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Abstract. Given a partition of an n element set into equivalence classes,
we consider time-space tradeoffs for representing it to support the query
that asks whether two given elements are in the same equivalence class.
This has various applications including for testing whether two vertices
are in the same connected component in an undirected graph or in the
same strongly connected component in a directed graph.
We consider the problem in several models.
– Concerning labeling schemes where we assign labels to elements and

the query is to be answered just by examining the labels of the
queried elements (without any extra space): if each vertex is required
to have a unique label, then we show that a label space of

∑
n

i=1
⌊n

i
⌋

is necessary and sufficient. In other words, lg n+lg lg n+O(1) bits of
space are necessary and sufficient for representing each of the labels.
This slightly strengthens the known lower bound and is in contrast
to the known necessary and sufficient bound of ⌈lg n⌉ for the label
length, if each vertex need not get a unique label.

– Concerning succinct data structures for the problem when the n ele-
ments are to be uniquely assigned labels from label set {1, . . . , n}, we
first show that Θ(

√
n) bits are necessary and sufficient to represent

the equivalence class information. This space includes the space for
implicitly encoding the vertex labels. We can support the query in
such a structure in O(lg n) time in the standard word RAM model.
We then develop structures where the queries can be answered
• in O(lg lg n) time using O(

√
n lg n/ lg lgn) bits, and

• in O(1) time using O(
√
n lgn) bits of space.

En route, we provide an interesting method to compute the integer near-
est to the square root of integers up to n using a table look up. We believe
that this method can be of independent interest.
We also develop a dynamic structure that uses O(

√
n lgn) bits to sup-

port equivalence queries and unions in O(lg n/ lg lgn) worst case time or
O(α(n)) expected amortized time where α(n) is the inverse Ackermann
function.

⋆ Work done while the first and the third authors were on sabbatical at the University
of Waterloo, Canada
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1 Introduction and Motivation

We look at the following problem. Given a partition of an n element set into
equivalence classes, preprocess it, assigning a unique label to each element, to
obtain a data structure with minimum space to support the following query:
given two elements, determine whether they are in the same equivalence class.
We call the query an ‘equivalence query’. This is a fundamental data structure
problem that has various applications including for testing whether two vertices
are in the same connected (or strongly connected) component in an undirected
(or directed) graph. We study the problem in the context of succinct data
structures. Designing succinct (or space efficient) data structures has been an
area of interest in theory and practice motivated by the need to store large
amount of data. See [4,8,15,18,6] for succinct representations of dictionaries,
trees, arbitrary graphs and partially ordered sets.

We address the time-space tradeoff for representing an equivalence class and
answering the equivalence query in a couple of models. Katz, Katz, Korman and
Peleg [14] introduced the notion of labeling schemes whereby every node of the
graph is assigned a (not necessarily distinct) label and the required query is to be
answered by just looking at the labels of the query elements. They showed that
Ω(k lg n) 4 is a lower bound of the length of the label to answer ‘k-connectivity
queries’, for k up to polylogarithmic in n. For k = 1 (which is the case for the
problem in this paper), this lower bound is ⌈lg n⌉ and hence the scheme that
simply assigns all elements of an equivalence class a single label that is distinct
from the labels of other equivalence classes, is optimal in this model. However, in
some situations (for example when one wants to support other graph operations
including adjacency relations) we may want to give unique labels to each vertex.
Our first result is that in this case, we need a label space of

∑n
i=1⌊n/i⌋, and

we show that this number of labels is also sufficient. We also give an encoding
scheme that uses the optimal lgn+lg lgn+O(1) bits for the labels. The encoding
scheme is similar to the one in [2], but our lower bound is stronger, and more
importantly we establish an exact tight bound for the label space. This result
is discussed in Section 2.

Then, in Section 3, we give succinct data structures for the problem in the
model where the labels can be freely reassigned (but need to be unique and in
the range 1 to n), and the query can be answered by looking at a small space
data structure. We first observe that the information theoretic lower bound
to represent the equivalence class information is Ω(

√
n) bits, and we provide a

scheme using O(
√
n) bits in which the query can be answered in O(lg n) time.

In the rest of the section, we develop a data structure where the query can be
answered in constant time albeit using O(

√
n lgn) bits of space. In Section 4, we

develop methods that also support merge operation on the equivalence classes
using asymptotically the same space, as fast as other known non-space efficient
structures.

4 We use lg n to denote log
2
n
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These structures operate in the standard word RAM model with a word
size of w = Ω(lg n) [12] where multiplication and shifts can be performed in
constant time. Furthermore, our succinct structures modify the initial labels
of the elements to an implicit labeling scheme. We discuss applications and
limitations of this approach in Section 5.

2 Labeling scheme with unique labels for elements

In the problem, which we call the direct equivalence queries problem, each ele-
ment is to be given a unique label, and the equivalence query is to be answered
by computing directly from the two labels. It is known [2] that lg n+Θ(lg lg n)
bits of space are necessary and sufficient to represent the labels. We strengthen
the bound to lg n + lg lgn + Θ(1). The encoding that achieves this bound is
similar to the one in [2], we provide it for completeness, but our lower bound es-
tablishes a tight bound on the label space. We first prove the following theorem.

Theorem 1. Let a partition of an n element set into equivalence classes be
given as input to the direct equivalence queries problem. Then a label space of
∑n

i=1⌊n/i⌋ is necessary and sufficient.

Proof. Our key observation for the sufficiency is that the i-th largest equivalence
class contains at most ⌊n/i⌋ elements. For the upper bound, we simply assign

labels from the set of integers in the range [
∑i−1

j=1(⌊n/j⌋) + 1,
∑i

j=1⌊n/j⌋] for
the i-th largest equivalence class, for i > 1, and integers in the range [1, n] for
the largest equivalence class.

To show that this many labels are necessary, consider the collection of n
equivalence relations (partitions of an n element set) as below. The collection
Ci contains i sets (equivalence classes) each containing ⌊n/i⌋ or ⌈n/i⌉ elements.
In particular if s and t are the sizes of two of these classes, then |s− t| ≤ 1.

Consider the labels assigned by any labeling scheme for the above n collection
of equivalence relations. Note that the labels assigned to the relation C1 can be
assigned to at most one class of each of Ci, i = 2 to n. This happens because
every pair of elements are in the same equivalence class in C1, and hence we will
have a conflict (to answer the equivalence query looking only at the labels) if
these labels are assigned to more than one class of Ci, i = 2 to n. Now remove
C1, and all classes from Ci, i = 2 to n that have been assigned the same labels as
of C1. Now the proof follows by repeating the above argument with the labels
assigned to the elements of (the remaining classes of) C2, C3 up to Cn in that
order. ⊓⊔

To answer the equivalence query in the above labeling scheme, given an
integer label x, we need to find the largest i such that

∑i−1
j=1⌊n/j⌋ < x. In order

to support this query in constant time, we modify the labeling scheme slightly
(and use space slightly suboptimal, up to lower order terms). We first order the
equivalence classes in non-increasing order of their sizes. We give them labels, say

3



1 to c where c is the number of classes. Within each class, we give an arbitrary
ordering of the elements. Then the label for an element x is given by a pair (i, j)
where i is the label of the class to which the element belongs, and j is its ‘rank’
in the class numbered i. As the i-th largest equivalence class contains at most
⌊n/i⌋ elements, the label j can be represented using ⌈lg⌊n/i⌋⌉ bits of space. The
label i is represented using ⌈lg i⌉ bits. As the size of the representation of i is
not fixed, we need to store information to find the ‘break point’ between i and
j. Hence we ‘prefix’ the label (i, j) by storing the length of i in binary, using
⌈lg⌈lgn⌉⌉ bits. The equivalence query can easily be answered by looking at the
first component (i) of the label in constant time. The number of bits used for a
label is ⌈lg⌈lgn⌉⌉+ ⌈lg i⌉+ ⌈lg⌊n/i⌋⌉ which is at most lgn+ lg lg n+ 2.

¿From Theorem 1, ⌈lg∑n
i=1⌊n/i⌋⌉ = ⌈lg(n lnn − O(n))⌉ bits are necessary

for the label length. Thus we have

Theorem 2. Given a partition of an n element set into equivalence classes, we
can assign to each of the elements a label of lgn + lg lg n+ 2 bits such that the
equivalence query can be answered in constant time by looking only at the labels.
In this model, lgn+ lg lg n−Θ(1) bits are necessary to represent the labels.

3 Succinct Data Structures

Now we move on to designing data structures, where the labels of the n elements
can be freely reassigned, but they need to be unique and in the range 1 to n.
The queries can be answered by looking at an augmented data structure. We are
interested in time and space efficient data structures. We first assign an implicit
ordering of the elements. Each element gets a label according to this ordering,
and the queries are answered by looking at these labels and an augmented data
structure.

First, we address the question of how much space is required to capture the
given equivalence class information. The information theory lower bound for
the representation is given by the number of partitions of an n element set into
equivalence classes, which is the same as the number of partions of n, which by

the Hardy-Ramanujan formula [13] is asymptotically 1
4n

√
3
e(π

√
2n

3
). Hence the

information theoretic lower bound for space to represent the equivalence class
information is given by π

√

2n/3 lg e− lgn+O(1) which is Θ(
√
n).

Now, to design space efficient data structures, let c be the number of classes,
si, i = 1 to k be the distinct sizes of the classes, and let ni be the number of
classes of size si in the given equivalence class. Key to our structure is ordering
the classes in non-decreasing order of γi = sini. I.e. sini ≤ si+1ni+1, for i = 1
to k − 1. We first make the simple observations that

k
∑

i=1

sini = n,

k
∑

i=1

ni = c and sini ≥ i for i = 1 to k (1)

The last inequality follows as the i-th smallest si value is at least i. It follows
from these observations that that k ≤ c and k ≤

√
2n.
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3.1 Structure using O(
√

n) bits

Here, we design a structure that uses O(
√
n) bits of space to represent the

equivalence class information, and can support equivalence query in O(lg n) time.
Our primary structure consists of two sequences:

– the sequence s that consists of δi = sini − si−1ni−1, i = 1 to k, where s0n0

is defined to be 0 and
– the sequence m that consists of ni, i = 1 to k.

Each element in these sequences is represented in binary (using respectively
1 + ⌈lg(δi + 1)⌉ and 1 + ⌈lg(ni + 1)⌉ bits). As the lengths of each element in
the sequence vary, we store two other sequences that ‘shadow’ the two primary
sequences. The first one ψ has a 1 at the starting point of each element in the
sequence s and 0 at other positions. Similarly, the second one ρ stores a 1 at the
starting point of elements of the sequence m, and 0 at other positions. We also
store a select structure (see for example [18,11]) on these two sequences ψ and
ρ to identify the 1s quickly. The space occupied by each of these two sequences
is clearly the same as that occupied by the two primary sequences, plus lower
order terms.

The first sequence gives an implicit ordering of the elements, i.e. the elements
in the first n1 classes are assigned label values 1 to s1n1, the elements of the
next n2 classes are assigned the next s2n2 label values and so on.

We first claim that the space occupied by these four sequences is O(
√
n) bits.

We first show the following Lemma. If any δj = 0, then we account for 1 bit for
its representation and as k is O(

√
n), this doesn’t affect the claimed bound; so

assume that δj ≥ 1 for all j in the sum below.

Lemma 1.
∑k

j=1 lg δj is O(
√
n) where each δj (as defined above) is at least 1.

Proof. We use the following claim to achieve the desired bound.

Claim: For an integer 1 ≤ i ≤ n, the number of j’s such that δj ≥ i is at most
√

2n/i.
Proof of claim: Let δjt ≥ i, for some t = 1 to b. Then sjtnjt ≥ ti, and hence

b
∑

t=1

ti ≤
b

∑

t=1

sjtnjt ≤ n

from which it follows that b(b + 1)/2 ≤ n/i or b ≤
√

2n/i which proves the
claim. ⊓⊔
¿From the claim, it follows that (by breaking the δ values into ranges of powers
of two – i.e. those between 2p−1 and 2p for various values of p)

k
∑

j=1

lg δj ≤
⌈lg n⌉
∑

p=1

(
√

2n/2(p−1))p = 2
√
n

⌈lgn⌉
∑

p=1

p

2p/2

which is O(
√
n). ⊓⊔
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A similar proof shows that
∑k

j=1 lg nj is O(
√
n). This is because if nj = i

for some j, then sjnj ≥ ji, and a claim as above follows for the number of j’s
with nj = i as well. Thus we have a structure to represent the equivalence class
information that uses O(

√
n) bits.

Implementing the equivalence query Now, given an element labeled x, the
equivalence class it belongs to is determined by first finding the predecessor p(x)

of x, which is max{j|∑j
i=1 sini < x}. Given two elements x and y, if p(x) and

p(y) are not the same, then x and y are not in the same equivalence class.
If p(x) and p(y) are the same, then we know that x and y are in classes

that have the same sizes, but it is still not clear whether they are in the
same equivalence class. They are in the same equivalence class if and only

if ⌈(x−∑p(x)
i=1 sini)/np(x)+1⌉ and ⌈(y −∑p(y)

i=1 sini)/np(y)+1⌉ are the same. To
compute the ni value for some i, we simply look for the i-th and (i + 1)-st 1 in
the sequence ρ (using the select data structure on ρ) which gives the starting
position and the length of the representation of ni in the sequence m.

Now in order to support the predecessor queries in a reasonable amount of
time, we store more: we simply store the

∑i
j=1 sjnj for every value of i which

is a multiple of lg n. This takes O(
√
n) bits.

Now p(x) can be obtained by doing a binary search for x on these partial sum

values
∑i

j=1 sjnj for every value of i which is a multiple of lgn. Once an O(lg n)
range of the predecessor is found, the actual predecessor value is found by doing
a linear search on the delta values in this range. As before, the lengths and the
starting positions of the δ values can be found using the select substructure on
the sequence ψ. Thus we have

Theorem 3. Given a partition of an n element set into equivalence classes, it
can be stored using O(

√
n) bits such that the equivalence query can be answered

in O(lg n) time. Furthermore, Ω(
√
n) is the minimum number of bits necessary

to store the equivalence class information on an n element set.

3.2 Faster, Space-Efficient Methods

Here we develop a data structure where the equivalence query can be answered
in constant time albeit using O(

√
n lgn) bits of space.

Our initial representation consists of storing

– the sequence
∑i

j=1 sjnj, i = 1 to k, and
– the sequence ni, i = 1 to k,

where each number in each sequence is represented in binary using ⌈lgn⌉
bits. As before, the first sequence gives an implicit ordering of the elements.
That is, the s1n1 elements of the first n1 classes form the first s1n1 elements
and so on. The total space used by the four sequences is at most 2

√
2n⌈lgn⌉

bits. As discussed earlier, to answer the equivalence queries, we essentially have
to support predecessor queries in the sequence

∑i
j=1 sjnj, i = 1 to k.

6



A simple binary search can support the predecessor query in O(lg k) time. A
y-fast trie [20] can support the predecessor query in O(lg lgn) time. As in the
scheme of the previous subsection, we could store the complete partial sums and
a y-fast trie structure storing every lg lgn-th element in the partial sum sequence
and store the δ values for the remaining elements of the sequence. This will help
us find a range of lg lgn for the predecessor in O(lg lg n) time. Within the range,
we can do a sequential search for the predecessor using the δ values. As the
delta values require only O(

√
n) bits of space, we have

Theorem 4. Given a partition of an n element set into equivalence classes, it
can be stored using O(

√
n lg n/ lg lg n) bits such that the equivalence query can

be answered in O(lg lg n) time.

A fully indexable dictionary [18] with the improved redundancy of [11] can

support the predecessor query in constant time albeit using O(
√
n
1+ǫ

) bits of
space. However, we argue below that the predecessor can be supported in con-
stant time using an additional O(

√
n lg n) bits using the fact that our sequence

satisfies the last inequality in equation (1) and hence is special. In addition
to the two sequences above, we store an array A of ⌈

√
2n⌉ pointers, where

A[i] = max{j|∑j
t=1 stnt ≤ i(i+ 1)/2}, for i = 1 to ⌈

√
2n⌉. Now, we claim

Lemma 2. The predecessor p(x) of an integer x (1 ≤ x ≤ n) in the sequence
∑i

t=1 stnt, i = 1 to k is A[⌈
√
2x⌉ − 1] or A[⌈

√
2x⌉ − 1]− 1 or A[⌈

√
2x⌉ − 1] + 1.

Proof. Let i = ⌈
√
2x⌉ − 1, then

x− (
√
x)/2 ≤ i(i+ 1)/2 < x+ (

√
x)/2,

and

x+ (
√
x)/2 ≤ (i+ 1)(i + 2)/2 < x+ 3(

√
x)/2.

For j = A[i]+1,
∑j

t=1 stnt > i(i+1)/2 (by definition of A[i]). Hence sjnj ≥
(i + 1) and hence sj+1nj+1 ≥ (i + 2) hence

∑j+1
t=1 stnt > i(i + 1)/2 + i + 2 > x

and hence p(x) ≤ j = A[i] + 1.

Let l = p(x). Then
∑l+1

t=1 stnt > x and hence sl+1nl+1 ≥ ⌈
√
2x⌉ − 1. Hence

∑l+2
t=1 stnt ≥ x + ⌈(

√
2x)⌉ > i(i + 1)/2. Hence A[i] ≤ l + 1 = p(x) + 1 which

implies that A[i] + 1 ≥ p(x) ≥ A[i]− 1. ⊓⊔

The actual value of p(x) can be computed by looking at the sum up to each
of these three values.

Computing Square Roots Note that computing ⌈√x⌉ is not a constant time
operation in the standard word RAM model. The standard Newton’s iterative
method uses Θ(lg lgn) operations. We describe a space efficient method that
avoids explicit computation of square roots (for the range we are interested in)
by using a look up to precomputed tables. We use two tables, one when the
number of digits of x (up to its most significant 1) is odd, denoted by O, and

7



one when the number of digits is even, denoted by E. It turns out that O[i] and
E[i] are quite close in value, where E[i] is roughly a

√
2 factor larger than O[i].

For i = 1 to ⌈
√
2n⌉, we precompute and store in E[i], the value of ⌈

√
i2(⌈lg(i+1)⌉)/2⌉

and in O[i], the value of ⌈
√
i2(⌈lg(i+1)⌉)/2−1⌉. This takes O(

√
n lg n) bits. Now,

given an integer i, 1 ≤ i ≤ 2n, we compute ⌈
√
i⌉ as follows. Let i = ai2

⌈(lg i)/2⌉+
bi where bi < 2⌈(lg i)/2⌉. Then,

Lemma 3. ⌈
√
i⌉ = E[ai] or E[ai+1] if the number of digits in i (up to its most

significant 1) is even, and is O[ai] or O[ai + 1] otherwise.

Proof. As i = ai2
⌈(lg i)/2)⌉ + bi, ai2

⌈(lg i)/2⌉ ≤ i < (ai + 1)2⌈(lg i)/2⌉, and hence

⌈
√

ai2⌈(lg i)/2⌉⌉ ≤ ⌈
√
i⌉ ≤ ⌈

√

(ai + 1)2⌈(lg i)/2⌉⌉ which is what we wanted to
show. ⊓⊔

The actual value of ⌈
√
i⌉ can be computed by squaring the values in the table

and comparing them with i. Note that for i ≤ 2n, ai ≤ ⌈
√
2n⌉, and it can be

obtained as follows: find the most significant bit, say bit r, mask the lower r bits
to keep only the higher half of them, i.e. ⌊ r

2⌋ of the bits (without the leading
zeroes), and finally shifting them to the right by ⌈ r

2⌉. The most significant bit
can be found in constant time with the standard RAM operations, see [10]. Thus
we have

Lemma 4. For 1 ≤ i ≤ n, ⌈
√
i⌉ can be computed in constant time (for each i)

using a precomputed table of O(
√
n lg n) bits.

Indeed using this approach to provide a seed for Newton iteration, one can
compute ⌈

√
i⌉, for i = 1 to n in time O(lg(1/ǫ)) using a table of O((nǫ lgn)/ǫ)

bits, for any positive constant ǫ < 1. To summarize, we have

Theorem 5. Given a partition of an n element set into equivalence classes, the
partition can be represented using O(

√
n lgn) bits such that the equivalence query

can be answered in constant time.

4 Supporting Unions

Finally we discuss space efficient structures that can support merging of two
classes in an equivalence relation and still support equivalence queries. The
merge operation takes two classes of the equivalence relation and merges them
to obtain a new class destroying both the old ones. We show

Theorem 6. Given a partition of an n element set into equivalence classes,
it can be represented using O(

√
n lgn) bits such that the equivalence query and

merge queries can be supported in O(lg n/ lg lg n) worst case time. In fact, using
the same space, equivalence query can be supported in O(α(n)) amortized time
and merge queries can be supported in O(α(n)) expected amortized time, where
α(n) is the inverse Ackermann function.

8



Proof. The primary structure we maintain is the one as in the proof of Theorem
5. To support merge operations, we maintain an auxiliary structure that cap-
tures the merges that have happened until O(

√
n) sets have merged. During this

time, the original labeling of the elements is maintained. After O(
√
n) merges

have happened, the entire data structure is reconstructed with relabeling of the
elements.

In the following, we represent an equivalence class (that has been involved
in a merge) by the smallest element (label) in the class. The auxiliary structure
contains

– a forest F of rooted trees with the nodes having the label of set that has
been involved in the merges since the previous relabeling of elements. Each
node has a (parent) pointer to the node containing the label of the class to
which it has been merged. If it is the root node, this pointer is a NIL pointer.
We also keep a counter to indicate the number of edges (i.e. the number of
merges that have happened since the last relabelling) in the forest.

– A succinct data structure M for the labels of all the sets that have been
involved in merges since the previous relabeling of the elements, where insert
and membership can be supported. In this structure, we store the parent
pointer along with the element (or a nil pointer if the element is a root of
F ). We also store a marker bit with each element indicating whether or not
its a leaf in F .

To support the equivalence query, we proceed as in the proof of Theorem 5 in
the primary structure. If the two elements of the query are in the same class,
then we answer affirmatively. Otherwise, we check the auxiliary structure to see
whether those two sets had been since merged. This is done by

1. first checking whether these two set labels are present in the auxiliary struc-
ture M . If either one is not present in M , then we return that the two
elements of the query are in different equivalent classes.

2. If both lables are present in M , then we follow through their parent pointers
in F , and find the root of the trees they belong to. If both the roots are the
same, then we report that both elements are in the same equivalence class
and otherwise report that they are in different equivalence classes.

The complexity of these operations is dominated by the membership query in
M , and the find query in F .

To support the merge query, first let us assume that the number of merges
that have happened (which can be determined by looking at the counter in F )
since the last relabelling is at most c

√
n for some fixed constant c. We update

the counter in F after every merge until the counter reaches c
√
n. Let x and y

be the labels of the sets to be merged. If either of them is not in M , then we
insert them intoM , and then create a new tree containing that element for each
(or either) of them. Then we simply make the root of the tree containing x or
y the child of the the root of the tree containing the other, as dictated by the
union-find algorithm, and update the parent pointer of the node whose parent
changed, in M . We also mark or unmark the leaf marker with x or y in M .

9



The time is dominated by the time to do find and union in F , and to perform
membership and insert in M .

If c
√
n real merges have happened since last relabelling (as indicated by the

counter in F ), the relabelling is reconstructed with the new classes and their
sizes, and the auxiliary structures is cleared. For this, first we compute the sizes
of the newly constructed sets (which are at the roots of the forest F ) as follows:
Initialize their sizes to 0. We scan through elements in M until we reach the
first leaf (as indicated by the leaf marker). The size of the set of the root will
be increased by the sizes of all sets along the path from the leaf to the root.
Simultaneously, the ‘original’ sizes of these sets are updated by updating the ni

values and the sini values.

For this, we follow the parent pointer in the path up to the root by performing
the following operations for each node x along the path (including the leaf). We
will initialize the increment value to 0. Using Theorem 5, find the set containing
x, and the size of the set si. Decrement ni by 1, decrease γi = sini by si. Add
si to the increment value (to be added to the size of the set in the root).

Once we reach the root, we increment the size of the class represented by the
root node by the increment value (which is the sum of the sizes of the sets in
the leaf to root path). Now we go to the structure M , continue to find the next
leaf and repeat. Once we are done with a leaf to root path, we will mark that
leaf in M as visited, so that we don’t repeat that path. We are done once we
have traversed all the leaves in M .

Thus in O(
√
n) time, we have computed the sizes of the new sets (roots in

F ), and updated the values of the ‘old’ γ values along with the new number
(nis) of classes contributing to the γ value. Now we need to sort and merge
the ‘old’ γ values with the new set sizes, except we need to determine whether
the new set sizes already exist. For this purpose, we first organize the γ values
(including the new set sizes whose ni values are 1 temporarily) based on the si
values. The set size for a γi is obtained from its ni value. After we organize
the γ values based on the set sizes, all γ values with the same set sizes (at most
two of them, one from the old and one from the new) will be together. So in
another scan, by appropriately updating the γ and the ni values, we can ensure
that there is only one γ value for each set size. Now all we need to do is to sort
the γ values and appropriately move the ni values. Sorting based on the sizes
and the γ values can be done in O(

√
n) time by a radix sort [9] as the si and

γ values are at most n. Thus, the restructuring results in O(
√
n) time, for an

amortized cost of O(1). At this point, we can clear the auxiliary structures M
and F . The entire step can be deamortized using strandard tricks [16,17] by
starting the reconstruction

√
n steps before, while maintaining the old and new

structures during this process.

By using a fusion tree [10,3] for the insert and membership structure M and
the union-find data structure of [1,5,19] for F , the worst case bounds of the
theorem follow. By using a dynamic perfect hashing scheme [7] for M instead
of the fusion tree, the amortized bounds of the theorem follow. ⊓⊔

10



5 Conclusions

We have discussed time-space tradeoffs for the fundamential problem of sup-
porting equivalence queries. Our first result is an establishment of a tight bound
for the label space required for the elements to answer equivalence query by just
looking at the labels.

Then we showed that one can represent an equivalence relation on n elements
using O(

√
n) bits of space, which is a constant factor of the information theoret-

ically optimum number of bits required. Our scheme allows an implicit labeling
of elements and supports equivalence queries in O(lg n) time. Improving this to
constant time is an interesting open problem, though we could achieve constant
time using O(

√
n logn) bits.

We also developed a dynamic structure where the merge operation can also
be supported as fast as the standard union-find structures using O(

√
n lg n) bits.

Our main contribution is on the time-space tradeoffs for representing equivalence
queries using clever use of several known structures.

Not withstanding our claim in Theorem 6 that we can support unions and
finds on an n element set using O(

√
n lgn) bits and at the same asymptotic time

as the best known (not so space efficient) structures, we don’t know of a direct
way to apply them for supporting static or (incremental) dynamic connectivity
queries on graphs. This is because the original labels of the elements are modified
to obtain our space efficient structure. Hence to support the user queries, we
need to store the permutation that maps the user labels to our labels or update
the user of the labelling (in the latter case, the user herself can answer the
connectivity query). This is particularly important in our dynamic structure
that supports union, as every so often, the labels are recomputed.

An example setting where our structures can be applicable is as follows.
Consider a distributed environment where multiple processors are performing
some intensive computation. These processors are space constrained, and each
processor receives a request with a label from two different processors to perform
some computation. Assume that the application requires the processor receiving
this request to first determine whether the two labels are in the same equivalence
class to perform the computation. So it does that using our small space union-
find structure. In the case of dynamic (merge) queries, all processors must be
aware of all the merges happening at any of the processors to perform their own
local computation in case the labels get changed. Alternatively we can assume
synchrony and communicate the relabelling after every change.

One useful query in this scenario that can be supported easily by our struc-
ture is the following. Each of the processors may have a small subset of labels
about which they are particularly interested in. When a request for an equiv-
alence query comes in, the processor may also want to know whether there is
any element in its interest set that is in the same equivalence class as the query
element. This can be supported in constant time by maintaining a succinct
membership structure (as in [6]) for the classes in which the elements in its
interest set belongs to, in addition to our succinct union-find structure.
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Finally, given that union-find is a fundamental structure for representing
equivalence classes, we feel that our structure and approach will find applica-
tions in other scenarios we haven’t imagined.

Acknowledgement The second author gratefully acknowledges the discussions
he had with Tetsuo Asano which initiated work on the problem.
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