that L(p̂) <
L(p̂ − χA\X) by the choice of p̂. This inequality, together with (8), implies
that L(p+ χX) > L(p+ χX∪A), a contradiction to the choice of X. Hence,
we have A ⊆ X. [End of Proof of Claim 1]

Suppose firstly that the condition p̂ ≥ p+ χX holds. Then, we have

µ̂(p+ χX) ≤ ∥p̂− (p+ χX)∥∞ = ∥p̂− p∥∞ − 1 = µ̂(p)− 1,

where the first equality is by Claim 1.
We next consider the case where the condition p̂ ≥ p + χX fails, i.e., it

holds that

B ∩X ̸= ∅, where B = {i ∈ N | p̂(i) = p(i)}.
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Since p̂ ≥ p, we have

p̂(i) = p(i) (∀i ∈ B), p̂(i) > p(i) (∀i ∈ N \B), (9)

from which p̂+ χB∩X ≥ p+ χX follows.
We now show that p̂+χB∩X ∈ argminL holds. The condition (9) implies

argmax
i∈N

{(p+ χX)(i)− p̂(i)} = B ∩X ̸= ∅.

Hence, it follows from Proposition 3.5 that

L(p+χX)+L(p̂) ≥ L(p+χX−χB∩X)+L(p̂+χB∩X) = L(p+χX\B)+L(p̂+χB∩X).
(10)

By the choice of X, we have L(p+χX) ≤ L(p+χX\B), which, together with
(10), implies that L(p̂) ≥ L(p̂+χB∩X), i.e., p̂+χB∩X is also a minimizer of
L.

We have A ∩B = ∅ since

p̂ ̸= p, A = argmax
i∈N

{p̂(i)− p(i)}, B = argmin
i∈N

{p̂(i)− p(i)}.

Hence, it holds that A ⊆ X \B, implying that

µ̂(p+ χX) ≤ ∥(p̂+ χB∩X)− (p+ χX)∥∞ = ∥p̂− p∥∞ − 1 = µ̂(p)− 1.

A.5 Proof of Theorem 3.3 for Algorithm TwoPhase

Let p̂ be the price vector at the end of the ascending phase and p̌ be the
output of the algorithm. Also, let p∗ be a minimizer of function L such that

∥p∗ − p∥+∞ + ∥p∗ − p∥−∞ = µ(p◦).

Note that for every q ∈ argminL satisfying

p◦(i) ≤ q(i) ≤ p∗(i) if p◦(i) ≤ p∗(i),
p◦(i) ≥ q(i) ≥ p∗(i) if p◦(i) ≥ p∗(i),

}
(11)

we have ∥q − p∥+∞ + ∥q − p∥−∞ = µ(p◦). Hence, we may assume that p∗

satisfies the condition that

there exists no q ∈ argminL with q ̸= p∗ satisfying (11).

We now show several lemmas below, from which Theorem 3.3 follows.

Lemma A.7. The vector p̂ satisfies p̂ ∈ argmin{L(p) | p ∈ Zn, p ≥ p◦}
and p̂ ≥ p∗. Moreover, the number of iterations in the ascending phase is
equal to ∥p̂− p◦∥∞ + 1.
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Proof. The behavior of the ascending phase is the same as that of the algo-
rithm Ascend applied to the function L̂ : Zn → Z ∪ {+∞} given by

L̂(p) =

{
L(p) (if p ≥ p◦),
+∞ (otherwise).

It is obvious that p◦ is a lower bound of all minimizers of L̂. This observation,
together with Theorem 1.2, implies that p̂ is a minimizer of the function L̂,
i.e., it holds that

p̂ ∈ argmin{L(p) | p ∈ Zn, p ≥ p◦}. (12)

Theorem 1.2 also implies that the ascending phase terminates in ∥p̂−p◦∥∞+1
iterations.

We then prove p̂ ≥ p∗. Assume, to the contrary, that p̂ ̸≥ p∗. Then, we
have supp+(p∗ − p̂) ̸= ∅, and therefore Proposition 3.5 implies that

L(p∗) + L(p̂) ≥ L(p∗ − χX) + L(p̂+ χX), (13)

where
X = argmax

i∈N
{p∗(i)− p̂(i)} ⊆ supp+(p∗ − p̂).

Since p̂+ χX ≥ p̂ ≥ p◦, we have L(p̂+ χX) ≥ L(p̂) by (12), which, together
with (13), implies L(p∗ − χX) ≤ L(p∗), i.e., p∗ − χX ∈ argminL. This,
however, is a contradiction to the choice of p∗ since

p∗(i) ≥ p∗(i)− 1 ≥ p̂(i) ≥ p◦(i) (∀i ∈ X).

Lemma A.8. ∥p̂− p◦∥∞ ≤ µ(p◦) holds.

Proof. In this proof, we may assume that p̂ is a minimal vector in argmin{L(p) |
p ∈ Zn, p ≥ p◦}; if p̂ is not minimal, then there exists a minimal q
in argmin{L(p) | p ∈ Zn, p ≥ p◦} such that q ≤ p̂, which satisfies
∥q − p◦∥∞ = ∥p̂− p◦∥∞. Since µ(p◦) = ∥p∗ − p◦∥+∞ + ∥p∗ − p◦∥−∞, it suffices
to prove that

∥p̂− p◦∥∞ ≤ ∥p∗ − p◦∥+∞ + ∥p∗ − p◦∥−∞
holds.

If p∗ ≥ p◦, then the choice of p̂ implies that p̂ ∈ argminL and ∥p̂−p◦∥∞ =
∥p∗ − p◦∥∞ = µ(p◦). Hence, we may assume that supp+(p◦ − p∗) ̸= ∅, from
which follows that supp+(p̂− p∗) ̸= ∅.

Let X = argmaxi∈N{p̂(i)− p∗(i)}. By Proposition 3.5, it holds that

L(p̂) + L(p∗) ≥ L(p̂− χX) + L(p∗ + χX). (14)
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Assume, to the contrary, that p̂(i) > p◦(i) for all i ∈ X. Since p∗ ∈
argminL, we have L(p∗ +χX) ≥ L(p∗), which, combined with (14), implies
L(p̂−χX) ≤ L(p̂). It follows from this inequality and the definition of p̂ that
L(p̂−χX) = L(p̂), a contradiction to the minimality of p̂ since p̂−χX ≥ p◦.

Hence, we have p̂(k) = p◦(k) for some k ∈ X. It holds that

p◦(k)− p∗(k) = p̂(k)− p∗(k) = max
i∈N

{p̂(i)− p∗(i)}

≥ max
i∈N

{p◦(i)− p∗(i)}

= ∥p∗ − p◦∥−∞ ≥ p◦(k)− p∗(k).

Hence, all the inequalities in this formula holds with equality. From this
formula follows that

{p̂(i)− p◦(i)} − {p∗(i)− p◦(i)} = p̂(i)− p∗(i)

≤ max
i′∈N

{p̂(i′)− p∗(i′)} = ∥p∗ − p◦∥−∞

for every i ∈ N , implying that

p̂(i)− p◦(i) ≤ {p∗(i)− p◦(i)}+ ∥p∗ − p◦∥−∞ ≤ ∥p∗ − p◦∥+∞ + ∥p∗ − p◦∥−∞.

Hence, we have

∥p̂− p◦∥∞ ≤ ∥p∗ − p◦∥+∞ + ∥p∗ − p◦∥−∞.

Lemma A.9. The vector p̌ satisfies p̌ ∈ argminL. Moreover, the number
of iterations in the descending phase is at most ∥p̂− p∗∥∞ + 1.

Proof. The behavior of the descending phase is the same as that of the
algorithm Descend applied to function L with the initial vector p̂. Since p̂
is an upper bound of the minimizer p∗ of L by Lemma A.7, this observation
and Theorem 3.2 imply that p̌ ∈ argminL. Theorem 3.2 also implies that
the descending phase terminates in µ̌(p̂) + 1 = ∥p̌ − p̂∥∞ + 1 iterations.
Since p∗ is a minimizer of L with p∗ ≤ p̂, we have µ̌(p̂) ≤ ∥p∗ − p̂∥∞. This
concludes the proof.

Lemma A.10. ∥p̂− p∗∥∞ ≤ 2µ(p◦) holds.

Proof. We have

∥p̂− p∗∥∞ ≤ ∥p∗ − p◦∥∞ + ∥p̂− p◦∥∞
≤ {∥p∗ − p◦∥+∞ + ∥p∗ − p◦∥−∞}+ ∥p̂− p◦∥∞
≤ 2µ(p◦),

where the first inequality is by the triangle inequality and the third is by
Lemma A.8 and the definition of p∗.

Theorem 3.3 follows from Lemmas A.7, A.8, A.9, and A.10 shown above.

22



A.6 Proof of Theorem 3.4 for Algorithm Greedy

We firstly show that the output of algorithm Greedy is indeed a minimizer
of the Lyapunov function L.

Proposition A.11 ([18]). Let g : Zn → R be an L♮-convex function. For
every p∗ ∈ Zn, we have p∗ ∈ argmin g if and only if g(p + εχX) ≥ g(p) for
every X ∈ 2N and ε ∈ {+1,−1}.

Recall that L is an L♮-convex function by Theorem 1.6. Since the output
p of the algorithm Greedy satisfies the condition

L(p+ εχX) ≥ L(p) (∀X ∈ 2N , ε ∈ {+1,−1}),

it is a minimizer of L by Proposition A.11.
To obtain the bound for the number of iterations in Theorem 3.4, it

suffices to apply the following property repeatedly. The proof is similar to
(but more difficult than) the one for Proposition A.6.

Proposition A.12. Let p ∈ [0, p̄]Z be a vector with µ(p) > 0. Suppose that
ε ∈ {+1,−1} and X ⊆ N minimize the value L(p+εχX). Then, there exists
a minimizer p∗ of L satisfying

∥p∗ − (p+ εχX)∥∞ = µ(p+ εχX) = µ(p)− 1.

Proof. We consider the case with ε = +1 since the case with ε = −1 can be
dealt with similarly. For every d ∈ Zn and Y ⊆ N , we have

∥d− χY ∥+∞ ≥ ∥d∥+∞ − 1, ∥d− χY ∥−∞ ≥ ∥d∥−∞.

Hence, it holds that

µ(p+ χX) = min{∥p∗ − (p+ χX)∥+∞ + ∥p∗ − (p+ χX)∥−∞ | p∗ ∈ argminL}
≥ min{∥p∗ − p∥+∞ + ∥p∗ − p∥−∞ | p∗ ∈ argminL} − 1

= µ(p)− 1.

In the following, we show that there exists a minimizer p∗ of L satisfying

p∗ ≥ p+ χX , ∥p∗ − (p+ χX)∥+∞ + ∥p∗ − (p+ χX)∥−∞ ≤ µ(p)− 1.

Note that ∥p∗ − (p+ χX)∥∞ ≥ µ(p+ χX) holds for such p∗.
We denote

S∗ = {p∗ ∈ argminL | ∥p∗ − p∥+∞ + ∥p∗ − p∥−∞ = µ(p)}.

Let p̂ be a vector in S∗; note that for every p∗ ∈ argminL satisfying

p(i) ≤ p∗(i) ≤ p̂(i) if p(i) ≤ p̂(i), p(i) ≥ p∗(i) ≥ p̂(i) if p(i) > p̂(i),
(15)

we have p∗ ∈ S∗. Hence, we may assume that p̂ satisfies the following
condition:
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there exists no p∗ ∈ argminL with p∗ ̸= p̂ satisfying (15).

We denote

A = argmax
i∈N

{p̂(i)− p(i)}, B = argmin
i∈N

{p̂(i)− p(i)}.

Claim 1: There exists some p∗ ∈ S∗ such that maxi∈N{p∗(i)− p(i)} > 0.
[Proof of Claim 1] Assume, to the contrary, that

p∗ ≤ p (∀p∗ ∈ S∗). (16)

Then, µ(p) = ∥p̂−p∥∞ and p̂ is a maximal vector in argminL by the choice
of p̂. By L♮-convexity of L, we have

L(p+ χX) + L(p̂) ≥ L((p+ χX − 1) ∨ p̂) + L((p+ χX) ∧ (p̂+ 1)). (17)

Suppose that p̂(i) < p(i) holds for all i ∈ N . Hence, we have

(p+ χX − 1) ∨ p̂ = p− χN\X , (p+ χX) ∧ (p̂+ 1) = p̂+ 1,

which, together with (17), implies

L(p+ χX) + L(p̂) ≥ L(p− χN\X) + L(p̂+ 1). (18)

By the choice of ε = +1 and X, we have L(p+ χX) ≤ L(p− χN\X). From
this and (18) follows that L(p̂) ≥ L(p̂+1), implying that p̂+1 ∈ argminL.
This, however, is a contradiction to the maximality of p̂.

We then consider the case with maxi∈N{p̂(i)−p(i)} = 0. Then, we have

(p+χX −1)∨ p̂ = p−χN\(X∪A), (p+χX)∧ (p̂+1) = p̂+χ(N\A)∪(X∩A),

which, together with (17), implies

L(p+ χX) + L(p̂) ≥ L(p− χN\(X∪A)) + L(p̂+ χ(N\A)∪(X∩A)). (19)

By the choice of ε = +1 and X, we have L(p + χX) ≤ L(p − χN\(X∪A)).
From this and (19) follows that L(p̂) ≥ L(p̂+ χ(N\A)∪(X∩A)), implying that
p̂+ χ(N\A)∪(X∩A) ∈ argminL. This, however, is a contradiction to the fact
that p̂ is a maximal vector in argminL. [End of Proof of Claim 1]

By Claim 1, we may assume that maxi∈N{p̂(i)− p(i)} > 0.

Claim 2: We have A ⊆ X.
[Proof of Claim 2] Assume, to the contrary, that A \X ̸= ∅ holds. Since
A ⊆ supp+(p̂− p), we have

supp+(p̂− (p+ χX)) ⊇ A \X ̸= ∅.
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We also have
argmax

i∈N
{p̂(i)− (p+ χX)(i)} = A \X.

Hence, Proposition 3.5 implies that

L(p̂)+L(p+χX) ≥ L(p̂−χA\X)+L(p+χX+χA\X) = L(p̂−χA\X)+L(p+χX∪A).
(20)

Since the vector p∗ = p̂− χA\X satisfies the condition (15), we have L(p̂) <
L(p̂− χA\X) by the choice of p̂. This inequality, together with (20), implies
that L(p+ χX) > L(p+ χX∪A), a contradiction to the choice of X. Hence,
we have A ⊆ X. [End of Proof of Claim 2]

To show the inequality µ(p+χX) ≤ µ(p)−1, we firstly consider the case
where mini∈N{p̂(i)− p(i)} > 0 or B ∩X = ∅ holds. Then, we have

∥p̂− (p+ χX)∥−∞ = ∥p̂− p∥−∞.

By Claim 2, we have

∥p̂− (p+ χX)∥+∞ = ∥p̂− p∥+∞ − 1.

Therefore, we can obtain the desired inequality as follows:

µ(p+ χX) ≤ ∥p̂− (p+ χX)∥+∞ + ∥p̂− (p+ χX)∥−∞
= ∥p̂− p∥+∞ + ∥p̂− p∥−∞ − 1 = µ(p)− 1.

We then consider the case with mini∈N{p̂(i)− p(i)} > 0 and B ∩X = ∅.
We claim that p̂+ χB∩X ∈ argminL holds.

Since mini∈N{p̂(i)− p(i)} ≤ 0 and B ∩X ̸= ∅ hold, we have supp+((p+
χX)− p̂) ̸= ∅. Since

argmax
i∈N

{(p+ χX)(i)− p̂(i)} = B ∩X,

it follows from Proposition 3.5 that

L(p+χX)+L(p̂) ≥ L(p+χX−χB∩X)+L(p̂+χB∩X) = L(p+χX\B)+L(p̂+χB∩X).
(21)

By the choice of X, we have L(p+χX) ≤ L(p+χX\B), which, together with
(21), implies that L(p̂) ≥ L(p̂+χB∩X), i.e., p̂+χB∩X is also a minimizer of
g.

Put p∗ = p̂+χB∩X . If mini∈N{p̂(i)−p(i)} < 0, then p∗ satisfies the condi-
tion (15), a contradiction to the choice of p̂. Hence, we have mini∈N{p̂(i)−
p(i)} = 0. This implies that A ∩ B = ∅ since maxi∈N{p̂(i) − p(i)} > 0.
Therefore, we have A ⊆ X \B by Claim 2, from which follows that

∥(p̂+ χB∩X)− (p+ χX)∥+∞ = ∥p̂− p− χX\B∥+∞ = ∥p̂− p∥+∞ − 1.
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We also have

∥(p̂+ χB∩X)− (p+ χX)∥−∞ = ∥(p̂− p− χX\B∥−∞ = ∥p̂− p∥−∞.

Hence, it holds that

µ(p+ χX) ≤ ∥(p̂+ χB∩X)− (p+ χX)∥+∞ + ∥(p̂+ χB∩X)− (p+ χX)∥−∞
= (∥p̂− p∥+∞ − 1) + ∥p̂− p∥−∞ = µ(p)− 1.

A.7 Structure of Demand Sets

To prove Lemma 1.4, we show some properties of demand sets.
For j ∈ M and p ∈ Zn, we define set functions ηpj , ζ

p
j : 2N → Z by

ηpj (X) = Vj(p+χX)−Vj(p), ζpj (X) = Vj(p−χX)−Vj(p) (X ∈ 2N ).

Since each Vj(p) is a submodular function in p by Proposition 2.1, both of ηj
and ζj are submodular set functions. Recall that D̃j(p) is the set of minimal
vectors in the demand set Dj(p).

Proposition A.13. For j ∈ M and p ∈ Zn, the demand set Dj(p) is a
g-polymatroid given as

Dj(p) = {x ∈ Zn | −ηpj (Y ) ≤ x(Y ) ≤ ζpj (Y ) (∀Y ∈ 2N )} (22)

and the set D̃j(p) is a base polyhedron given as D̃j(p) = −B(ηpj ).

We sometimes omit the superscript p of ηpj and ζpj if it is clear from
the context. In the following, we will show the equation (22) and that the
submodular functions ηj and ζj satisfy the following condition:

ηj(X) + ζj(Y ) ≥ ηj(X \ Y ) + ζj(Y \X) (∀X,Y ∈ 2N ). (23)

From these facts follows that Dj(p) is a g-polymatroid (see [7]). Moreover,
since Dj(p) is a g-polymatroid given by (22), the set of minimal vectors in

Dj(p) is a base polyhedron given by −B(ηj), i.e., D̃j(p) = −B(ηj) (see [7]);
note that if B is a base polyhedron, then −B is also a base polyhedron.

We firstly prove (23). Since the function Vj is an L♮-convex function, it
satisfies the discrete mid-point convexity

Vj(p
′) + Vj(q

′) ≥ Vj(⌈(p′ + q′)/2⌉) + Vj(⌊(p′ + q′)/2⌋) (∀p′, q′ ∈ Zn),

Hence, it follows that

ηj(X) + ζj(Y ) = {Vj(p+ χX)− Vj(p)}+ {Vj(p− χY )− Vj(p)}

≥ Vj(

⌈
(p+ χX) + (p− χY )

2

⌉
) + Vj(

⌊
(p+ χX) + (p− χY )

2

⌋
)− 2Vj(p)

= Vj(p+ χX\Y ) + Vj(p+ χY \X)− 2Vj(p)

= ηj(X \ Y ) + ζj(Y \X).
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To prove (22), we use the following properties concerning M♮-convex and
L♮-convex functions. For a function g : Zn → Z ∪ {+∞}, we define

∂Zg(p) = {x ∈ Zn | p ∈ argmin{g(q)− x⊤q | q ∈ Zn}} (p ∈ Zn),

which we call the integer subdifferential of g at p.

Proposition A.14 ([18]). Let g : Zn → Z ∪ {+∞} be an integer-valued
L♮-convex function. For p ∈ Zn, it holds that

∂Zg(p) = {x ∈ Zn | g(p)−g(p−χY ) ≤ x(Y ) ≤ g(p+χY )−g(p) (∀Y ∈ 2N )}.

Proposition A.15 ([18]). Let h : Zn → Z∪{+∞} be an integer-valued M♮-
convex function such that domh is bounded, and g : Zn → Z be a function
given by

g(p) = max{p⊤x− h(x) | x ∈ Zn} (p ∈ Zn). (24)

Then, g is an L♮-convex function.

Proposition A.16 ([18]). Let h : Zn → Z∪{+∞} be an integer-valued M♮-
convex function such that domh is bounded, and g : Zn → Z be a function
given by (24). Then, it holds that

argmin{h(x)− p⊤x | x ∈ Zn} = ∂Zg(p)

for every p ∈ Zn.

The equation (22) can be proven as follows. We consider the function
h = −fj , which is an M♮-convex function by Theorem 1.5. We also define a
function g : Zn → Z by (24), which is an L♮-convex function by Proposition
A.15. Note that for p ∈ Zn, we have

g(p) = max{p⊤x−h(x) | x ∈ [0, u]Z} = max{fj(x)+p⊤x | x ∈ [0, u]Z} = Vj(−p).
(25)

For p ∈ Zn, we have

Dj(p) = argmax{fj(x)− p⊤x | x ∈ Zn} = argmin{h(x) + p⊤x | x ∈ Zn}.
(26)

It follows from Proposition A.16 that

argmin{h(x) + p⊤x | x ∈ Zn} = ∂Zg(−p). (27)

By Proposition A.14 and (25), we have

∂Zg(−p) = {x ∈ Zn | g(−p)− g(−p− χY ) ≤ x(Y ) ≤ g(−p+ χY )− g(−p) (∀Y ∈ 2N )}
= {x ∈ Zn | Vj(p)− Vj(p+ χY ) ≤ x(Y ) ≤ Vj(p− χY )− Vj(p) (∀Y ∈ 2N )}
= {x ∈ Zn | −ηpj (Y ) ≤ x(Y ) ≤ ζpj (Y ) (∀Y ∈ 2N )}, (28)
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where we use the fact that g is an L♮-convex function. The equation (22)
follows immediately from (26), (27), and (28). This concludes the proof of
Proposition A.13.

We note that from Proposition A.13 we have

Vj(p+ χX)− Vj(p) = ηpj (X) = −min{y(X) | y ∈ Dj(p)} (∀X ∈ 2N ),

from which the formula (4) follows.

A.8 Algorithms for Demand Sets

We prove some algorithmic properties of demand sets Dj(p) used in Section
4.

Let D be a g-polymatroid such that D ⊆ [0, u]Z, and assume that the
membership test in D can be done in constant time. Note that a demand
set Dj(p) satisfies these conditions for every j ∈ M and p ∈ Rn

+ (see Section
A.7).

We firstly show the following property:

Proposition A.17. For a given x ∈ D and i, i′ ∈ N , the values

max{α | x+αχi ∈ D}, max{α | x−αχi ∈ D}, max{α | x+α(χi−χi′) ∈ D}

can be computed in O(logU) time.

Proof. SinceD is given as a set of integral vectors in a polyhedron, the values
can be computed by using binary search combined with the membership test
in D. Since the values are nonnegative integer at most U , the running time
is O(logU).

Let D̃ be the set of minimal vectors in D, which is a base polyhedron
(see [7]). Given a vector in D, we can compute a vector in D̃ efficiently.

Proposition A.18. Given a vector x◦ ∈ D, a vector in D̃ can be computed
in O(n logU) time.

Proof. A vector in D̃ can be computed by the following algorithm:

Step 0: Set x := x◦.
Step 1: For i = 1, 2, . . . , n do the following:
Compute αi = max{α | x− αχi ∈ D}, and set x := x− αiχi.
Step 2: Output x.

It is shown (see, e.g., [7]) that the output of the algorithm satisfies x ∈ D̃.
From Proposition A.17 follows that the running time of the algorithm is
O(n logU).
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Proposition A.19. Suppose that a vector x◦ ∈ D is given. For X ∈ 2N ,
the values min{y(X) | y ∈ D} and min{y(X) | y ∈ D̃} can be solved in
O(n2 logU) time.

Proof. It is known that there exists an optimal solution y∗ of the former
problem such that y∗ ∈ D̃ [7]. Hence, it suffices to consider the latter
problem only. An optimal solution of min{y(X) | y ∈ D̃} can be computed
by the following greedy algorithm [7], where we assume, without loss of
generality, that X = {1, 2, . . . , t} for some t:

Step 1: Compute a vector x in D̃.
Step 2: For i = 1, 2, . . . , t do
For k = t+ 1, t+ 2, . . . , n do the following:
Compute αik = max{α | x− α(χi − χk) ∈ D},
and set x := x− αik(χi − χk).
Step 3: Output x.

Note that the vector x remains in D̃ during the execution of the algo-
rithm. By Proposition A.18, Step 1 can be done in O(n logU) time. By
Proposition A.17, each value αik can be computed in O(logU) time. Hence,
Step 2 requires O(n2 logU) time in total. This concludes the proof.

A.9 Proof of Lemma 4.2

We show that

B(ρ) = {u−
∑
j∈M

xj | xj ∈ D̃j(p) (j ∈ M)} (29)

holds.
Recall that the submodular function ρ is given as

ρ(X) = L(p+ χX)− L(p) =

m∑
j=1

ηj(X) + u(X) (X ∈ 2N ).

Note that each ηj is a submodular function. Hence, it holds that

B(ρ) = {x ∈ Zn | x(Y ) ≤
m∑
j=1

ηj(Y ) + u(Y ) (∀Y ⊆ N), x(N) =

m∑
j=1

ηj(N) + u(N)}

= {y + u | y ∈ Zn, y(Y ) ≤
m∑
j=1

ηj(Y ) (∀Y ⊆ N), y(N) = ηj(N)}

= {y + u | y ∈ B(

m∑
j=1

ηj)}.
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Since each ηj is a submodular function, we have

B(
m∑
j=1

ηj) =
m⊕
j=1

B(ηj),

where
⊕

denotes the direct sum of sets (see [7]). By Proposition A.13, we
have D̃j(p) = −B(ηj). Hence, the equation (29) follows.

A.10 A Fast Algorithm for Submodular Function Minimiza-
tion

We present an efficient algorithm for the minimization of the submodular
function ρ given by (4), which is obtained by simplifying the existing SFM
algorithms. Our idea is as follows. As mentioned in Section 4, the existing
polynomial-time algorithms use a technique to represent a vector x ∈ B(ρ)
as a convex combination of extreme points in B(ρ). i.e., x is represented as

x =

r∑
j=1

λjyj (30)

with some extreme points y1, y2, . . . , yr of B(ρ) and λj ∈ R with 0 ≤ λj ≤ 1
and

∑r
j=1 λj = 1. Instead, we use the representation of a vector in B(ρ) as

shown in Lemma 4.2, i.e., x ∈ B(ρ) is represented as

x = u−
∑
j∈M

xj (31)

with xj ∈ D̃j(p) (j ∈ M). This representation makes it easier to check the
membership in B(ρ) and an update of x. Below we show that with this
representation the weakly-polynomial time algorithm proposed by Iwata,
Fleischer, and Fujishige [A1] (IFF algorithm, for short) can be simplified
and made faster in a nontrivial way.

We briefly review the IFF algorithm. The IFF algorithm maintains two
kinds of variables: a vector x ∈ Rn and a flow vector φ ∈ RA, where A is the
arc set of the complete directed graph G = (N,A) on the node set N , i.e.,
A = {(v, w) | v, w ∈ N, v ̸= w}. The vector x always satisfies the condition
x ∈ B(ρ) and is represented as a convex combination of extreme points in
B(ρ). The algorithm also maintains two disjoint node subsets S, T ⊆ N ,
and a subgraph G◦ = (N,A◦) with the arc set A◦ = {(v, w) | (v, w) ∈
A, φ(v, w) = 0}.

The algorithm tries to find a directed path in G◦ from S to T , and if
such a path exists, then it updates the flow φ by using a procedure called
Augment. If such a path does not exist, then let W be the set of nodes
currently reachable from S in G◦. Then, it holds that W ∩ T = ∅. The
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algorithm tries to enlarge the set W by using a procedure called Double-
Exchange, which updates both of x and φ as follows.

The procedure Double-Exchange is applied to a triple (j, v, w), where j
is an index of an extreme point of B(ρ) in (30) and v, w ∈ N are nodes
satisfying v ∈ W , w ∈ N \W , φ(v, w) > 0, and some additional condition.
Such a triple is called an active triple. For the vector yj ∈ B(ρ) and v, w ∈ N ,
the exchange capacity of c̃(yj , v, w) is given as

c̃(yj , v, w) = max{β | yj + β(χv − χw) ∈ Dj(p)}.

The procedure updates x and φ as x := x + α(χv − χw) and φ(v, w) :=
φ(v, w)−α, so that z = x+∂φ remains unchanged, where α = min{φ(v, w), λj c̃(yj , v, w)}
and λj is the coefficient in (30). According to the update of x, vectors and
coefficients in the representation (30) are modified appropriately. In partic-
ular, the vector yj is updated as yj := yj + c̃(yj , v, w)(χv − χw). We call
Double-Exchange saturating if α = λj c̃(yj , v, w) and nonsaturating otherwise.

Note that the size r of the set of vectors y1, y2, . . . , yr may be increased by
procedure Double-Exchange. To keep this size to be O(n), the IFF algorithm
sometimes applies a procedure called Reduce; given a representation (30),
procedure Reduce reduce the number of extreme points in this representation
by a variant of Gaussian elimination.

Proposition A.20 ([A1]). The IFF algorithm finds a minimizer of an
integer-valued submodular function ρ : 2N → Z in O(n5 log Γ · EO) time,
where Γ is an upper bound on |ρ(X)| and EO denotes the time for function
evaluation.

The time complexity of the IFF algorithm shown above can be derived
from the following properties:

Proposition A.21 ([A1]). The IFF algorithm satisfies the following:
(i) The number of calls to Augment is O(n2 log Γ).
(ii) Between calls to Augment, there are at most n−1 calls to nonsaturating
Double-Exchange.
(iii) Between calls to Augment, there are at most O(n3) calls to saturating
Double-Exchange.
(iv) Each call to Double-Exchange requires O(EO) time.
(v) Each call to Reduce requires O(n3) time.

Note that the proof of Claim (iii) above is based on the following observation.

Proposition A.22 ([A1]).
(i) Double-Exchange(j, v, w) makes an active triple (j, v, w) inactive.
(ii) Between calls to Augment, any inactive triple does not become active.

In our case, the IFF algorithm is modified as follows. As in the original
IFF algorithm, the modified IFF algorithm maintains two kinds of variables
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x and φ, where we modify the representation of x to (31). Due to this mod-
ification, we do not need the procedure Reduce any more since the number
of vectors used in the representation (31) is always the same.

We also modify the procedure Double-Exchange. In the modified IFF
algorithm, we call a triple (j, v, w) with j ∈ M and v, w ∈ N an active triple
if it satisfies v ∈ W , w ∈ N \ W , and φ(v, w) > 0, and c̃(yj , w, v) > 0.
Procedure Double-Exchange is applied to an active triple (j, v, w) and it
updates yj and φ as yj := yj − α(χv − χw) and φ(v, w) := φ(v, w) − α,
where α = min{φ(v, w), c̃(yj , w, v)}. According to the update of yj and the
representation (31), vector x is also updated as x := x+α(χv −χw). In this
case, we call Double-Exchange saturating if α = c̃(yj , w, v) and nonsaturating
otherwise.

The time complexity of the modified IFF algorithm can be derived from
the following properties. Recall that Γ = mnU in our case.

Proposition A.23. The modified IFF algorithm satisfies the following:
(i) The number of calls to Augment is O(n2 log(mnU)).
(ii) Between calls to Augment, there are at most n−1 calls to nonsaturating
Double-Exchange.
(iii) Between calls to Augment, there are at most mn2 calls to saturating
Double-Exchange.
(iv) Each call to Double-Exchange requires O(logU) time. In particular,
nonsaturating Double-Exchange can be done in O(1) time.

Proof. Claims (i) and (ii) can be shown in the same way as in Proposition
A.21. Claim (iii) follows from Proposition A.24 below and the fact that the
number of triples is at most mn2. We now prove claim (iv). Procedure
Double-Exchange can be done in O(logU) time since the exchange capacity
c̃(yj , w, v) can be computed in O(logU) time by Proposition A.17. To reduce
the running time in the case of nonsaturating Double-Exchange, we first check
if yj − φ(v, w)(χv − χw) ∈ Dj(p). If yj − φ(v, w)(χv − χw) ∈ Dj(p) holds,
then we have c̃(yj , w, v) ≥ φ(v, w) and therefore this call to Double-Exchange
is nonsaturating and we do not compute the value c̃(yj , w, v). That is, the
value c̃(yj , w, v) is computed only when yj−φ(v, w)(χv−χw) ̸∈ Dj(p) holds.
Hence, claim (iv) follows.

We then prove the following properties needed in the proof of claim (iii)
above.

Proposition A.24. The modified IFF algorithm satisfies the following:
(i) Double-Exchange(j, v, w) makes an active triple (j, v, w) inactive.
(ii) Between calls to Augment, any inactive triple does not become active.

Proof. The claim (i) follows from the fact that after the call to Double-
Exchange(j, v, w) we have either φ(v, w) = 0 or c̃(yj , v, w) = 0 (or both).
To prove (ii), we need an additional rule concerning the order of triples

32



applied to Double-Exchange: if we apply Double-Exchange to some active
triple (j, v, w) for some j ∈ M and v ∈ W , then we apply Double-Exchange
to active triples (j, v, w′) for all w′ ∈ N \ W sequentially. Then, triples
(j, v, w′) with w′ ∈ N \ W are now all inactive, and it can be shown that
these triples (j, v, w′) cannot become active by the following calls to Double-
Exchange, which can be shown by using the fact that the value yj(i) does
not increase for i ∈ W and does not decrease for i ∈ N \W .

Hence, we obtain Theorem 1.3 on the time complexity of the algorithm.

A.11 Ascending Auction for Real-Valued Valuation Func-
tions

We show that a variant of the ascending auction finds an ε-approximate
equilibrium price vector in the case of real-valued valuation functions with
the SGS condition.

Suppose that for j ∈ M , fj : [0, u]Z → R is a real-valued valuation
function with the SGS condition which is concave-extensible. We define the
Lyapunov function L : Rn → R by (3); we here regard L as a function
defined on Rn. Then, p∗ ∈ Rn is an equilibrium price vector if and only if
it is a minimizer of L (see [1, 22]). Moreover, M♮-concavity of fj implies
that the Lyapunov function is a polyhedral L♮-convex function in the sense
of Murota and Shioura [A3], i.e., for every p, q ∈ Rn and every λ ∈ R+, it
holds that

L(p) + L(q) ≥ L((p+ λ1) ∧ q) + L(p ∨ (q − λ1)).

We then explain how to obtain an ε-approximate equilibrium price vec-
tor. Denote ε′ = ε/n, and define function L̂ : Rn → R by

L̂(p) = L(ε′p) (p ∈ Rn)

and let L̂Z : Zn → R be the restriction of L̂ on Zn. Then, L̂ is also a
polyhedral L♮-convex function and L̂Z is an L♮-convex function on Zn.

By a proximity theorem of polyhedral L♮-convex functions in [A3], we
can show that for every minimizer q of L̂Z, there exists a minimizer q∗ of
L̂ such that ∥q∗ − q∥∞ < n. This fact can be rewritten as follows in terms
of the original Lyapunov function as follows: for every q ∈ argmin{L(εp′) |
q′ ∈ Zn}, there exists a minimizer p∗ of L such that ∥p∗ − ε′q∥∞ < ε′n = ε.
This implies that for every q ∈ argmin{L(εq′) | q′ ∈ Zn}, the vector ε′q is
an ε-approximate equilibrium price vector. Since min{L(εq′) | q′ ∈ Zn} is
essentially equivalent to the minimization of the L♮-convex function L̂Z, its
optimal solution can be obtained by the following variant of the ascending
auction, where each component of p is incremented by ε′ instead of 1; its
validity follows from the previous discussion.

33



Algorithm ε′-Ascend
Step 0: Set p := p◦, where p◦ ∈ ε′·Zn is a lower bound of some p∗ ∈ argminL
(e.g., p◦ = 0).
Step1: Find X ⊆ N that minimizes L(p+ ε′χX).
Step2: If L(p+ ε′χX) = L(p), then output p and stop.
Step3: Set p := p+ ε′χX and go to Step 1.
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